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Abstract The adaptive immune system provides a diverse set of molecules that can mount

specific responses against a multitude of pathogens. Memory is a key feature of adaptive

immunity, which allows organisms to respond more readily upon re-infections. However,

differentiation of memory cells is still one of the least understood cell fate decisions. Here, we

introduce a mathematical framework to characterize optimal strategies to store memory to

maximize the utility of immune response over an organism’s lifetime. We show that memory

production should be actively regulated to balance between affinity and cross-reactivity of immune

receptors for an effective protection against evolving pathogens. Moreover, we predict that

specificity of memory should depend on the organism’s lifespan, and shorter lived organisms with

fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a

baseline to gauge the efficacy of immune memory in light of an organism’s coevolutionary history

with pathogens.

Introduction
Adaptive immunity in vertebrates develops during the lifetime of an organism to battle a multitude

of evolving pathogens. The central actors in our adaptive immune system are diverse B- and T-cells,

whose unique surface receptors are generated through genomic rearrangement, mutation, and

selection (Janeway et al., 2005). The diversity of receptors allows the immune system to mount spe-

cific responses against diverse pathogens. B-cell receptors (BCRs) in particular can specialize through

a process of affinity maturation, which is a form of somatic Darwinian evolution within an individual

to enhance the affinity of BCRs to pathogens. Several rounds of somatic mutation and selection dur-

ing affinity maturation can increase binding affinities of BCRs up to 10,000 fold (Victora and Nus-

senzweig, 2012; Meyer-Hermann et al., 2012).

Beside receptor diversity, immune cells also differentiate and specialize to take on different roles,

including plasma B-cells, which are antibody factories, effector T-cells, which can actively battle

infections, or memory cells. Memory responses are highly efficient because memory cells can be

reactivated faster than naive cells and can mount a more robust response to an infection

(McHeyzer-Williams et al., 2000; Tangye et al., 2003; Tangye and Hodgkin, 2004; Moens et al.,

2016). Memory generation is a form of cell fate decision in the immune system, which can occur at

different stages of an immune response. In B-cells, activated naive cells can differentiate into anti-

body-secreting long-lived plasma cells, a T-cell-independent un-hypermutated memory cells, or they

can initiate a germinal center (Goodnow et al., 2010). B-cells that enter germinal centers differenti-

ate during affinity maturation into high-affinity plasma cells or T-cell-dependent long-lived memory

cells that circulate in the blood for antigen surveillance; see schematic Figure 1.

The basis for differentiation of B-cells into memory, especially during affinity maturation, is among

the least understood in cell fate decision-making in the immune system (Goodnow et al., 2010). A

long-standing view was that memory is continuously produced during affinity maturation
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(Blink et al., 2005). Memory receptors often have lower affinity compared to plasma cells

(Smith et al., 1997), and therefore, if memory B-cells were to be generated continuously it should

be able to proliferate without strong affinity-dependent selection (Goodnow et al., 2010;

Victora and Nussenzweig, 2012). However, recent experiments indicate that memory
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Figure 1. Immune memory or naive response upon infection. (A) Schematic shows affinity maturation in germinal centers(right), where B-cell receptors

acquire mutations and undergo selection, resulting in an increase in their affinity to an antigen (from light to dark receptors), indicated by the

sharpening of receptors’ affinity profiles (on left). (B) Upon infection, the immune system can initiate a novel response (top) or a memory response

(bottom). A novel B-cell response could involve affinity maturation to generate memory or high-affinity plasma cells (pink) that can secrete antibodies to

battle the pathogen. A novel response can take 1–2 weeks, during which pathogen can replicate within a host and a patient can show symptoms from

the disease (top, left). During this time, the proliferation of pathogens within a host incurs a cost associated with a naive response Wt , which is a

monotonic function of the deliberation time t (top, right). If the host carries memory from a previous infection or vaccination (bottom), the immune

system can robustly and rapidly activate a memory response to battle the infection. The probability to mount such memory response Qmem: depends

non-linearly on the relative utilities of memory versus naı̈ve responses against a given infection DU ¼ Umem: � Unaive (bottom, right). (C) Affinity profile

Ea;�ðrm; �Þ ~a exp½�ðadÞ�� of a memory receptor rm is shown in orange as a function of the distance d ¼ k��r � �k in the antigenic shape space, between

the receptor’s cognate antigen ��r (orange) and an evolved novel target �i (red). The affinity of a receptor decays with increasing distance between

targets and its cognate antigen. The antigenic range over which a receptor is reactive inversely depends on its specificity a. The shape of the binding

profile is tuned by the factor q, here shown for � ¼ 2. The expected binding profile E
ðiÞ
a;�ð�Þ and the expected utility hUi for an immune response are

weighted averages of these quantities over memory and naı̈ve responses. The Kullback-Leibler distance between the expected profile E
ðiÞ
a;�ð�Þ and the

profile centered around the infecting antigen Ea;�ðr�i ; �Þ, in units of the deliberation factor b, defines the sub-optimality of a response, that is,,

dissipation Kdiss (Equation 1). The net utility Unet measures the goodness of a decision to mount a memory vs. naive response against an infection

(Equation 2). (D) Antigenic evolution of the H3N2 influenza virus is shown over 40 years along its first (most variable) antigenic dimension (data from

Bedford et al., 2014). The decision of an immune system to utilize memory or to mount a novel response (B,C) is determined by the specificity a of

receptors and the deliberation factor b. We characterize the optimal immune strategies (a�;b�) by maximizing the total net utility of immune responses

against pathogens with different antigenic divergences, experienced over the lifetime of an organisms (Equation 3).
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differentiation is highly regulated (Paus et al., 2006; Weisel et al., 2016; Shinnakasu et al., 2016;

Recaldin and Fear, 2016; Shinnakasu and Kurosaki, 2017; Viant et al., 2020), reflecting a tempo-

ral switch in germinal centers that preferentially produces memory at early stages and plasma at

later stages of affinity maturation (Weisel et al., 2016). This active regulation introduces an affinity-

dependent cell fate decision, leading to a preferential selection of low-affinity cells to the memory

compartment. Low-affinity memory may be at a disadvantage in mounting a protective immune

response since immune-pathogen recognition is largely determined by the binding affinity between

an immune receptor and antigenic epitopes. On the other hand, immune-pathogen recognition is

cross-reactive, which would allow memory receptors to recognize slightly evolved forms of the anti-

gen, in response to which they were originally generated.

We propose that the program for differentiation of immune cells to memory should be viewed in

light of the immune system’s coevolution with pathogens. We have developed a theoretical frame-

work that incorporates the kinetics and energetics of memory responses as ingredients of memory

strategy, which we seek to optimize under various evolutionary scenarios. We propose that the hard-

wired affinity-dependent regulatory measures for memory differentiation could be understood as a

way to optimize the long-term utility of immune memory against evolving pathogens. Individuals

encounter many distinct pathogens with varying evolutionary rates, ranging from relatively con-

served pathogens like chickenpox to rapidly evolving viruses like influenza. To battle such a spec-

trum of evolving pathogens, we propose that an optimal immune system should store a combination

of low-affinity memory with high cross-reactivity to counter evolving pathogens, and high-affinity

and specific memory to counter the relatively conserved pathogens—a strategy consistent with

B-cell memory, which often involves storage of both cross-reactive IgM and high-affinity IgG recep-

tors (Shlomchik, 2018; McHeyzer-Williams et al., 2018). Lastly, we study the impact of organisms’

life expectancy on their evolved memory strategies and predict that cross-reactive memory should

dominate the immune response in short-lived organisms that encounter only a few pathogens.

Previous work on theoretical modeling of cellular differentiation together with experiments has

been instrumental in understanding immune memory generation; for example see reviewed work in

Perelson and Weisbuch, 1997; Altan-Bonnet et al., 2020. For example, mechanistic models have

indicated the importance of signal integration at the cellular level (Laffleur et al., 2014) and the rel-

evance of stochastic effects at the population level (Hawkins et al., 2007), to explain heterogeneous

cell fate decisions for the generation of memory. Our statistical framework aims to characterize high-

level features for an optimal memory strategy, without relying on mechanistic details of the underly-

ing process, some of which are at least partially unknown (Bialek, 2012; Nourmohammad et al.,

2013). In the case of the immune system, statistical models have provided an intuition for how an

immune repertoire should be organized to optimally counter diverse pathogens (Perelson and

Oster, 1979; Mayer et al., 2015; Bradde et al., 2020). In a similar fashion, optimal memory strate-

gies identified by our model provide a baseline to gauge the performance of real immune systems

in storing and utilizing memory.

Model
The efficacy of an immune response to a pathogen is determined by two key factors: (i) the affinity

of immune-pathogen recognition (i.e. energetics) and (ii) the speed of response (i.e. kinetics) to neu-

tralize an infection.

Recognition of a pathogen (or its antigenic epitope) u by an immune receptor r is mediated by

the affinity of the molecular interactions Eðr; �Þ between them. We describe cross-reactive immune-

pathogen recognition in an immune shape space (Perelson and Oster, 1979), where receptors

located near each other in shape space can recognize similar antigens, and in the complementary

space, antigens that are close to each other can be recognized by the same immune receptor (Fig-

ure 1). We express the binding affinity between a receptor r and an arbitrary target antigen u in

terms of the antigenic distance drð�Þ ¼ k�� ��rk between the receptor’s cognate antigen ��r and the

target u: Eðr; �Þ � Eðdrð�ÞÞ.
Physico-chemical constraints in protein structures can introduce a tradeoff between immune

receptors’ affinity and cross-reactivity. Although we lack a systematic understanding of these struc-

tural constraints, affinity-specificity tradeoffs have been reported repeatedly for B-cells and antibod-

ies (Wedemayer et al., 1997; Frank, 2002; Li et al., 2003; Wu et al., 2017; Mishra and Mariuzza,

2018; Fernández-Quintero et al., 2020). Specifically, while affinity maturation can significantly
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increase the binding affinity of a B-cell receptor, it also makes the receptor more rigid and specific

to its cognate antigen (Wedemayer et al., 1997; Li et al., 2003; Mishra and Mariuzza, 2018; Fer-

nández-Quintero et al., 2020). Broadly neutralizing antibodies (bNAbs) appear to be an exception

to this rule since they have high potency and can react to a broad range of viral strains. However, it

should be noted that bNAbs often react to vulnerable regions of a virus where escape mutations are

very deleterious, including the CD4 binding site of HIV or the stem proteins in influenza

(Mascola and Haynes, 2013; Lee and Wilson, 2015). In other words, the majority of bNAbs are not

cross-reactive per se, but they are exceptionally successful in targeting conserved epitopes in other-

wise diverse viral strains.

To qualitatively capture this affinity-specificity tradeoff, we use a simple functional form: We

assume that the binding affinity of a receptor r to an antigen u depends on the antigenic distance

drð�Þ through a kernel with a specificity factor a and a shape factor q such that,

Eðr; �Þ � Ea;�ðdrð�ÞÞ ~a exp½� adrð�Þð Þ��, with � � 0. This affinity function defines a receptor’s binding

profile over the space of antigens. As specificity a increases (or cross-reactivity 1=a decays), the

binding affinity profile sharpens and binding becomes more restrictive to antigens closer to the

receptor’s cognate antigen (Figure 1). Moreover, the absolute strength of binding to the cognate

antigen (i.e. a receptor’s maximum affinity) increases with specificity a, resulting in a tradeoff

between affinity and cross-reactivity. The parameter q tunes the shape of the receptor’s binding pro-

file Ea;�ðdrð�ÞÞ, resulting in a flat function (i.e. no tradeoff) for � ¼ 0, a double-sided exponential func-

tion for � ¼ 1, a Gaussian (bell-curve) function for � ¼ 2, and top-hat functions for � � 2; see

Materials and methods.

Upon encountering a pathogen, the adaptive immune system mounts a response by activating

the naı̈ve repertoire (i.e. a novel response) and/or by triggering previously stored immune receptors

in the memory compartment. A memory receptor often shows a reduced affinity in interacting with

an evolved form of the pathogen. Nonetheless, memory plays a central role in protecting against re-

infections since even a suboptimal memory can be kinetically more efficient than a naı̈ve response,

both in B-cells (Tangye and Hodgkin, 2004) and T-cells (Whitmire et al., 2008; Martin et al.,

2012). Specifically, following an infection, memory B-cells initiate cell division about 1� 2 days ear-

lier, and they are recruited to proliferate in 2� 3 times larger numbers compared to the naı̈ve popu-

lation (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al., 2009). Once

recruited, however, memory and naive cells have approximately a similar doubling time of about

t1=2 » 0:5� 2 days (Tangye et al., 2003; Macallan et al., 2005). Taken together, we can define an

effective deliberation time t » 1:5� 5 days for the naive population to reach an activity level (i.e. a

clone size) comparable to the memory; see Materials and methods and Figure 1.

The decision to mount a naı̈ve or a memory response depends on the energetics and the kinetics

of the immune machinery, including the cross-reactivity of memory to recognize evolved pathogens

and the deliberation time to mount a naive response upon infection—we refer to these choices as

memory strategies. We expect that the biochemical machinery involved in making this decision upon

an infection has been fine-tuned and selected over evolutionary time scales in order to utilize

immune memory and mount an effective response against recurring pathogens. The theory of deci-

sion-making (von Neumann and Morgenstern, 1944; Ortega and Braun, 2013) enables us to char-

acterize the response of the immune system as a rational decision-maker that chooses between two

possible actions a 2 fnaive;memoryg each contributing a utility Ua (Materials and methods). Specifi-

cally, the action of a rational decision-maker should follow an optimal distribution Qa, which maxi-

mizes the expected utility while satisfying the constraints in processing new information, for example

due to prior preferences (von Neumann and Morgenstern, 1944; Ortega and Braun, 2013). We

assume that the immune system has no intrinsic prior for mounting a naive or a memory response

against a given pathogen. In this case, the utility Ua of an action (memory vs. naive) determines the

type of response, and rational decisions follow a maximum entropy distribution Qa ~ exp½bUa�
(Jaynes, 1957), where b is the efficacy of information processing (see Materials and methods). As b

increases, a rational decision-maker more readily chooses the action with the highest utility. The

expected utility of the immune response to an infection is equal to the sum of the utilities of a naive

and a memory response, weighted by their respective probabilities: Uh i ¼ Umem Qmem: þ Unaive Qnaive.

If memory is effective, the utility difference between mounting a memory or a naive response is
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determined by the affinity of the interaction between the responding memory receptor rm and the

infecting antigen u: Umem � Unaive ¼ Ea;�ðrm; �Þ; see Figure 1 and Materials and methods for details.

The time lag (deliberation) between memory and naive response also plays a key role in the deci-

sion-making process. On the one hand, if memory is inefficient, long deliberations would allow

pathogens to proliferate, incurring a larger cost Wt to a host prior to activation of a novel response;

this cost can be interpreted as the negative utility of naı̈ve response Unaive � �Wt . On the other

hand, a long deliberation would allow the immune system to exploit the utility of a usable memory

(i.e. process information), even if the available memory has only a slight advantage over a responsive

naive receptor (see Materials and methods). Indeed, for a responsive memory, the information proc-

essing factor b is equal to accumulated pathogenic load Gt during the deliberation period t, and

thus, we refer to b as the deliberation factor.

The expected binding profile of stored memory E
ðiÞ
a;�ð�Þ after ith round of re-infection with an anti-

gen �i can be characterized as the superposition of the binding profiles following a memory or a

naive response, weighted by the respective probability of each of these events (Figure 1 and Materi-

als and methods). Since mounting a sub-optimal memory against evolved variants of a reinfecting

pathogen can still be kinetically favorable, the expected profile can deviate from the optimal profile

of the cognate receptor centered around the infecting pathogen Ea;�ðr�i ; �Þ (Figure 1). This tradeoff

between the kinetics and the energetics of immune response results in a non-equilibrium decision-

making Grau-Moya et al., 2018 by the immune system (Materials and methods). In analogy to non-

equilibrium thermodynamics, we express this deviation as a dissipative cost of memory response

Kdissðti;a; �Þ at the ith round of re-infection (time point ti), which we quantify by the Kullback-Leibler

distance between the expected and the optimal binding profiles DKL E
ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

, in units of

the deliberation factor b (Figure 1),

KdissðtiÞ ¼ 1

b
DKL E

ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

¼ 1

b

X

antigens:�

E
ðiÞ
a;�ð�Þ log

E
ðiÞ
a;�ð�Þ

Ea;�ðr�i ;�Þ

2

4

3

5:

(1)

An optimal memory strategy should be chosen such that it maximizes the expected utility of the

immune response hUi, while minimizing the dissipation cost due to the non-equilibrium response

Kdiss, over the lifetime of an organism. To infer an optimal strategy, we introduce net utility that

accounts for the tradeoff between the expected utility and dissipation at a given round of infection

at time point ti,

UnetðtiÞ ¼ UðtiÞh i�KdissðtiÞ (2)

We infer the optimal memory protocol (i.e. the optimal memory specificity a� and deliberation

factor b�) by maximizing the total net utility of memory responses throughout the lifetime of an

organism (Figure 1),

ða�;b�Þ ¼
a;b

argmax
X

i:infections

UnetðtiÞ: (3)

Results
Efficient immune memory balances specificity and speed. The extent of cross-reactivity and delibera-

tion needed for the memory to react to pathogens should be set by the amount of pathogenic evo-

lution and more specifically, the antigenic divergence d̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk�i � �i�1k2i
q

that a pathogen traces

between two infections. An example of such antigenic divergence is shown in Fig. Figure 1D for 40

years of H3N2 Influenza evolution along it first (most variable) evolutionary dimension

(Bedford et al., 2014). We set to find an optimal immune protocol (i.e. specificity a� and delibera-

tion b�) by maximizing the net utility Unet of an immune system (Equation 3) that is trained to

counter pathogens with a given antigenic divergence d̂; see Fig. Figure 1D and Materials and meth-

ods for details on the optimization procedure.
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To battle slowly evolving pathogens (d̂ � 20%) an optimal immune system stores highly specific

memory receptors, with a specificity that approaches the upper bound amax; see Figure 2A and Fig-

ure 2—figure supplement 2, Figure 2—figure supplement 3. Importantly, the dependency of opti-

mal specificity on antigenic divergence is insensitive to the cost of deliberation W prior to mounting

a naive response (Figure 2A), the shape factor q for the specificity profile (Figure 2—figure supple-

ment 2), and the specificity threshold amax (Figure 2—figure supplement 3). For relatively con-

served pathogens (d̂ ’ 0), the highly specific memory (with â� � a�=amax ’ 1) stored from a previous
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Figure 2. Optimal memory strategies against evolving pathogens. (A) and (B) show the optimal specificity

â� � a�=amax and deliberation factor b̂� � b�=bmax, scaled by their respective upper bounds, as a function of the

antigenic divergence per infection, scaled by the cross-reactive range (or inverse of maximum specificity)

d̂ � d=ða�1

maxÞ. Colors/markers indicate different naı̈ve cost functions for deliberation, including no-cost

Ŵ � W=Emax ¼ 0, linear cost Ŵ ¼ Ŵ0b̂, and quadratic cost Ŵ ¼ Ŵ0b̂
2, with varying amplitudes W0. (C) The heat map

shows the expected rescaled net utility Ûnet ¼ Unet=Emax (Equation 2) per round of infection for an immune system

with an optimal specificity â�, as a function of rescaled antigenic divergence d̂ and deliberation factor b̂. Rescaling

by Emax sets the magnitude of net utility to one, for a response to conserved antigens (with d̂ ¼ 0) and in the limit

of zero deliberation cost W ! 0. Boundaries indicate different levels of dissipation, with orange and blue

encompassing regions of � 40% and � 70% of the maximum dissipation Kmax, respectively. The three modes of

immune response are indicate based on the magnitude of dissipation and net utility in each reagion: (i)

equilibrium memory, (ii) non-equilibrium memory, and (iii) equilibrium naive. Simulation parameters, (A–C):

amax ¼ 4, bmax ¼ 10, and � ¼ 2, (C): linear deliberation cost function Ŵ ¼ Ŵ0b̂ with Ŵ0 ¼ 0:1. Results for other shape

parameters q and specificity thresholds amax are shown in Figure 2—figure supplement 2, Figure 2—figure

supplement 3, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Utility, dissipation, and usage of optimal memory.

Figure supplement 2. Optimal memory strategies for different specificity shape factors q.

Figure supplement 3. Optimal memory strategies for different specificity thresholds amax.
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infection still has high affinity and remains centered and close to the reinfecting pathogens. There-

fore, the immune system maintains a moderate level of deliberation to exploit this efficient memory

during infections. However, as antigenic divergence grows, specific memory becomes less effective

against future infections and therefore, the immune system reduces the deliberation factor to allow

a timely novel response, once memory becomes inefficient (Figure 2B, Figure 2—figure supple-

ment 2, Figure 2—figure supplement 3). The magnitude of deliberation decays as the cost of

deliberation W increases but its overall dependency on antigenic divergence remains comparable for

different cost functions (shown in Figure 2B for zero cost, and cost functions that grow linearly and

quadratically with deliberation factor b). Overall, the net utility of the stored memory in response to

slowly evolving pathogens is high (Figure 2C, Figure 2—figure supplement 1, Figure 2—figure

supplement 2, Figure 2—figure supplement 3), while its dissipation remains small Kdiss ’ 0

(Figure 2C, Figure 2—figure supplement 1, Figure 2—figure supplement 2, Figure 2—figure

supplement 3). Therefore, in analogy to thermodynamics, we term this immune strategy with low

dissipation as equilibrium memory response; Figure 2C.

To battle moderately evolving pathogens (with d̂ ’ 20%� 60%), an optimal immune system stores

cross-reactive memory (i.e. with a lower specificity â) that can recognize moderately evolved form of

the primary antigen (Figure 2A, Figure 2—figure supplement 2, Figure 2—figure supplement 3).

However, cross-reactive receptors tend to have lower affinities (Wedemayer et al., 1997;

Frank, 2002), which could lead to deficient responses against antigens. Importantly, activation of

energetically sub-optimal yet cross-reactive memory could be detrimental as it may hinder a stron-

ger novel response without providing protective immunity to the host—a deficiency known as the

original antigenic sin (Francis, 1960; Vatti et al., 2017). An optimal immune system can mitigate

this problem by using kinetic optimization to tune the deliberation factor b in order to avoid an elon-

gated memory engagement prior to a naive response. This optimization results in a smaller delibera-

tion factor b (i.e. a faster naive response) compared to the scenario with slowly evolving pathogens,

yet a long enough deliberation to allow the energetically suboptimal memory to react to an infec-

tion, whenever feasible (Figure 2B, Figure 2—figure supplement 2, Figure 2—figure supplement

3). With this kinetic optimization, the immune system can utilize cross-reactive memories through

multiple rounds of infection (Figure 2—figure supplement 1C), yet with a declining efficiency and

net utility as pathogens evolve away from the primary infection (Figure 2C, Figure 2—figure supple-

ment 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3). The prominent memory

response to moderately evolving pathogens is dissipative with Kdiss � 0 (Figure 2C, Figure 2—fig-

ure supplement 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3), and in anal-

ogy with thermodynamics, we term this dissipative immune strategy as non-equilibrium memory

response; Figure 2C.

For extremely rapidly evolving pathogens (d̂>60%), the immune system would not be able to store

an efficient memory to battle future encounters, and hence, each infection would trigger a novel

naive response — the reduced net utility of memory and the decay of memory usage in this regime

are shown in Figure 2C, Figure 2—figure supplement 1, Figure 2—figure supplement 2, Fig-

ure 2—figure supplement 3, respectively. Without a protective memory, a novel response is trig-

gered to counter each infection and it maturates specifically around the infecting pathogen,

resulting in a non-dissipative naive-dominated immune response with Kdiss ’ 0, which we term equi-

librium naive response; Figure 2C.

It should be noted that when the cost of deliberation W is very high, utilizing memory against

pathogens with relatively high evolutionary rates becomes highly unfavorable. In this extreme case,

the immune system switches into a state where it invariably mounts a novel response upon an infec-

tion (Figure 2—figure supplement 1C), and it assures that memory is not utilized by setting the

parameters for specificity a and deliberation b to zero (Figure 2A,B).

Our analyses in Figure 2 indicate that a rational decision to become a memory or a plasma cell

during an immune response should depend on the affinity of a cell’s receptors and it should not be

a stochastic choice with a constant rate throughout affinity maturation. Indeed, cell fate decision for

B-cells during affinity maturation is highly regulated and dependent on receptors’ affinity (Good-

Jacobson and Shlomchik, 2010; Kometani et al., 2013; Shinnakasu et al., 2016; Weisel et al.,

2016; Shinnakasu and Kurosaki, 2017; Shlomchik et al., 2019). Recent experiments have demon-

strated that memory generation is highly correlated with the activity of the transcription factor
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Bach2 whose expression level is negatively regulated with the abundance of helper CD4+ T-cells

(Kometani et al., 2013; Shinnakasu et al., 2016; Shinnakasu and Kurosaki, 2017). As the affinity of

B-cell receptors increases during affinity maturation, more CD4+ T-cells are recruited to germinal

centers, resulting in suppression of Bach2 and a hence, a decline in production of memory cells

(Kometani et al., 2013; Shinnakasu et al., 2016; Shinnakasu and Kurosaki, 2017). In other words,

our adaptive immune system has encoded a negative feedback mechanism to store memory with

intermediate affinity and cross-reactivity to suppress the production of highly specific memory, which

is likely to be impotent against evolved pathogens in future infections.

A mixture memory strategy is necessary to counter pathogens with a
broad range of evolutionary rates
The decision to trigger an equilibrium or a non-equilibrium memory response depends on the extent

of antigenic divergence that an immune system is trained to cope with (Figure 2, Figure 2—figure

supplement 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3). Equilibrium mem-

ory is highly effective (i.e. it has high net utility) against relatively conserved pathogens, however, it

fails to counter evolving pathogens (Figure 2C). On the other hand, cross-reactive non-equilibrium

memory is more versatile and can counter a broader range of evolved pathogens but at a cost of

reduced net utility in immune response; Figure 2C, Figure 2—figure supplement 1, Figure 2—fig-

ure supplement 2, Figure 2—figure supplement 3.

An optimal immune system should have memory strategies to counter pathogens with varying

evolutionary rates, ranging from relatively conserved pathogens like chickenpox to rapidly evolving

viruses like influenza. We use our optimization protocol to find such memory strategies that maxi-

mize the net utility of an immune system that encounters evolving pathogens with (scaled) antigenic

divergences uniformly drawn from a broad range of d̂ 2 ½0 1:6�; see Materials and methods. This opti-

mization results in a bimodal distribution of optimal specificity for functional memory receptors PðaÞ,
with separated peaks corresponding to equilibrium (â~ 1) and non-equilibrium (â~ 0:5) memory (Fig-

ure 3, Figure 3—figure supplement 1). This result suggests that specific and cross-reactive memory
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Figure 3. Mixed memory strategy against a mixture of pathogens with a broad range of evolutionary rates.

Distribution of scaled optimized specificities â� for functional memory (purple) is shown for an immune system with

a fixed deliberation factor b̂ ¼ 0:2. A mixture strategy with a bimodal distribution of specificities PðâÞ is
established to counter pathogens with a broad range of antigenic divergences. The dashed bar indicates stored

memory with specificity a ¼ 0, which is not further used in response to infections. The solid line indicates the

probability Pusage that a stored memory with a given specificity is utilized in future infections (Materials and

methods). Optimization is done by maximizing the net utility of immune response averaged over encounters with

1000 independently evolving antigens with (scaled) antigenic divergences drawn uniformly from a range d̂ 2 ð0; 1:6Þ
(Materials and methods). The distribution shows the ensemble statistics of functional memory accumulated from

200 independent optimizations, each starting from a flat prior for specificities (orange). The insert shows the

optimized mixture strategy for one optimization with 3000 steps. Simulation parameters: amax ¼ 4, bmax ¼ 10, and

� ¼ 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mixed memory strategy against pathogens for different deliberation factors b̂.
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strategies are complementary modes of immune response that cannot substitute each other. More-

over, non-equilibrium memory tends to be flexible and moderate values of cross-reactivity 1=â can

counter a range of antigenic divergences, without a need for fine-tuning. Therefore, upon produc-

tion of memory, an optimal immune system should harvest both specific equilibrium memory and

cross-reactive non-equilibrium memory, as it does not have a priori knowledge about the evolution-

ary rate of the infecting pathogen.

Interestingly, the adaptive immune system stores a mixture of IgM and class-switched IgG iso-

types of B-cell memory that show different levels of specificity. IgM memory is an earlier product of

affinity maturation with higher cross-reactivity and a lower affinity to antigens, reflecting a non-equi-

librium memory that can counter evolving pathogens. On the other hand, memory from class-

switched (e.g. IgG) isotype is produced during later stages of affinity maturation and is highly spe-

cific to the infecting pathogen, reflecting equilibrium memory that is effective against relatively con-

served pathogens (Weisel et al., 2016). Storing a mixture of IgM and class-switched IgG memory is

consistent with our recipe for optimal immune strategies to counter pathogens with a broad range

of evolutionary rates.

Cross-reactive memory dominates immune response in organisms that
encounter fewer pathogens over a shorter lifetime
So far, our analysis has focused on maximizing the net utility of immune response, assuming that

organisms encounter many such infections throughout their lifetime. This optimization provides a

recipe for optimal immune strategies in response to commonly infecting pathogens. However, the

expected frequency of infections is also an important factor that can inform immune strategies. For

example, imagine the extreme case that an immune system expects to encounter a pathogen at

most only once during an organism’s lifetime, for example in short-lived organisms. In this case,

there is no benefit in keeping a memory even to counter extremely conserved pathogens, for which

memory would be otherwise very beneficial.

To study the impact of infection frequency on immune strategies, we use our optimization proce-

dure to maximize the net utility of immune response, while setting a bound on the number of infec-

tions throughout an organism’s lifetime (see Materials and methods). Organisms with an

unrealistically very short lifetime (measured in units of the number of infections) experience only a

few infections, and therefore, a small (cumulative) antigenic drift from the primary infection during

their lifetime d̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lifetime:
p

<~ 1. In this case, it would be sufficient for an optimal immune system to gen-

erate specific memory (â» 1), which can mount an effective response with only an intermediate delib-

eration (b̂ ~ 0:4) upon reinfection (Figure 4A–B), even for pathogens with a moderate evolutionary

rate (Figure 4B). Organisms with moderately short lifetime experience evolutionary divergence of

reinfecting antigens. In this regime, the immune system stores cross-reactive memory (smaller â) and

uses a larger deliberation factor b̂ such that this lower-affinity and often off-centered memory can

mount an effective response to evolved infections (Figure 4A–B). Since the organism is relatively

short-lived, such cross-reactive memory could be sufficient throughout the whole lifetime of the

organism, without a need for renewal.

Organisms with long lifetimes, with pathogen encounters that surpassing the threshold c�, expect

higher re-infections with pathogens that are highly diverged from the primary infection. In this case,

an optimal immune strategy switches from storing and utilizing cross-reactive memory to generating

more specific memory receptors (Figure 4A). This specific memory would not hinder activation of

preventive novel responses against evolved pathogens (the problem known as original antigenic sin),

resulting in continual renewal of memory during organisms’ lifetime. In this regime, the deliberation

factor also decreases to facilitate novel responses against antigens that are not readily recognized

by memory (Figure 4A–B). The increase in memory specificity from short- to long-lived organisms is

more substantial for immune strategies optimized to counter relatively conserved pathogens, that is

the specific equilibrium memory (Figure 2C, Figure 4A), compared to the memory against evolving

pathogens, that is the cross-reactive non-equilibrium memory (Figure 2C, Figure 4B). The exact

value of the transition threshold c� depends on the expected antigenic divergence d during patho-

genic evolution and the details of the immune machinery, and specifically the cost of deliberation

Wðt Þ due to an elevated level of pathogenic proliferation prior to a novel response (Figure 4—
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figure supplement 1). However, the qualitative trend for cross-reactivity as a function of the organ-

ism’s lifetime remain consistent across a range of parameters.

The results in Figure 4 predict that organisms with few pathogenic encounters or a shorter life-

span should generate more cross-reactive and lower affinity (i.e. a naive-type) memory receptors.

Indeed, consistent with our prediction, analysis of immune repertoire data indicates that sequence

features of memory and naı̈ve B-cell receptors tend to be more similar to each other in mouse com-

pared to humans that enjoy a longer life expectancy (Sethna et al., 2017). Nonetheless, more com-

prehensive data on cross-species comparison of immune strategies is needed to test our

predictions.

With the increase in human life expectancy, a pressing question is how well our immune system

could cope with a larger number of pathogenic challenges that we are now encountering throughout

our lifetimes? Aging has many implications for our immune machinery and the history of infections

throughout lifetime leaves a complex mark on immune memory that can have long-lasting conse-

quences (Saule et al., 2006), which has also been studied through theoretical modeling

(Mayer et al., 2019). In our framework, we can study one aspect of this problem and ask how an

immune strategy optimized to battle a given number of infections would perform if the organism

were to live longer or equivalently, to encounter pathogens more frequently. Figure 4C shows that

cross-reactive memory generated by an immune system optimized to counter few infections (short

life expectancy) becomes highly inefficient (i.e., with a lower net utility Unet) as the number of

encounters increases beyond the organism’s expectation (long life span)—an effect that may be in

part responsible for the observed decline in the efficacy of our adaptive immunity as we age.

Discussion
Memory is central to our adaptive immunity by providing a robust and preventive response to rein-

fecting pathogens. In the presence of continually evolving pathogens, immune memory is only bene-

ficial if receptors can recognize evolved antigens by cross-reactivity. However, biophysical

constraints can impose a trade-off between affinity and cross-reactivity of antibodies. Specifically, as

receptors undergo affinity maturation, their structures become more rigid and less cross-reactive,
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Figure 4. Life expectancy influences the specificity of optimal memory. (A,B) Memory strategies, that is, optimal rescaled specificity â� (green) and

deliberation factor b̂� (orange) are shown as a function of the organism’s life expectancy (bottom axis) and the corresponding expected antigenic

divergence over the organism’s life-time d̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lifetime
p

(top axis). Antigenic divergence (per encounter) of the infecting pathogen is d̂ ¼ 0:35 in (A) and

d̂ ¼ 0:5 in (B). Memory is highly specific in organisms with very short lifetimes, during which re-infections with evolved forms of a pathogen are unlikely

(i.e. when life-expected antigenic divergence is smaller than 1, indicated by a dotted pink line). Memory becomes more cross-reactive with a smaller

deliberation in organisms with (realistic) short lifetimes, up to a transition point c� (indicated by dotted purple line), after which specificity increases

again. (C) Scaled net utility Ûnet is shown as a function of organism’s life span, whose immune strategies (â�, b̂�) are optimized for a specified life

expectancy (colors as indicated in the legend). Net utility for memory optimized against pathogens with antigenic divergence d̂ ¼ 0:35 (panel A) and

d̂ ¼ 0:5 (panel B) are shown by full and dashed lines, respectively. Life span and life expectancy are measured in units of the number of pathogenic

encounters during lifetime. Simulation parameters: linear deliberation cost function W ¼ W0b̂ with an amplitude Ŵ0 ¼ 0:1, amax ¼ 4, bmax ¼ 10, and

� ¼ 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pathogen encounter threshold to transition between cross-reactive and specific memory.
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while affinity increases (Wedemayer et al., 1997; Frank, 2002; Li et al., 2003; Wu et al., 2017;

Mishra and Mariuzza, 2018; Fernández-Quintero et al., 2020). Consistent with recent experiments

(Weisel et al., 2016; Shinnakasu et al., 2016; Recaldin and Fear, 2016; Shinnakasu and Kurosaki,

2017; Viant et al., 2020), we show that memory differentiation should be regulated to preferentially

produce lower affinity receptors, which can allow cross-reactive recognition of evolved pathogens.

To overcome the resulting energetic impediment of these memory receptors, we infer that the

immune system should tune the kinetics of the immune response and allocate a longer deliberation

time for memory to react before initiating a novel response—a feature that is also in accordance

with observations (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al.,

2009). Co-optimizing kinetics and energetics of memory ensures an effective response against evolv-

ing pathogens, throughout an organism’s lifetime.

Optimal cross-reactive immune memory provides a long-term advantage to an organism, yet it

may seem energetically sub-optimal over short time scales (Figure 1). One important consequence

of a sub-optimal memory response is known as original antigenic sin, where cross-reactive memory

from primary infections could interfere with and suppress a protective novel response (Francis, 1960;

Vatti et al., 2017). The viral exposure history and the original antigenic sin may have profound con-

sequences on protective immunity against evolving viruses (Cobey and Hensley, 2017). For exam-

ple, the 2009 H1N1 pandemic triggered memory responses in individuals with childhood exposures

to seasonal H1N1 (Linderman and Hensley, 2016; Li et al., 2013; Hensley, 2014), which in some

led to a highly focused antibody response toward the conserved epitopes of H1N1. This focus was a

problem when in 2013–2014 the pandemic H1N1 acquired mutations in those epitopes

(Linderman and Hensley, 2016), resulting in a disproportionate impact of infection on middle-aged

individuals with pre-existing memory (Petrie et al., 2016). This recent example, among others,

showcases how immune history and antigenic sin can impact a population’s immune response to the

a rapidly evolving virus like influenza.

Composition of the immune memory coupled with the exposure history of the host should be

taken into account when designing new vaccines (Cobey and Hensley, 2017). For example, current

vaccine strategies against influenza use sera isolated from ferrets infected with the virus to measure

the antigenic distance of circulating strains against the previous years (Smith et al., 2004). However,

these ferrets have no immune history for influenza and the antibodies they produce may be distinct

from the immune response in the adult population with prior memory, resulting in incorrect meas-

ures of antigenic distances (Hensley, 2014). This problem has been recognized by the World Health

Organization and there is now an effort to choose vaccine strains based on human serology.

The impact of immune deficiency related to the original antigenic sin can even be more pro-

nounced due to changes in an organism’s life expectancy. Importantly, we show that immune strate-

gies optimized to benefit short-lived organisms produce highly cross-reactive memory (Figure 4). If

an organism’s life-expectancy increases, which is the case for humans, it would be likely for individu-

als to encounter evolved forms of a pathogen at antigenic distances larger than expected by their

immune systems. In this case, cross-reactive memory, optimized for a shorter lifetime, could still be

activated but with lower efficacy, which could suppress a protective novel response, consistent with

original antigenic sin. It is therefore important to consider sub-optimality of immune strategies in the

face of extensive elongation of the human lifespan as one of the plausible factors responsible for

immune deficiencies brought by aging.

One characteristic of memory B-cells, which is currently missing from our model, is their abil-

ity to seed secondary germinal centers and undergo further affinity maturation upon reinfection.

Evolvability of memory B-cells can allow cross-reactive memory to further specialize against

evolved pathogens, without a need to start a germinal center reaction from an un-mutated naive

receptor. Interestingly, different experiments suggest that the capacity of memory to re-diversify

depends on various factors including the memory isotype (IgM vs. class-switch receptors), the

type of antigenic target (viruses vs. others) and the extent of memory maturation (Shlom-

chik, 2018; McHeyzer-Williams et al., 2018). Therefore, it is interesting to extend our model to

study how evolvability of memory can influence its longterm utility to respond to evolving patho-

gens, and especially viruses.

Evolvability of memory is also relevant for characterizing the dynamics of immune response to

chronic viral infections like HIV. Analyses of immune repertoires in HIV patients over multiple years

of infection have shown a rapid turnover and somatic evolution of B-cell clonal lineages to counter
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the evolution of the virus within hosts (Nourmohammad et al., 2019). It would be interesting to see

how the constant pressure from the evolving HIV on a host’s immune system impacts the dynamics

and efficacy of immune memory over time. In addition, understanding the limits of memory re-diver-

sification is instrumental in designing successive vaccination protocols with antigen cocktails to drive

extensive affinity maturation of BCR lineages to elicit broadly neutralizing antibodies Wang et al.,

2015; Shaffer et al., 2016; Stephenson et al., 2020—an approach that is the current hope for uni-

versal vaccines against rapidly evolving viruses like HIV.

Although mechanistically distinct from B-cells, T-cells also differentiate into effector and mem-

ory in response to infections. The T-cell response does not involve affinity maturation by hyper-

mutations. However, competition among T-cells with varying receptor affinities acts as selection

that leads to immuno-dominant responses by the high-affinity clones. Receptor affinity and the

subsequent T-cell signaling determine the extent of clonal expansion and differentiation to an

effector versus a memory T-cell population (Kim and Williams, 2010). Although it is still unre-

solved as how T-cell signaling determines cell fate decision, the process is known to be highly

regulated (Rutishauser et al., 2009; Roychoudhuri et al., 2016). Notably, the transcription fac-

tor IRF4 selectively promotes expansion and differentiation of high-affinity cytotoxic T-cells into

effectors. In contrast, low-affinity T-cells are lost or they could differentiate into early memory

(Man et al., 2013). There is also accumulating evidence for the circulation of cross-reactive

memory T-cells, which often result in protective immunity against evolving forms of a virus

(Greenbaum et al., 2009; Sette and Crotty, 2020), but could also be detrimental by suppress-

ing novel and specific responses—an effect similar to the original antigenic sin by B-cells

(Selin et al., 2004). Taken together, there are parallels between differentiation of T-cells and

B-cells to memory, and it will be interesting to investigate the advantages of storing cross-reac-

tive (and plausibly low-affinity) T-cell memory as a strategy to counter evolving pathogens.

Materials and methods
All codes for simulations and numerical analysis can be found at: https://github.com/StatPhysBio/

ImmuneMemoryDM (swh:1:rev:c71f7ab35ebcdd251e4a26fdf9628386fe404e86; Schnaack, 2021).

Numerical optimization
Numerical optimization is performed on ensembles of immune systems that encounter evolving

pathogens. Recognition of an evolved pathogen at the ith round of infection �i by a memory that

was stored in response to a primary infection �0 (0th round) depends on the antigenic distance

di ¼ k�i � �0k. We model pathogenic evolution as diffusion in the antigenic shape space. In this

model, the expected antigenic distance between the primary infection �0 and the evolved antigen �i

can be characterized as, hd2i i � hk�i � �0k2i ¼ z2ðti � t0Þ ¼ i d2, where z is the diffusion coefficient (i.e.

the evolutionary rate) and d is the (averaged) antigenic divergence per round of infection. Impor-

tantly, this relationship does not depend on the dimensionality of the antigenic shape space, which

in general, is difficult to characterize. We simulate pathogenic evolution relative to a primary infec-

tion by drawing the corresponding antigenic distance di of the ith round of infection from a normal

distribution with mean d
ffiffi

i
p

and standard deviation 0:05d
ffiffi

i
p

. The width of this normal distribution

characterizes the fluctuations in the mean divergence between infections and reflects how the evolu-

tionary trajectory of a pathogen samples the multi-dimensional shape space surrounding the antigen

from the primary infection. Nonetheless, our results are insensitive to the exact choice of this width.

To characterize optimal specificity a� and deliberation factor b� (Figure 2, Figure 3, Figure 4),

we simulate ensembles of immune systems with different immune strategies (a;b), chosen uniformly

from the range a 2 ½0;amax� and b 2 ½0;bmax�, with 500 increments in both parameters. Each immune

system experiences successive rounds of infection with an evolving pathogen with a given antigenic

divergence d. During each encounter, the immune system chooses between utilizing an existing

memory or initiating a novel response according to Equation 6. The net utility of each encounter is

calculated according to Equation 2. We estimate the expected net utility per encounter over a life-

time of 60 total encounters and repeat this experiment across 105 independent ensembles to find

the optimal immune strategies ða�;b�Þ with the highest net utility. As shown in Figure 4, simulating

Schnaack and Nourmohammad. eLife 2021;10:e61346. DOI: https://doi.org/10.7554/eLife.61346 12 of 22

Research article Physics of Living Systems

https://github.com/StatPhysBio/ImmuneMemoryDM
https://github.com/StatPhysBio/ImmuneMemoryDM
https://archive.softwareheritage.org/swh:1:dir:27aee59d45599d57f8a4d7ff6e199f99a0cdef80;origin=https://github.com/StatPhysBio/ImmuneMemoryDM;visit=swh:1:snp:e0f222bcc3d6214890f8a62aa55f031950fc7b57;anchor=swh:1:rev:c71f7ab35ebcdd251e4a26fdf9628386fe404e86
https://doi.org/10.7554/eLife.61346


up to 60 encounters is sufficient for the inference of optimal strategies in the asymptotic regime (i.e.

a long lifetime).

To characterize optimal immune strategies against a mixture of pathogens with distinct levels of

antigenic divergences, we define the mixture immune strategy by a set of specificities

~a ¼ faig ¼ ðwith;i ¼ 1; . . . ;NmÞ, where each ai is a degree of specificity that a stored memory recep-

tor can potentially have, and Nm is the number of possible specificity strategies that an immune sys-

tem can choose from. The probability that an immune system with the mixture strategy ~a recognizes

a pathogen u through a memory response follows from an extension of = Equation 6,

PðmÞ
recog:ð~a;�Þ ¼ 1�

Y

specificity:ai

1�PðmÞ
recog:ðrai

m ;�Þ
� �

¼ 1�
Y

specificity:ai

e�E�ðraim ;�ÞGðt Þ ¼ 1� e
�
P

ai
E�ðraim ;�ÞGðt Þ � 1� e�

~bE�ð�Þ
(4)

where E�ð�Þ ¼ 1

Nm

P

ram
E�ðrai

m ; �Þ is the expected affinity of memory (with distinct specificities) against

antigen u in an immune repertoire and ~b�Nmb is an effective deliberation factor for all choices of

specificity. It should be noted that this effective deliberation factor ~b is an extensive quantity with

respect to the number of specificity strategies that an immune system can choose from, and there-

fore, is comparable across immune systems with different numbers of strategies.

We set out to characterize the mixture strategy as the probability PbðaÞ based on which an

immune system with a given effective deliberation factor ~b should store a memory receptor with

specificity a, in order to optimally counter infecting pathogens with distinct antigenic divergences,

drawn from a distribution PðdÞ. We start our optimization by defining a uniform mixture strategy,

where the elements of the immune specificity vector ~a ¼ faig (of size Nm ¼ 20), are drawn uniformly

from the range ½0;amax�. Each optimization step aims to improve the specificity vector ~a to maximize

the net utility (per encounter) of the mixture immune response Unetð~akÞ against 1000 independently

evolving antigens whose (scaled) antigenic divergences are drawn uniformly from the range

d̂ ¼ ½0; d̂max�. We use stochastic simulations to estimate the net utility of the mixture strategy

Unetð~akÞ, whereby the relative affinity of memory receptors (with varying specificities),

E�ðrai
m ; �Þ=E�ð�Þ, determines the stochastic rate of their response to the infecting antigen u. The net

utility (per encounter) of the immune response against each of the 1000 independently evolving anti-

gens is estimated by averaging over a host’s lifetime with 200 rounds of pathogenic encounters. We

update the mixture strategy over 3000 steps, using local gradient ascent by sampling 100 points in

the space of specificity vectors at each step to maximize net utility,

~akþ1 ¼~ak þ �rUnetð~akÞ (5)

Here, k indicates the optimization step and �¼ 0:1 is a hyper-parameter for gradient ascent. We

repeat the optimization process starting from 200 independently drawn initial uniform mixture strat-

egies ~a0 to characterize the ensemble of optimal memory strategies PbðaÞ against pathogens with

distinct antigenic divergences drawn uniformly from a given range d̂¼ ½0; d̂max�, as shown in Figure 3.

We also characterize the probability that a stored memory with a given specificity is utilized against

future infections (solid line in Figure 3). To do so, we test the optimized ensemble of specificities

PbðaÞ against 5000 independent pathogens with antigenic divergences drawn uniformly from the

range d̂¼ ½0; d̂max�. We evaluate the usage of a memory with a given specificity a (solid line in Fig-

ure 3) as the conditional probability PbðuseajproduceaÞ for using that memory given that it is pro-

duced (i.e. drawn from the distribution PbðaÞ).

Model of evolutionary decision-making for adaptive immune response
Kinetics of naive and memory immune response
Upon encountering a pathogen, the adaptive immune system mounts a response by activating the

naı̈ve repertoire (i.e. a novel response) and/or by triggering previously stored immune receptors in

the memory compartment. A memory receptor often shows a reduced affinity in interacting with an

evolved form of the pathogen. Nonetheless, memory plays a central role in protecting against re-

infections since even a suboptimal memory can be kinetically more efficient than a naive response,
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both in B-cells (Tangye and Hodgkin, 2004) and T-cells (Whitmire et al., 2008; Martin et al.,

2012). First, memory cells are fast responders and initiate cell division about t 0 » 1� 2 days before

naive cells (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al., 2009). Sec-

ond, the number of memory cells that are recruited to proliferate and differentiate to effector cells is

b» 2� 3 times larger than the number of naive cells (Tangye et al., 2003; Tangye and Hodgkin,

2004). Once recruited, however, memory and naive cells have approximately a similar doubling time

of about t1=2 » 0:5� 2 days (Tangye et al., 2003; Macallan et al., 2005). Putting these kinetic factors

together, we can define an effective deliberation time t for the naive population to reach an activity

level (i.e. a population size) comparable to the memory. Assuming an exponential growth during the

early stages of memory and naı̈ve proliferation, the deliberation time can be estimated in terms of

the kinetic factors by t ¼ t 0 þ t1=2 ln b= ln 2 and it is within a range of t » 1:5� 5 days; see Figure 1.

Energetics of immune recognition
We assume that each immune receptor r has a cognate antigen ��r against which it has the highest

affinity. We express the binding affinity between a receptor r and an arbitrary target antigen u in

terms of the antigenic distance drð�Þ ¼ k�� ��rk between the receptor’s cognate antigen ��r and the

target u: Eðr; �Þ � Eðdrð�ÞÞ. This distance-dependent binding affinity is measured with respect to the

affinity of unspecific antigen-receptor interactions, sufficient to trigger a generic naı̈ve response.

Physico-chemical constraints in protein structures can introduce a tradeoff between immune

receptors’ affinity and cross-reactivity (i.e. ability to equally react to multiple targets). Prior to affinity

maturation, the structure of naı̈ve receptors is relatively flexible whereas hypermutations often

reconfigure the active sites of a receptor and make them more specific so that they match their tar-

get antigens like a lock and key (Wedemayer et al., 1997; Frank, 2002). As a result, the IgM class

of antibodies, which are the first line of defense in B-cell response, often have low affinities, yet they

are cross-reactive and can recognize mutated forms of the same epitope. On the other hand, the

high-affinity IgG class of antibodies, which are the late outcomes of affinity maturation in germinal

centers, have higher affinities but bind very specifically to their cognate antigen (Frank, 2002).

Broadly neutralizing antibodies (bNAbs) are exceptions to this rule since they often have high

potency and can react to a broad range of viral strains. However, bNAbs often react to vulnerable

regions of a virus where escape mutations are very deleterious (Mascola and Haynes, 2013). In

other words, the majority of bNAbs are not cross-reactive per se, but they are exceptionally success-

ful in targeting conserved epitopes in otherwise diverse viral strains. Nevertheless, an affinity-speci-

ficity tradeoff has been reported for a bNAb against the hemagglutinin epitope of influenza

(Wu et al., 2017).

We use a simple functional form to qualitatively capture the tradeoff between cross-reactivity and

affinity of antigen-receptor binding interactions: We assume that the binding affinity of a receptor r

to an antigen u depends on the antigenic distance drð�Þ ¼ k�� ��rk through a kernel with a specific-

ity factor a and a shape factor q such that, Eðr; �Þ � Ea;�ðdrð�ÞÞ ~a exp½� ak�� ��rk
� ���, with � � 0. The

width of this binding profile (i.e. the cross-reactivity) is set by the inverse of the specificity factor 1=a

(Figure 1), which decays as the height of the function (i.e. the maximum affinity) increases. The

parameter q tunes the shape of the receptor’s binding profile Ea;�ðdrð�ÞÞ, resulting in a flat function

(i.e. no tradeoff) for � ¼ 0, a double-sided exponential function for � ¼ 1, a Gaussian (bell-curve)

function for � ¼ 2, and top-hat functions for � � 2. Structural constraints and molecular features of

protein receptors define a bound on the minimum cross-reactivity or equivalently, a maximum speci-

ficity amax, achievable by a receptor. Using this bound, we define rescaled specificity â � a=amax to

characterize the energetics of an immune response in a dimensionless form.

Immune response to evolving pathogens
Upon primary infection (i.e. an encounter with a novel pathogen) naive immune receptors with mod-

erate affinity are activated to develop a specific response through affinity maturation (Figure 1).

Since the naive repertoire is diverse enough to contain receptors of moderate affinity against differ-

ent antigens, we assume that the affinity of responsive naı̈ve receptors, and hence, the strength of a

primary immune response to be approximately the same for all pathogens. This simplification

becomes less accurate as the immune system ages and the supply of effective receptors become

more scarce.
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Following a naive response to a primary infection and the subsequent affinity maturation, the

immune system stores memory cells with an enhanced affinity to use them against future infections

(Janeway et al., 2005; see Figure 1). Therefore, the cognate antigen ��rm for a given memory recep-

tor rm is an epitope derived from the primary infection that led to the formation of memory, which

we denote by �0 with a subscript that indicates round of infection. Thus, the binding profile

Ea;�ðrm; �Þ of the memory receptor rm is peaked around the primary antigenic epitope ��rm ¼ �0 (Fig-

ure 1). As pathogens evolve globally to escape the immune challenge, drugs, or vaccination, they

drift away from the primary antigen in antigenic space. We model this antigenic shift as a diffusion in

shape space whereby a reinfecting pathogen at the ith round of infection �i is on average at a dis-

tance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk�i � �i�1k2i
q

from the previous infection �i�1. This antigenic shift is proportional to the

rate of pathogen evolution z� and the average time between infections Dt ¼ ti � ti�1, such that

d / z�
ffiffiffi

D
p

t. A cross-reactive memory can mount a response to an evolved antigen, yet with a reduced

affinity that decays with antigenic shift; see Figure 1. It should be noted that the minimum level of

receptor’s cross-reactivity (or maximum specificity) ðamaxÞ�1 defines a natural scale against which we

can measure antigenic divergence d and hence, form a dimensionless measure of antigenic diver-

gence d̂ � d=ðamaxÞ�1.

Immune-pathogen recognition depends both on the binding affinity Ea;�ðr; �Þ and the encounter

rate g�ðtÞ between an immune receptor r and the antigen u at a given time t. The encounter rate

g�ðtÞ depends on the abundance of the antigen and the immune receptor, and hence, can vary dur-

ing an infection within a host. The probability that a receptor r encounters and binds to an antigen u

in a short time interval ½t; t þ dt� can be expressed by, �ðr; �; tÞdt ¼ g�ðtÞEa;�ðr; �Þdt; a similar notion of

encounter rate has been previously used in Mayer et al., 2016. A memory response in an individual

is triggered through the recognition of an antigen by a circulating memory receptor. If no such rec-

ognition occurs during the deliberation time t » 1:5� 5 days, the immune system initiates a naı̈ve

response. Therefore, the probability that an antigen is recognized through a novel naive response

Pð0Þ
recog:

can be expressed as the probability of the antigen not being recognized 1� PðmÞ
recog:

by an avail-

able memory receptor rm over the deliberation period t,

Pð0Þ
recog:ð�Þ ¼ 1�PðmÞ

recog:ðrm;�Þ ¼ e
�
R t

0
�ð�;tÞdt ¼ e�Ea;�ðrm ;�ÞGð�;t Þ (6)

where Gð�;t Þ ¼
R t
0
g�ðtÞdt is the expected number of pathogenic encounters over the deliberation

time t and depends on the accumulated pathogenic load, as pathogens proliferate in the absence of

an effective memory prior to a naive response. Here, we have assumed that the affinity of the mem-

ory receptor does not change over the response time, which is a simplification since memory recep-

tor can undergo limited affinity maturation (Shlomchik, 2018; McHeyzer-Williams et al., 2018). To

further simplify, we also assume that the accumulated pathogenic load is independent of the type of

the pathogen Gð�;t Þ � Gðt Þ. As pathogens evolve away from the primary infector, the binding affin-

ity Ea;�ðrm;�Þ of the stored memory receptor rm, and hence, the probability to mount a memory

response PðmÞ
recog:ðrm; �;t Þ decays.

The deliberation time prior to a novel response provides a window for memory to react with an

antigen and mount an immune response by initiating an irreversible cascade of downstream events.

Although initiation of this pathogenic recognition can be modeled as an equilibrium process, the

resulting immune response is a non-equilibrium and an irreversible process, the details of which are

not included in our model.

Decision-making to mount a memory or naive response
In the theory of decision-making, a rational decision-maker chooses between two possible actions

a 2 fnaive;memoryg each contributing a utility Ua. If the decision-maker has prior preference for

each action, which we denote by the prior probability distribution Q0ðaÞ, its decisions could be

swayed by this knowledge. As a result, the constrained decision-maker should choose actions

according to an optimized probability density QðaÞ, which maximizes the expected utility while satis-

fying constraints due to the prior assumption (von Neumann and Morgenstern, 1944; Ortega and

Braun, 2013),
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QðaÞ ¼
QðaÞ

argmax
X

a

UaQðaÞ�
1

b
DKL QðaÞjjQ0ðaÞð Þ

 !

(7)

Here, DKLðQðaÞjjQ0ðaÞÞ ¼
P

aQðaÞ log QðaÞ=Q0ðaÞð Þ is the Kullback-Leibler distance between the

rational distribution QðaÞ and the prior distribution Q0ðaÞ and 1=b is a Lagrange multiplier that con-

strains the efficacy of a decision-maker to process new information and deviate from its prior

assumption. The optimal solution for a rational yet constrained decision follows,

QðaÞ ¼ 1

Z
Q0ðaÞebUa (8)

where Z ¼PaQ0ðaÞebUa is a normalization factor. If information processing is highly efficient (i.e. the

bias factor 1=b! 0) the rational decision-maker deterministically chooses the action with the highest

utility. On the other hand, if the prior is strong (i.e. 1=b!¥), the decision-maker hardly changes its

opinion and acts according to its prior belief (i.e. QðaÞ ¼Q0ðaÞ). Moreover, if the prior distribution is

uniform across actions (i.e. no prior preference), rational decision maximizes the entropy of the sys-

tem (Jaynes, 1957), resulting in the probability of actions QðaÞ~ exp½bUa�. In our analysis, we con-

sider the case of unbiased maximum entropy solution for decision-making. As a result the

probability to utilize memory Qmem: or naive Qnaive follows,

Qmem: ¼ 1�Qnaive ¼
ebUmem

ebUmem þ ebUnaive
(9)

which is a sigmoidal function, dependent on the utility of each action.

A decision to mount a memory or naive response QðaÞ based on their respective utilities (Equa-

tion 8) should be consistent with the biophysical description of the immune response through recog-

nition of an antigen by either of these cell types (Equation 6). By equating these two descriptions of

an immune response (Equation 6, Equation 8), we can specify the utility gain associated with

mounting a memory or a naı̈ve response in terms of the biophysics and kinetics of receptor-antigen

interactions,

Qmem: ¼ PðmÞ
recog:ðrm;�Þ �! ebUmem

ebUmem þ ebUnaive
¼ 1� e�Ea;�ðrm ;nÞGðn;t Þ

�! bðUmem:�UnaiveÞ ¼ log eEa;�ðrm ;nÞGðn;t Þ� 1

h i

(10)

Importantly, in the regime that memory is efficient and being utilized to mount a response (i.e. a

low chance for naive recognition: P
ð0Þ
recog: ¼ e�Eð�ÞGð�;t Þ � 1), the sigmoid form for decision to use mem-

ory (Equation 9) is dominated by an exponential factor. Therefore, the utility gain by a memory or a

naı̈ve response to an evolved antigen �i at an antigenic distance di ¼ k�i��0k from the memory

receptor’s cognate antigen ��rm � �0 follows (see Materials and methods),

Umemðk�i� �0k;a; �Þ ¼Unaive þEa;�ðrm;niÞ
¼�WðGt ÞþEa;�ðkni� n0kÞ

(11)

Here, we introduce the cost for deliberation WðGt Þ as the negative utility of the naive response

Una€ive. Deliberation cost WðGt Þ is a monotonically increasing function of the cumulative pathogen

load Gt and reflects the damage (cost) incurred by pathogens as they proliferate during the delibera-

tion time t prior to activation of the novel naive response; see Figure 1. It is important to note that

the difference in the memory and the naı̈ve utility DU ¼Umem �Unaive determines the decision to

mount either of these responses.

The same consistency criteria between decision-making (Equation 8) and cellular recognition

(Equation 6) indicates that the information processing factor b in Equation 8 should be equal to the

accumulated pathogenic load Gðt Þ during the deliberation period t: b ¼ Gðt Þ. A longer delibera-

tion, which on one hand leads to the accumulation of pathogens, would allow the immune system to

exploit the utility of a usable memory (i.e. process information), even if the memory has only a slight

advantage over a responsive naive receptor. As a result, we refer to b as the deliberation factor.

Moreover, this analogy relates the efficacy of information processing b, which plays the role of
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inverse temperature in thermodynamics, and the total accumulated pathogenic load Gð�; t Þ, which
acts as the sample size for memory receptors as they encounter and accumulate information about

pathogens. Interestingly, previous work has drawn a similar correspondence between the inverse

temperature in thermodynamics and the effect of sample size on statistical inference LaMont and

Wiggins, 2019.

The deliberation factor in the immune system should be bounded b � bmax in order for the organ-

ism to survive new infections by mounting a novel response that can suppress an exponentially repli-

cating pathogen before it overwhelms the host. Using this bound, we define rescaled deliberation

factor b̂ � b=bmax � 1 to characterize the kinetics of an immune response in a dimensionless fashion.

It should be noted that our decision-making formalism assumes that if memory is available, it can

be utilized much more efficiently and robustly than a naive response. Therefore, we do not consider

scenarios where memory and naive responses are equally involved in countering an infection—a pos-

sibility that could play a role in real immune responses. Nonetheless, since such mixed responses are

relatively rare, we expect that including them in our model would only result in a slightly different

interpretation of the deliberation factor b and should not qualitatively impact our results.

If the immune system decides to mount a memory response against an evolved antigen �i, the

binding profile of memory against the target pathogen remains unchanged and equal to the profile

Ea;�ðr�0 ; �Þ against the primary infection �0. However, if the immune system mounts a naı̈ve response,

a new memory receptor r�i would be generated with a binding profile Ea;�ðr�i ; �Þ, centered around

the latest infection �i. As a result, the expected binding profile E
ðiÞ
a;�ð�Þ at the ith round of infection is

an interpolation between the profiles associated with memory and naive response, weighted by the

likelihood of each decision (Equation 6),

E
ðiÞ
a;�ð�Þ ¼ PðmÞ

recog:ðr�0 ;�iÞEa;�ðr�0 ;�ÞþPð0Þ
recog:ð�iÞEa;�ðr�i ;�Þ (12)

The expected binding profile at the ith round of infection E
ðiÞ
a;�ð�Þ (Equation 12) deviates from the

optimal profile centered around the infecting pathogen Ea;�ðr�i ;�Þ (i.e. memory profile stored follow-

ing a novel response); see Figure 1. This deviation arises because an energetically sub-optimal mem-

ory response can still be favorable when time is of an essence and the decision has to be made on

the fly with short deliberation. This tradeoff between the kinetics and the energetics of immune

response results in a non-equilibrium decision-making Grau-Moya et al., 2018 by the immune sys-

tem. In analogy to non-equilibrium thermodynamics, we express this deviation as a dissipative cost

of memory response Kdissðti;a; �Þ at the ith round of infection (time point ti), which we quantify by the

Kullback-Leibler distance between the expected and the optimal binding profiles, in units of the

deliberation factor b,

Kdissðti;a; �Þ ¼ 1

b
DKL E

ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

¼ 1

b

X

antigens:�

E
ðiÞ
a;�ð�Þ log

E
ðiÞ
a;�ð�Þ

Ea;�ðr�i ; �Þ

2

4

3

5

(13)

where we ensure that binding profiles are normalized over the space of antigens. The dissipation

Kdiss measures the sub-optimality (cost) of the mounted response through non-equilibrium decision-

making and quantifies deviation from an equilibrium immune response Grau-Moya et al., 2018.

An optimal memory strategy should be chosen such that it maximizes the expected utility of the

immune response Uh i ¼ UmemP
ðmÞ
recog: þ UnaiveP

ð0Þ
recog:, while minimizing the dissipation cost due to the

non-equilibrium response Kdiss, over the lifetime of an organism. To infer an optimal strategy, we

introduce net utility Unet that accounts for the tradeoff between the expected utility and dissipation

at a given round of infection at time point ti,

Unetðti;a;b; �Þ ¼ Ua;b;�ðtiÞ

 �

�Kdissðti;a; �Þ (14)

Net utility can be interpreted as the extracted (information theoretical) work of a rational deci-

sion-maker that acts in a limited time, and hence, is constantly kept out of equilibrium (Grau-

Moya et al., 2018). We infer the optimal memory protocol (i.e. the optimal memory specificity a�
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and deliberation factor b�) by maximizing the total net utility of memory responses throughout the

lifetime of an organism,

ða�;b�Þ ¼
a;b

argmax
X

i:infections

Unetðti;a;b; �Þ: (15)

While we do not model time limits to memory, we effectively model only one memory at a time.

This effect is the consequence of modeling the memory as only being beneficial until a novel

immune response is triggered resulting in the storage of an updated memory centered around a

more recent antigen (Figure 1). After such an update, the old memory is no longer relevant as anti-

gens have drifted away.

In our model, the characteristic time for a novel response (and memory update) is set by the

expected antigenic divergence (Figure 2). Accordingly, cross-reactivity of memory is optimized so

that the organism can mount effective responses against evolved forms of antigens in this window of

time. However, if the lifetime of memory were to be shorter than this characteristic time of memory

update, we expect the organism to store more specific memory since this memory would be utilized

to counter a more limited antigenic evolution before it is lost. In other words, the shorter of either

the memory lifetime or the characteristic time for memory updates determines the optimal cross-

reactivity for immune memory.
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