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Purpose: Many high-risk osteopenia and osteoporosis patients remain

undiagnosed. We proposed to construct a convolutional neural network

model for screening primary osteopenia and osteoporosis based on the

lumbar radiographs, and to compare the diagnostic performance of the CNN

model adding the clinical covariates with the image model alone.

Methods: A total of 6,908 participants were collected for analysis, including

postmenopausal women and men aged 50–95 years, who performed

conventional lumbar x-ray examinations and dual-energy x-ray absorptiometry

(DXA) examinations within 3 months. All participants were divided into a training

set, a validation set, test set 1, and test set 2 at a ratio of 8:1:1:1. The bonemineral

density (BMD) values derived fromDXAwere applied as the reference standard. A

three-class CNNmodel was developed to classify the patients into normal BMD,

osteopenia, and osteoporosis. Moreover, we developed the models integrating

the images with clinical covariates (age, gender, and BMI), and explored whether

adding clinical data improves diagnostic performance over the image mode

alone. The receiver operating characteristic curve analysis was performed for

assessing the model performance.

Results: As for classifying osteoporosis, the model based on the

anteroposterior+lateral channel performed best, with the area under the

curve (AUC) range from 0.909 to 0.937 in three test cohorts. The models

with images alone achieved moderate sensitivity in classifying osteopenia, in

which the highest AUC achieved 0.785. The performance of models integrating

images with clinical data shows a slight improvement over models with

anteroposterior or lateral images input alone for diagnosing osteoporosis, in
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which the AUC increased about 2%–4%. Regarding categorizing osteopenia

and the normal BMD, the proposed models integrating images with clinical

data also outperformed the models with images solely.

Conclusion: The deep learning-based approach could screen osteoporosis

and osteopenia based on lumbar radiographs.
KEYWORDS

osteoporosis, convolutional neural network (CNN), screening, dual-energy x-ray
absorptiometry (DXA), lumbar spine x-rays
Introduction

Osteoporosis is a popular metabolic skeletal disorder with

characteristics of low bone mineral density (BMD) and thinning

of bone trabecula, leading to enhancement of bone fragility and

increased risk of fracture (1). Primary osteoporosis is quite

common in the elderly. According to a recent nationwide and

multicenter investigation in China, among people over 50 years,

the rates of osteoporosis were 29.13% and 6.46% for women and

men, respectively (2), which are estimated to increase to 39.2%

and 7.5%, respectively, by 2050 (3). At present, it has been

estimated that a total of 10.9 million men and 49.3 million

women suffer from osteoporosis in China (3). Osteopenia, as a

precursor of osteoporosis, is also an important risk factor for

fragility fractures. Previous studies have indicated that most

women who suffer from fragility fractures have been diagnosed

with osteopenia (4, 5). However, the majority of osteoporosis

and osteopenia cases are undiagnosed until they experience a

fracture, which would lead to a high probability of complications

and mortality (6, 7). Hence, early detection of osteoporosis and

osteopenia is significant to disease prevention and control, which

may prevent osteoporotic fractures and lower the burden of

this disease.

BMD value is a credible means for the early detection of

osteoporosis and osteopenia. Currently, DXA is recognized as the

gold standard for diagnosing osteoporosis and osteopenia globally

(8). However, due to inaccessibility, knowledge deficits for

screening, and high-cost factors of DXA, the application of DXA

is limited. As a result, only a few developing countries are using

DXA (9). In China, only 2.8% of people aged ≥20 years have

undergone testing, while the rate is 3.7% among those aged ≥50

years (10). DXA-based measures of BMD are the sum of cortical

bone and cancellous bone, considering two-dimensional structures,

which cannot fully explain the geometry, size, andmicrostructure of
02
bone (11, 12). It is necessary to explore effective, safe, and cost-

balanced substitutes to improve the above situations. Routine

lumbar spine x-ray examinations are widely attainable at most

hospitals globally. The lumbar spine (LS) radiographs that are

ordered for other indications potentially contain useful

information about BMD. Utilizing these LS x-ray images to assess

BMD synchronously requires no added scanning time, radiation, or

additional cost. Thus, this method would be more acceptable to

people. However, there were many challenges to evaluating BMD

by LS x-ray images, and only a few multicenter studies have been

reported presently, which just takes into consideration

postmenopausal women aged ≥50 years (13).

In recent years, the deep learning technique represented by

the convolutional neural network (CNN) has achieved great

success in radiological imaging diagnosis (14, 15). It has been

reported that the deep learning technique has been successfully

applied to the evaluation of radiological images, such as the

differential diagnosis of diseases (16, 17), skeletal maturity

assessed by pediatric hand radiographs (18), and the detection

of fractures (19–21). This technique has also been applied to aid

osteoporosis diagnosis. Numerous modalities have been used:

dental radiographs (22), spine radiographs (13, 23), hand and

wrist radiographs (24), DXA imaging (25), and spine CT (26, 27).

Though some reports are available on osteoporosis diagnosis from

spine radiographs using CNN (13, 23), these studies not only have

a small number of cases but also did not consider men and clinical

covariates. We hypothesized that combining clinical risk factors

with image features would improve the models’ capability for

diagnosing osteoporosis and osteopenia.

The purpose of this study was to screen osteoporosis and

osteopenia with LS x-ray images using CNN in postmenopausal

women and men ≥50 years, and to explore whether adding

clinical covariates improves the diagnostic performance over the

image model alone.
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Materials and methods

Patient cohort

This retrospective, multicenter study was conducted in a hospital

with four independent sub-districts and another large tertiary center

in China. The study had been approved by the institutional review

board and the ethics committee of the host hospital (Ethics

Committee of Guangdong Provincial Hospital of Chinese Medicine

ZE2020-299-01), and the informed consent was waived. All images

were de-identified before using to protect the privacy of the patients.

The clinical and image data of all participants were retrospectively

collected from July 2011 to March 2021. Inclusion criteria were as

follows: (1) postmenopausal women over 50 years (the menopausal

age was identified bymedical records or patients’ statement) andmen

aged over 50 years; (2) all patients had performed both LS x-rays and

DXA examinations within 3 months, and had not accepted therapies

influenced by BMD; and (3) plain radiographs of LS including

anteroposterior (AP) and lateral (LAT) images that must clearly

show the first to the fourth lumbar vertebrae. Exclusion criteria were

as follows: (1) patients with postoperative metal or bone cement

implant of the LS (L1–L4); (2) patients who experienced secondary

osteoporosis (such as osteoporosis in renal failure, diabetes, and

hyperparathyroidism) or lesions, including tumors and

inflammatory diseases; (3) patients with serious scoliosis or

deformity; (4) patients with vertebral compression fracture (any

vertebrae of L1–L4); and (5) images that show low signal-to-noise

ratio affecting to outline the region of lumbar vertebrae.

In total, 6,908 patients who satisfied all criteria were included

in the study. A total of 5,652 patients from the three sub-districts

between July 2011 and September 2020 were randomly divided

into a training cohort and a validation cohort at a ratio of 8:1,

and another 628 patients obtained from another independent
Frontiers in Endocrinology 03
sub-district between July 2011 and September 2020 were used as

test cohort 1; for test cohort 2, 628 patients from another

participating center were collected between March 2019 and

March 2021. All cases used the same inclusion and exclusion

criteria. Figure 1 shows the flowchart of case selection in

different participating centers.
Study design

The purpose of this study is to develop artificial intelligence

models to classify primary osteoporosis and osteopenia from LS

radiographs, and the T-scores of LS obtained from DXA

examination were used as a reference standard. According to

the WHO criteria, all subjects were classified into three categories:

osteoporosis defined as T-score ≤ −2.5; osteopenia: −1 > T-

score > −2.5; and normal: T-score ≥ −1 (28). T-scores were

computed referring to the BMD dataset of young Chinese

female or male patients aged 20–40 years. We attempted to

develop artificial intelligence models based on CNN through a

single channel (AP or LAT images were input respectively) and

two channels (AP and LAT images are input simultaneously).

Furthermore, we add the clinical data (including sex, age, and

BMI) to explore whether it can improve the diagnostic

performance of the model.
Lumbar vertebra radiographs and
BMD measurement

In the training and validation cohorts, the lumbar x-ray

examinations were performed by the AXIOM Aristos MX/VX

Digital Radiographic (DR) apparatus (Siemens, Germany), with
FIGURE 1

Flowchart of patient selection. BMD, bone mineral density; DXA, dual-energy x-ray absorptiometry; CNN, convolutional neural network.
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parameters set at 70 kVp for AP imaging and 77 kVp for LAT

imaging. In test cohort 1, the images were conducted by the Yiso

DR apparatus (Siemens, Germany), and 75 kVp was set for AP

and 80 kVp for LAT imaging. In test cohort 2, the lumbar x-ray

scans were operated by Revolution XR/d DR apparatus (General

Electrical, America), with settings at 75 kVp for AP imaging and

90 kVp for LAT imaging. The mAs were automatically adjusted

according to body size for all images.

For all participants, the BMD values of lumbar spine were

measured using the dual-energy x-ray absorptiometry

(Discovery A, HOLOGIC, USA). The patients’ weight and

height were measured by the electronic weigher, and the BMI

was calculated. The age, weight, and height of patients were

acquired from DXA examination records.
Image preprocessing

The pre-processing of images included three steps. Firstly, all

the regions of interest (ROIs) were delineated on lumbar

vertebrae (L1–L4) from AP and LAT images, and the specific

method was as follows: we used the smallest rectangular frame to

include the vertebral body, with lateral margin within 2 mm of

the edge of the vertebral body, while the upper and lower edges

are in the middle of the intervertebral space. All images were

delineated by six radiologists with 4–8 years of experience.

Secondly, all ROIs were cropped and then each ROI was

resized to 512 × 512 pixels. The filling scale that using gray

filling for the blank area is adopted to avoid the lumbar vertebrae

being deformed and features destroyed. Finally, in consideration

of the differences in x-ray scanning parameters, grayscale

normalization was performed in all images to enhance their

robustness; Gaussian filtering, histogram equalization, and pixel

value normalization were also performed.
Frontiers in Endocrinology 04
Development of the CNN models in the
training cohort

The Dense Convolutional Network (DenseNet) (29) was

applied in the backbone network, comprising four dense blocks

and three transition layers (Figure 2). Each dense block consists of

three consecutive operations: batch normalization, followed by a

rectified linear unit (ReLU) and a 3 × 3 convolution (Conv). To

reduce the number of input feature maps, a 1×1 convolution was

introduced as a bottleneck layer before each 3×3 convolution to

improve computational efficiency. The layers between blocks were

called transition layers, which were used for convolution and

pooling. To further enhance the compactness of the model, we

reduced the amount of feature maps at transition layers. Following

the last dense block, a full connection (FC) is implemented and

then a softmax classifier is attached.

The developed CNN classification model is composed of two

channels to carry out auto-analysis of the AP and LAT lumbar

vertebra (L1–L4) images. Both channels presented the same

structure as mentioned above. The features were extracted

through DenseNet, which connected each layer to every other

layer in a feed-forward pattern. Through skip connection, each

layer in the network was directly connected to the previous layer,

which strengthened the transmission of features and thus realized

the integration of information flow. For each layer, the feature

maps of all preceding layers served as a single input, and the

features generated from the current layer were input to the

subsequent layers. Thus, it could control the vanishing-gradient

problem, enhance feature propagation, emphasize feature reuse,

and considerably decrease the quantity of parameters.

Since this was a three-category mission, we developed a

three-classification CNN model to perform classification from

AP, LAT, and AP+LAT views. The results of each case were

output from a single channel and from two channels.
FIGURE 2

Overview of our proposed framework.
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Evaluating the performance of the
classification models

A total of 5,652 participants were randomly allocated to

training data and validation data at a ratio of 8:1. Independent

patients (628 patients) from another sub-district of the same

hospital and the other participating center (628 patients) were

used as test cohorts that were not included in the training

cohorts. The training cohort was used for model development,

the validation cohort was employed to filter hyper-parameters

and select the best model, and the test cohorts were applied to

evaluate the predictive performance of the trained models. The

constructed model ultimately classified the patients into

osteoporosis, osteopenia, and normal bone mass. Besides

image features, we also added clinical covariates (gender, age,

and BMI) to the CNN model to explore whether these covariates

could improve the performance of the model.
Statistical analysis

Descriptive statistics were expressed as numbers, and

continuous variables were expressed as means ± standard

deviations (SDs). Categorical variables were compared by

using the chi-square test. p < 0.05 was considered a statistically

significant difference. The receiver operating characteristic

(ROC) curve was used to access the diagnostic effectiveness of

the CNN models; meanwhile, the area under the curve (AUC)

values and 95% confidence intervals (CIs) for sensitivity and

specificity were calculated. We used DeLong’s method for

assessing the statistical difference of AUC between different

models. In addition, the positive predictive value (PPV) and
Frontiers in Endocrinology 05
negative predictive value (NPV) were counted. Moreover, the

amount of true positives, false positives, false negatives, and true

negatives were demonstrated with the confusion matrix.

All the deep convolutional models were complemented by

PYTHON (3.6.6, Guido van Rossum, Netherlands). All

statistical analyses were carried out by R software (3.0.2, R

Core Team, 2013) and MedCalc software (15.6.1, Microsoft

Partner, 2015). All experiments were performed under

Windows on a machine with an Intel (R) Core (TM)

Processor i7-8700 @ 3.20 GHz central processing unit (CPU),

an NVIDIA GeForce GTX graphics processing unit (GPU), and

a RAM of 64 GB.
Results

Patient demographics

A total of 6,908 patients [mean age, 65.4 years ± 9.3 (SD);

range, 50–95 years] including 13,816 lumbar vertebra x-ray

images were available for the final analysis. Table 1 lists the

clinical and demographic parameters for the training, validation,

and two test cohorts. Gender, age, and BMI among the training,

validation, and test cohorts demonstrated no statistically

significant differences.

According to the DXA-based BMD screening reference

standard, all patients were classified into three categories:

osteoporosis (n = 2,302, 33.3%), osteopenia (n = 2,601, 37.7%),

and normal (n = 2,004, 29.0%). In the training cohort, validation

cohort, test cohort 1, and test cohort 2, 38.3%, 35.7%, 36.0%, and

36.0% of patients are osteopenic, and 33.0%, 35.7%, 33.6%, and

33.6% patients are osteoporotic, respectively.
TABLE 1 Demographic characteristics of 6,908 participants.

Characteristics Training cohort Validation cohort Test cohort 1 Test cohort 2 Total

Patients (n) 5024 628 628 628 6,908

Age, years, mean (SD) 65.3 (9.2) 65.6 (9.4) 65.3 (9.3) 65.6 (10.0) 65.4 (9.3)

Sex

Male 1,594 196 190 169 2,149

Female 3,430 432 438 459 4,759

BMI, kg/m2, mean (SD) 23.97 (3.48) 24.04 (3.73) 23.93 (3.63) 23.96 (3.38) 23.97 (3.51)

Lumbar spine images

Anteroposterior 5,024 628 628 628 6,908

Lateral 5,024 628 628 628 6,908

T-score, mean L1–L4 −1.80 −1.86 −1.80 −1.92 −1.82

BMD categories, n (%)

Normal 1,442 (28.7) 180 (28.6) 191 (30.4) 191 (30.4) 2,004 (29.0)

Osteopenia 1,925 (38.3) 224 (35.7) 226 (36.0) 226 (36.0) 2,601 (37.7)

Osteoporosis 1,657 (33.0) 224 (35.7) 211 (33.6) 211 (33.6) 2,302 (33.3)
fro
Categorical and continuous data were expressed as n (%) and mean (standard deviation, SD), respectively. BMI, body mass index.
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The consistency analysis of the
delineated ROIs

One hundred cases were randomly selected and assigned to

six radiologists with 4–8 years’ experience for delineating the

ROI synchronously. As to the same case, the area of overlap

between ROIs drawn by every two radiologists was calculated

respectively. Then, the overlapping ratio was calculated. The

specific calculation method of the overlap rate is that the area of

overlap is divided by the combined area of the two regions.

Results showed that in these 100 cases, the overlapping ratios

between each two radiologists were greater than 90%.
Performance of the CNN models with
images input alone

Table 2 shows the results of the CNN model in diagnosing

osteoporosis on the basis of LS x-ray images. Among the

validation cohort and two test cohorts, the models based on

the AP+LAT channel for diagnosing osteoporosis achieve the

best performance, with an AUC range from 0.909 to 0.937, a

sensitivity range from 81.90% to 84.82%, a specificity range from

82.54% to 86.63%, and a negative predictive value range from

90.08% to 91.15%. Comparison of ROC curves was performed

between the CNN models constructed with single and combined
Frontiers in Endocrinology 06
image programs (Figure 3). The classification confusion matrices

of models based on the AP+LAT channel, which report the

number of true-positive, false-positive, true-negative, and false-

negative results, are shown in Table 3.

The models with images input alone achieved moderate

sensitivity in classifying osteopenia in the validation cohort, in

which the highest AUC achieved was 0.785 (95% CI: 0.750–

0.816), with a sensitivity of 71.43% and a specificity of 74.01%

(Supplementary Table 1). In test cohort 1 and test cohort 2, the

highest AUC values were 0.778 and 0.731, respectively

(Supplementary Figure 1).

For diagnosing the normal bone mass, the diagnostic

efficiency was consistently high among the validation and two

test cohorts, in which the highest AUC values were 0.929, 0.926,

and 0.911, respectively (Supplementary Table 2).
Performance of the CNN
models integrating images with
clinical parameters

Before and after the addition of clinical parameters, in test

cohort 1, the AUC values of AP images were statistically different

only in diagnosing osteoporosis (p < 0.001), while those of LAT

images were statistically different in diagnosing osteoporosis (p =

0.047) and normal BMD (p = 0.009). However, the AUC values
TABLE 2 Performance of the CNN model with images inputting for classifying osteoporosis, assessed on the training, validation, and test cohorts.

Datasets Image projection AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training AP 0.996
(0.994–0.998)

99.94
(99.61–100)

99.94
(99.76–99.99)

99.88
(99.52–99.98)

99.97
(99.81–100)

LAT 0.996
(0.994–0.998)

99.94
(99.61–100)

99.97
(99.81–100)

99.94
(99.61–100)

99.97
(99.81–100)

AP and LAT 0.965
(0.960–0.970)

89.99
(88.42–91.37)

90.01
(88.94–91.00)

81.63
(79.76–83.36)

94.80
(93.96–95.54)

Validation AP 0.904
(0.877–0.925)

82.14
(76.36–86.80)

85.64
(81.75–88.84)

76.03
(70.06–81.17)

89.64
(86.05–92.41)

LAT 0.889
(0.861–0.912)

75.45
(69.18–80.83)

85.64
(81.75–88.84)

74.45
(68.17–79.88)

86.28
(82.44–89.42)

AP and LAT 0.937
(0.914–0.954)

84.82
(79.29–89.12)

86.63
(82.83–89.72)

77.87
(72.03–82.81)

91.15
(87.73–93.71)

Test cohort 1 AP 0.889
(0.861–0.912)

81.52
(75.47–86.38)

81.77
(77.66–85.29)

69.35
(63.15–74.95)

89.74
(86.13–92.51)

LAT 0.911
(0.885–0.932)

80.09
(73.93–85.13)

86.09
(82.31–89.19)

74.45
(68.17–79.88)

89.53
(86.01–92.27)

AP and LAT 0.933
(0.909–0.950)

82.94
(77.03–87.62)

85.85
(82.05–88.98)

74.79
(68.63–80.11)

90.86
(87.47–93.44)

Test cohort 2 AP 0.892
(0.864–0.915)

80.48
(74.33–85.48)

81.10
(76.94–84.67)

68.15
(61.90–73.82)

89.21
(85.54–92.06)

LAT 0.874
(0.845–0.898)

73.81
(67.22–79.51)

81.34
(77.20–84.89)

66.52
(60.02–72.47)

86.08
(82.18–89.26)

AP and LAT 0.909
(0.883–0.930)

81.90
(75.88–86.73)

82.54
(78.48–85.98)

70.20
(63.99–75.77)

90.08
(86.53–92.80)
fro
AP, anteroposterior; LAT, lateral; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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of AP+LAT images have no statistical differences in three

classifications (p > 0.05). In test cohort 2, only the AUC values

predicted by LAT images for osteoporosis and osteopenia were

statistically different (p = 0.017 and p < 0.001, respectively), and

the other AUC values have no statistical difference (p > 0.05).

The performance of the proposed models that integrate

images with clinical parameters has shown a slight

improvement over models with AP or LAT images alone for

diagnosing osteoporosis, in which the AUC increased about

2%–4%. Meanwhile, the specificity and positive predictive
Frontiers in Endocrinology 07
values improved as well (Table 4). In the model diagnosing

osteoporosis based on the LAT channel, the AUC value and

sensitivity increased in the validation cohort and test cohort

1, while in test cohort 2, the AUC and specificity have

improved, but sensitivity slightly declined (from 73.81% to

70.00%). Figure 4 demonstrates the comparison of the efficacy

of the CNN models based on LAT image with and without

integrating clinical parameters in diagnosing osteoporosis,

accessed on the test cohort, validation cohort, and two

test cohorts.
A B

DC

FIGURE 3

Comparison of ROC curves of the CNN models with images alone. (A–D) show the models that diagnosed osteoporosis in the training cohort,
validation cohort, test cohort 1, and test cohort 2 respectively. Note: In the training cohort (A), since AP and LAT have the same AUC values, the
blue line overlaps with the orange line.
TABLE 3 Confusion matrices of predictions and reference standards in validation and two testing datasets based on the AP+LAT channel.

Validation (prediction) Test cohort 1 (prediction) Test cohort 2 (prediction)

Osteoporosis Osteopenia Normal Osteoporosis Osteopenia Normal Osteoporosis Osteopenia Normal

Truth Osteoporosis 190 34 0 175 36 0 172 36 2

Osteopenia 50 160 14 57 144 25 61 129 19

Normal 4 71 105 2 79 110 12 76 121
front
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Regarding categorizing osteopenia and normal bone mass,

the proposed deep learning model integrating images with

clinical parameters also outperformed the models with images

inputting alone in test cohorts (Supplementary Tables 3, 4), in

which the sensitivity increased particularly.
Discussion

In this multicenter study, we developed a deep learning

method based on convent iona l lumbar sp ine DR

examinations performed for other clinical symptoms,

intended to diagnose osteoporosis and osteopenia in

postmenopausal women and men over 50 years. Our results

revealed that the deep learning method has the prospect of

automatic BMD categorization in clinical practice. Moreover,

another finding was obtained: the model combining lumbar

images with clinical information could improve the

performance, particularly based on the LAT channel.

Deep learning uses neural networks as framework, and is

performed via multiple abstraction layers (30–32). CNN is

one of the most common deep learning algorithms; the

processing of information is performed by the brain’s

neurons, which is specialized in handling a large amount of

inputs. In this study, we employed DenseNet that connected
Frontiers in Endocrinology 08
each layer to every other layer in a feed-forward pattern,

requiring less computation to achieve high performance (29).

Based on it, we trained a CNN model to evaluate the bone

mass in postmenopausal women and men over 50 years old.

Our class ification models were buil t on the triple

classification of the L1–L4 LS x-ray images divided into

normal, osteopenia, and osteoporosis, which differed from

general deep learning models on the basis of binary

classification. As a screening method for a disease, the high

sensitivity of models reduces false-negative categories;

therefore, the osteoporotic individuals will be recognized

probably and treated accordingly. In our research,

sensitivity of the models diagnosing osteoporosis was high

among validation and two testing datasets (≥81.90% based on

the AP+LAT channel). However, the AUC and sensitivity of

the models classifying osteopenia were slightly low, which

may be attributed to data imbalance, and the ROI of the LS

images (including partial vertebral osteophyte and spinous

process in LAT image) input to models distinct from DXA

(excluding vertebral osteophyte). The inputting images of

models including partial vertebral osteophyte will lead to

overestimating bone mass, but somewhat reducing the

sensitivity of osteopenia and normal. Moreover, the models

have a triple classification, and the T-score of osteopenia was

between osteoporosis and normal; thus, part of osteopenia
TABLE 4 Performance of the CNN model integrating images with clinical parameters inputting for classifying osteoporosis, assessed on the
training, validation, and test cohorts.

Datasets Image projection AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training AP 0.981
(0.976–0.984)

86.20
(84.42–87.80)

95.75
(95.00–96.40)

90.91
(89.35–92.26)

93.36
(92.47–94.16)

LAT 0.963
(0.957–0.968)

88.67
(87.02–90.13)

90.37
(89.31–91.34)

81.95
(80.07–83.69)

94.18
(93.30–94.95)

AP and LAT 0.996
(0.993–0.998)

99.94
(99.61–100)

99.97
(99.81–100)

99.94
(99.61–100)

99.97
(99.81–100)

Validation AP 0.922
(0.897–0.941)

73.21
(66.83–78.79)

92.57
(89.46–94.85)

84.54
(78.50–89.17)

86.18
(82.48–89.21)

LAT 0.926
(0.901–0.944)

81.70
(75.87–86.41)

86.88
(83.10–89.94)

77.54
(71.58–82.59)

89.54
(85.98–92.31)

AP and LAT 0.928
(0.904–0.947)

75.00
(68.70–80.42)

92.08
(88.89–94.44)

84.00
(78.01–88.65)

86.92
(83.26–89.89)

Test cohort 1 AP 0.928
(0.904–0.946)

73.93
(67.37–79.61)

90.17
(86.80–92.77)

79.19
(72.71–84.50)

87.24
(83.63–90.17)

LAT 0.930
(0.907–0.949)

81.52
(75.47–86.38)

88.73
(85.20–91.52)

78.54
(72.39–83.66)

90.46
(87.09–93.05)

AP and LAT 0.943
(0.921–0.960)

75.36
(68.87–80.90)

91.61
(88.42–94.01)

81.96
(75.66–86.96)

88.02
(84.50–90.85)

Test cohort 2 AP 0.912
(0.887–0.933)

68.57
(61.76–74.69)

92.34
(89.26–94.63)

81.82
(75.15–87.06)

85.40
(81.72–88.45)

LAT 0.905
(0.878–0.926)

70.00
(63.24–76.01)

88.76
(85.24–91.54)

75.77
(69.01–81.50)

85.48
(81.73–88.59)

AP and LAT 0.915
(0.889–0.935)

69.05
(62.25–75.13)

92.58
(89.53–94.83)

82.39
(75.77–87.55)

85.62
(81.96–88.65)
fro
AP, anteroposterior; LAT, lateral; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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may be classified as osteoporosis and normal. Thus, the

diagnostic efficiency of the model for classifying osteopenia

was lower than the normal. Above all, we analyzed that a

considerable percentage of patients enrolled in our research

was at the critical point of osteopenia and normal bone mass.

Thus, further study is aimed to improve the models’

sensitivity in the diagnosis of osteopenia.

Osteoporosis is a major health disease with the increase in

the aging population, affecting post-menopausal women most

frequently, and is gradually considered as a clinical problem

among elderly men. In their life, about 50% of women and

20% of men will suffer from osteoporotic fracture (33). The

risk of subsequent fractures following an initial fracture is

increased and the adjusted hazard ratios were higher in men

than in women (34). However, few studies have analyzed

osteoporosis in men. On account of this, men aged ≥50 years

were also included in our study. Furthermore, majority of the

studies demonstrated that advancing age, gender, and low

body weight were the additional risk factors of fracture for

both men and women (35, 36). Thus, we obtained the models
Frontiers in Endocrinology 09
combined LS radiographs with age, gender, and BMI, to

evaluate whether the clinical variables would affect the

e ff ec t iveness o f the CNN model s in ca tegor iz ing

osteoporosis and osteopenia. The results revealed that it

was helpful to improve the sensitivity of models classifying

osteopenia, but it did not have much significance in

classifying osteoporosis or the BMD. The main reason may

be that the sensitivity of models in categorizing osteoporosis

was comparatively high, and the deep learning is mainly

about automatically acquiring the internal features of images.

Summarily, our study has several strengths. First, this

research is a multicenter study with a large data volume,

including internal and external validation; hence, the results

are relatively stable. Zhang et al. (13) constructed a deep CNN

model to classify osteoporosis and osteopenia that is based on

the AP and LAT LS radiographs of 808 postmenopausal

women. Their model diagnosing osteoporosis achieved an

AUC of 0.767 with a sensitivity of 73.7%. In contrast to the

previous study (13), the AUC (0.93 vs. 0.77) and sensitivity

(82.9% vs. 73.7%) of our models in the diagnosis of
A B

DC

FIGURE 4

Comparison of ROC curves of the CNN models based on lateral images with and without combining clinical parameters. (A–D) were the curves
of the training cohort, validation cohort, test cohort 1, and test cohort 2, respectively.
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osteoporosis improved significantly. Second, the groups of

study included not only postmenopausal women but also

men over 50 years old. The AI model is more applicable to

clinical practice due to the completeness of subjects. Third,

our model could diagnose osteoporosis and osteopenia

through image features extracted from conventional lumbar

radiographs. Thus, this method has the potential to be

applied in detecting osteoporosis and osteopenia for many

“opportunistic screening” without additional costs.

There are also some potential limitations to this study.

Firstly, the retrospective inclusion of subjects who underwent

paired LS radiographs and DXA examinations may have led to

selection bias. Secondly, DXA examinations could not

eliminate the effect of cortex, hyperosteogeny, and

arteriosclerosis sclerosis on BMD measurement (11), which

might underestimate the actual loss of bone mass. Similarly, the

proposed method may also be influenced by aortic sclerosis,

bowel gas, and osteophytic spurs, which may cause

overestimating BMD values. Moreover, individuals who

suffered from lumbar vertebra tumor, inflammatory diseases,

serious scoliosis, or deformity were not appropriate for the

CNN models as well. Thirdly, all the ROIs were delineated

manually, which was time-consuming though it was relatively

accurate. Fourthly, women or men under 50 years old were not

included in this study. Therefore, the application of our results

to these populations is limited. Lastly, the developed deep

learning models could not predict the exact fracture risk of

individuals, and it needs further study.
Conclusions

In conclusion, our research showed that the proposed

deep learning models based on routine lumbar spine

radiographs obtained for other reasons attained favorable

pe r fo rmance on BMD c la s s ifica t i on in men and

postmenopausal women aged ≥50, which would be an

available tool for clinicians in opportunistic osteoporosis

screening without additional radiation exposure or cost. It

could be applied in the circumstance that lumbar spine

radiograph is available but DXA examination is lacking,

and it is especially suitable for patients with physical

examination. Early detection of osteoporosis and osteopenia

is beneficial to identify those at risk of fracture and provide

treatment to prevent further losses.
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