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Abstract

Recent studies have demonstrated that the matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) could be used to detect superbugs, such as methicillin-resistant Staphylococcus aureus (MRSA). Due to an
increasingly clinical need to classify between MRSA and methicillin-sensitive Staphylococcus aureus (MSSA) efficiently and
effectively, we were motivated to develop a systematic pipeline based on a large-scale dataset of MS spectra. However, the
shifting problem of peaks in MS spectra induced a low effectiveness in the classification between MRSA and MSSA isolates.
Unlike previous works emphasizing on specific peaks, this study employs a binning method to cluster MS shifting ions into
several representative peaks. A variety of bin sizes were evaluated to coalesce drifted or shifted MS peaks to a well-defined
structured data. Then, various machine learning methods were performed to carry out the classification between MRSA and
MSSA samples. Totally 4858 MS spectra of unique S. aureus isolates, including 2500 MRSA and 2358 MSSA instances, were
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collected by Chang Gung Memorial Hospitals, at Linkou and Kaohsiung branches, Taiwan. Based on the evaluation of
Pearson correlation coefficients and the strategy of forward feature selection, a total of 200 peaks (with the bin size of 10 Da)
were identified as the marker attributes for the construction of predictive models. These selected peaks, such as bins
2410–2419, 2450–2459 and 6590–6599 Da, have indicated remarkable differences between MRSA and MSSA, which were
effective in the prediction of MRSA. The independent testing has revealed that the random forest model can provide a
promising prediction with the area under the receiver operating characteristic curve (AUC) at 0.8450. When comparing to
previous works conducted with hundreds of MS spectra, the proposed scheme demonstrates that incorporating machine
learning method with a large-scale dataset of clinical MS spectra may be a feasible means for clinical physicians on the
administration of correct antibiotics in shorter turn-around-time, which could reduce mortality, avoid drug resistance and
shorten length of stay in hospital in the future.

Key words: Methicillin-resistant Staphylococcus aureus; MRSA; mass spectrometry; MALDI-TOF; binning method; machine
learning; feature selection

Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbug
that is associated with resistance to most antibiotics, increased
morbidity, and mortality [1, 2]. Successful treatment of MRSA
depends largely on the rapid and correct administration of
glycopeptide antibiotics, such as vancomycin or teicoplanin
[2]. Administration of glycopeptides is usually guided by an
antibiotic susceptibility testing (AST) [2, 3]. However, the
AST-guided administration of correct antibiotics can cause
considerable delay in using glycopeptide because the AST
is reported days after specimen collection [2]. Paper disc,
micro-broth dilution, macro-broth dilution or agar dilution are
common AST methods in the current clinical microbiology
laboratory. However, nucleic acid testing of the mecA gene by
polymerase chain reaction (PCR) can detect the presence of the
MRSA culprit gene [4]. All of the test methods are accurate;
however, the methods share some common disadvantageous
characteristics, including high cost, labor intensity and long
turn-around-time [5].

Matrix-assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF MS) is a potential tool to address
the unmet need of detecting MRSA rapidly and accurately.
MALDI-TOF MS is currently a widely used method for bacterial
species identification in clinical microbiology laboratories [6–10].
MALDI-TOF MS measures whole bacterial cells and generates
massive amounts of protein expression patterns [11]. Bacterial
species can be identified by comparing ribosomal protein
patterns with a reference database [12, 13]. Comparing to the
conventional process of phenotypic and biochemical testing,
the MALDI-TOF MS is a rapid, precise and cost-effective method
for the identification of bacterial species.

Predicting MRSA using MALDI-TOF MS is not a novel
approach in biology [14, 15]. Most of the studies focus only on the
relationship between single proteins and MRSA. These studies
concluded that the expression of ribosomal proteins was dif-
ferent among MRSA and methicillin-susceptible Staphylococcus
aureus (MSSA) isolates. However, the performance of a single
protein for detecting MRSA is not robust enough and has not
been widely validated for clinical application. The insufficient
performance may be attributed to the limited information of
single proteins. Applying computer science to analyze massive
MALDI-TOF MS data could provide comprehensive insight into
the differences in protein fingerprints between MRSA and MSSA
isolates. Figure 1 presents a comparison of processing workflows
between the conventionally experimental process and the newly
proposed MS-based scheme.

This study designed a new scheme to classify MRSA and
MSSA isolates by detecting their important features from
MALDI-TOF MS data. Using data mining and machine learning
(ML) methods, the ions of the whole mass-to-charge (m/z)
range from 2000 to 20 000 Dalton (Da) were investigated and
thoroughly and comprehensively evaluated. All features with
obvious differences between MRSA and MSSA isolates were
selected and analyzed to construct models. With these models,
physicians could be notified of the risk of MRSA infection rapidly
and accurately. Moreover, they could also identify the essential
features contributing to the classification results. These models
could have an impact on the clinical management of patients
with infectious diseases.

Materials and Methods
The analytical flowchart for this study is depicted in Figure 2,
consisting of (1) sample preparation and MS spectra, (2) data
preprocessing and feature extraction, (3) model training and
evaluation and (4) independent testing. First, bacterial samples
were obtained from patients and cultured in the Linkou Chang
Gung Memorial Hospital (CGMH). The cultured bacterial samples
were subjected to MALDI-TOF MS to obtain the MS spectra with
the annotation of MRSA or MSSA, as analyzed by antibiotic
susceptibility testing (AST). Before the construction of predic-
tive models, two different measures, the Pearson correlation
coefficient (PCC) and one rule (OneR) attribute evaluation, were
adopted to rank all features (e.g. spectra peaks) according to their
discriminating abilities. Next, the ranked peaks were sequen-
tially forward selected to train the predictive model. Then, the
predictive models trained using different feature sets were eval-
uated for their performance in classifying MRSA and MSSA
isolates based on k-fold cross-validation. Finally, the indepen-
dent testing dataset, collected from Kaohsiung branch of CGMH,
was used to test the final model with the best cross-validation
performance. The detailed process of each step is described as
follows.

Sample preparation and MS spectra

Clinical specimens were continuously collected daily from var-
ious wards of both the Linkou and Kaohsiung branches in 2016
and delivered to the CGMH clinical microbiology laboratory. The
specimen types included blood, respiratory tract specimen (i.e.
sputum, bronchial wash and bronchoalveolar lavage), sterile
cavity fluid (i.e. ascites, dialysates, pleural effusion, pericardial
effusion, cerebrospinal fluid and synovial fluid), tip of implant,
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Figure 1. Comparison of processing workflows between traditional and proposed schemes. In clinical microbiology laboratory, the MALDI-TOF MS is routinely used

for identification of bacterial species when a bacterial colony is recovered from specimen. Thus, a MS spectrum would be generated in the process of bacterial species

identification. Based on the MS spectrum generated in the existing workflow, three steps are necessary for a medical staff to use the proposed scheme. The first step

is inputting the MS spectrum into the ML model. A predicted result then would be provided by the proposed ML model. Second, on the basis of the predicted result,

together with the patient’s clinical conditions, a clinical microbiologist can provide the preliminary result of oxacillin susceptibility for S. aureus. Third, the caring

physicians can adjust the management (e.g. different antibiotic, different drug administrating dose/frequency) for S. aureus-related infection by the preliminary result

of oxacillin susceptibility provided by the proposed ML model. Generally, the preliminary result of oxacillin susceptibility could be provided around one day in advance

to the final oxacillin susceptibility test. The faster susceptibility information would enable a guide more appropriate clinical management.

urine, wound and others. Blood specimens were collected after
aseptic preparation, and cultured in trypticase soy broth (Becton
Dickinson, MD, USA). Positive culture results were detected using
an automated detection system (BD BACTEC™ FX; Becton Dick-
inson, MD, USA). Blood was drawn from positive blood culture
bottles and spread onto blood plate (BP) agar for subculture (Bec-
ton Dickinson, MD, USA). Sputum specimens with acceptable
quality [16] were used. Respiratory specimens were inoculated
onto BP agar (Becton Dickinson, MD, USA), eosin methylene blue
(EMB) agar (Becton Dickinson, MD, USA), Columbia naladixic
acid (CNA) agar (Becton Dickinson, MD, USA) and chocolate agar
(Becton Dickinson, MD, USA). Specimens obtained from sterile
cavity fluid were inoculated on BP, EMB, CNA, chocolate agar and
thioglycollate broth (Becton Dickinson, MD, USA). When positive
growth was noted in thioglycollate broth, subculture on BP agar
was conducted. A semi-quantitative culture method described
by Maki et al. [17] was used for testing the tip of implants. Urine
specimens were inoculated by a quantitative loop on BP and EMB
agar. For specimens collected from wounds, 1.2 ml 0.9% saline
was used for rinsing when the specimens were obtained by swab.

The rinsed saline was inoculated on BP, EMB, CNA and chocolate
agar. For pus collected from wounds, the specimens were directly
dropped onto the agar and into thioglycollate broth. The agar
and broth were incubated in a 37◦C CO2 incubator for 18–24 h.
Single colonies grown on agar plates were selected for further
analysis. S. aureus was identified based on colony morphology, a
coagulase test and MALDI-TOF MS (Bruker Daltonics GmbH, Bre-
men, Germany). The paper disc method using cefoxitin was per-
formed to discriminate MRSA from MSSA, based on the Clinical
& Laboratory Standards Institute guidelines.

All MS spectra were generated during routine tests in
the clinical microbiology laboratory. Thus, we analyzed the
unique bacterial isolates only once; no technical or biological
replications were performed. Analytical measurements of
MALDI-TOF MS were conducted according to the manufacturer’s
instructions (Bruker Daltonics GmbH, Bremen, Germany). Single
colonies grown on agar were picked and smeared to thin
films on a MALDI steel target plate. One microliter of 70%
formic acid was applied to the films and they were dried at
room temperature (25◦C). One microliter matrix solution (50%
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Figure 2. Analytical flowchart of this study. There are four steps: (1) sample preparation and MS spectra, (2) data preprocessing and feature extraction, (3) model training

and evaluation and (4) independent testing.

acetonitrite containing 1% α-cyano-4-hydroxycinnamic acid
and 2.5% trifluoroacetic acid) was then added to the films.
The sample matrix was dried at room temperature before
analysis by MS. MALDI-TOF was conducted on a Microflex LT
mass spectrometer (Bruker Daltonics GmbH, Bremen, Germany).
Mass spectra were obtained under the following settings: linear
positive mode, accelerating voltage: +20 kV and nitrogen laser
frequency: 60 Hz. A total of 240 laser shots on each sample spot
were used for measurement. The Bruker Daltonics Bacterial
Test Standard was used for external calibration of the spectra.
Flexanalysis 3.4 (Bruker Daltonics GmbH, Bremen, Germany)
was used for spectral processing. The Savitzky–Golay algorithm
was set for spectral smoothing. The spectral baseline was
subtracted using the top hat method. The signal-to-noise ratio
threshold was set as 2. S. aureus was determined by Biotyper 3.1
(Bruker Daltonics GmbH, Bremen, Germany) on the basis of the
processed spectra. All spectra of the cases reached acceptable
quality (log score ≥ 2, defined by the manufacturer’s instruction).
Spectra ranging from 2000 to 20 000 Da were collected for further
analysis.

Data preprocessing and feature extraction

In the MALDI-TOF MS spectra, the peaks, which were the m/z
values with sufficient intensity, were extracted and regarded as
fingerprint signatures for the construction of predictive models.
In an initial scanning through all MS spectra, due to the isotope
of various atoms, it was noticed that many peaks with a little
difference in m/z values might be referred to as the same pep-
tide species. To deal with the shifting problem of peaks among
different spectrums, a binning method was adopted to group the
large-scale peaks, which ranged from 2000 to 20 000 Da, into
a smaller number of ‘bins.’ Supplementary Figure S1 presents

a schematic diagram of the binning method used in this work.
Given two spectra marked in different colors (red and black),
the peaks located within the same bin were considered to be
the same attribute. In the binning method, various values of bin
size, ranging from 1 to 15 Da, were tested to obtain the best
performance in discriminating between MRSA and MSSA MS
spectra. Note that ‘2410–2419’ was equivalent to [2410, 2420) in
this study to represent a peak with adequate intensity in the
interval that included the lower bound but did not include the
upper bound.

In this study, two different data types, categorical and numer-
ical values were considered for the representation of the peaks.
For the categorical data type, the values 1 and 0 indicated the
presence and absence of a peak, respectively, if its intensity is
higher than a specified cutoff value. For the numerical data type,
in each MS spectra, all the intensity values were normalized
by their mean value and the standard deviation. Namely, the
normalized intensity value of each peak was regarded as the
training attribute for model construction. However, in a mass
peptide fingerprint, the intensity values of these peptides might
be affected by various factors, including the amount of bacte-
ria loaded onto the steel plate, degree of cell lysis and other
manual processes used to prepare the sample-matrix mixture
prior to the analysis. Even if two spectrums were obtained from
the same clinical isolate, the distribution of peaks, as well as
their intensity values in the two spectrums might be different.
Therefore, the intensity values of all identified peptides were
normalized for each spectrum. Herein, the z-score normalization
method was applied to each spectrum with an attempt to avoid
extreme concentration values. The normalizing function for the
peak value xij of spectrum i is defined as:

zij = xij − μi

σi

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
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where μi is the mean of all intensity values and σ i is the standard
deviation of spectrum i [18]. After z-score normalization, the
distribution of all z values will be close to a normal distribution.

Feature selection and construction of ML models

In general, we can adopt all attributes (bins) as the training fea-
tures to construct a predictive model for classification between
MRSA and MSSA samples. Due to the potential noise peaks
included in the MS spectra, sometimes, the consideration of all
attributes might induce a lower discriminating power. Therefore,
sequential forward selection (SFS) [19, 20], an incremental strat-
egy for selecting the final attribute set, was utilized to determine
the final composition of attributes in an attempt to determine
the informative attributes to differentiate MRSA from MSSA
samples. SFS was applied on two different feature sets, which
were selected using the PCC and OneR, to yield better predictive
performance.

PCC is a metric used to detect the linear dependence (cor-
relation) between two variables X and Y by generating a value
between −1 and 1:

ρ (X, Y) = cov (X, Y)

σXσY
= E [(X − μX) (Y − μY)]

σXσY

where cov(X,Y) is the covariance between X and Y, and
σ x (σ y) is the standard deviation of X (Y). As presented in
Supplementary Figure S2, all positive (MRSA) and negative
(MSSA) samples of the training dataset are labeled as +1 and −1,
respectively. To calculate the PCC value for a given attribute
(peak), the samples with/without this attribute were labeled
as 1/0. In the investigation of the correlation between a given
attribute and the sample distribution, a higher PCC value
indicated that the evaluated attribute had a higher correlation
with the distribution of positive and negative samples.

OneR is a rule-based strategy to evaluate the classifying
ability of each attribute [21]. In this investigation, each attribute
was regarded as a single rule for classifying MRSA and MSSA
samples. OneR was used as a one-level decision tree (DT) to
generate a set of rules that tested one particular attribute [22].
There were three main steps in the OneR investigation of each
attribute:

(i) Two branches for the attribute values (1 and 0).
(ii) Each branch was assigned a class label (MRSA or MSSA) with

the highest frequency.
(iii) Calculation of error rate for each branch: proportion of

samples that did not belong to the assigned class of their
corresponding branch.

After calculating the error rate against all attributes, all of
them were ranked according to the error rate in ascending
order. The attribute containing the lowest error rate represented
the best classifying ability. Supplementary Figure S3 provides an
example of the OneR evaluation of three attributes.

In this study, four ML models, DT, random forest (RF), K-
nearest neighbor (KNN) and support vector machine (SVM),
were adopted. The ‘rpart’ (version 4.1.15) [23], ‘ranger’ (version
0.12.1) [24], ‘kknn’ (version 1.3.1) [25] and ‘e1071’ (version 1.7.3)
[26] packages of R software (version 3.6.3, R Foundation for
Statistical Computing, https://www.r-project.org/) were utilized
to generate the DT, RF, KNN and SVM models, respectively.
Detailed descriptions of these methods are provided in the
supplementary methods. For each bin size, the nested 5-fold
cross-validation was performed to determine the optimal
learning parameters of the four ML models with a grid search by

the inner loop. Supplementary Table S1 shows descriptions of
learning parameters used in the nested cross-validation for the
four ML methods. The outer loop was used to rank the features
and determine the best feature composition. Specifically, the
features were ranked according to the PCC or OneR evaluations
in each training fold. Then, the ranked peaks were sequentially
forward selected to train the predictive model and evaluate its
predictive performance in the outer loop. Consequently, the
optimal parameters and final feature set could be determined
for each bin size.

Performance measurement of predictive models

The MRSA prediction models trained using various ML methods
were evaluated via 5-fold cross-validation. When the optimal
parameters and final feature set were determined, 5-fold cross-
validation was then employed to evaluate their predictive perfor-
mance based on the training data. In the 5-fold cross-validation,
all the positive (MRSA) and negative (MSSA) training samples
were divided into five subgroups with approximately equal data
sizes. The ratio of the validation dataset to the training dataset
was 1:4, and the cross-validation process was repeated five
times with an attempt to regard each subgroup as the validation
dataset once. After a round of 5-fold cross-validation, the results
of five validations were combined to generate a single estima-
tion. To estimate the predictive performance of each trained
model, metrics, such as sensitivity (SEN), specificity (SPE), accu-
racy (ACC) and the Matthews correlation coefficient (MCC) were
utilized:

SEN = TP
TP + FN

SPE = TN
FP + TN

ACC = TP + TN
TP + TN + FP + FN

MCC = (TP × TN) − (FN × FP)√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

,

where TP, TN, FP and FN denote the prediction of true positives,
true negatives, false positives and false negatives, respectively.
The SEN and SPE indicated the proportion of correct predictions
for positive (MRSA) and negative (MSSA) samples, respectively.
The ACC combined the results of true-positive and true-negative
predictions. Because the size of the positive dataset was not
balanced by the size of the negative dataset, the MCC metric
could provide a reasonable evaluation for classifiers [22, 27]. In
this investigation, the area under the receiver operating charac-
teristic (ROC) curve (AUC) was considered as the primary metric
for the performance comparison among different ML models
[28]. It should be noted that the optimal parameters and feature
set were determined based on the best AUC value. In order
to ensure the robustness of independent testing, the standard
deviation metric was further considered to determine the opti-
mal bin size, ML parameters and the final feature set. Prior to
the independent testing, the whole training dataset was used
to construct a predictive model with the optimal bin size, ML
parameters and feature set.

Results
Data statistics of MRSA and MSSA samples in training
and independent testing datasets

The MALDI-TOF MS data obtained from the CGMH Linkou branch
served as the training dataset. S. aureus was isolated from 3338

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://www.r-project.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
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Table 1. Data statistics of MRSA and MSSA samples in the training and testing datasets

Training dataset Testing dataset

MRSA MSSA MRSA MSSA

Age 54.68 ± 25.46 52.90 ± 24.16 55.90 ± 22.65 57.44 ± 19.61
Gender

Male 1056 898 448 474
Female 712 672 284 314

Specimen type
Blood 171 184 239 310
Respiratory tract 542 290 52 33
Sterile body fluid 51 43 17 29
Uninary tract 86 135 26 33
Wound 825 773 365 316
Others 93 145 33 67

Total 1768 1570 732 788

cases, including 1954 males and 1384 females. As presented in
Table 1, 1056 MRSA isolates and 898 MSSA isolates have been
identified in the male population. For the female population,
712 MRSA isolates and 672 MSSA isolates were identified. In the
training dataset, the average ages (standard deviation) of the
male and female individuals were 54.68 (25.46) and 52.90 (24.16)
for MRSA and MSSA, respectively. According to the AST results,
the ratio of MRSA (1768 instances) against MSSA (1570 instances)
samples was approximately 1:1. Additionally, MRSA specimen
type distribution revealed that the wound specimen was the
most predominant specimen type, followed by the respiratory
tract and blood specimens; in MSSA, the top three most common
specimen types were the same as those of MRSA, namely wound,
blood and respiratory tract specimens.

In this investigation, the MALDI-TOF MS spectra obtained
from the CGMH Kaohsiung branch was regarded as the inde-
pendent testing dataset. S. aureus was isolated from 1520 cases,
including 922 men and 598 women. As presented in Table 1, 448
MRSA isolates and 474 MSSA isolates have been identified in the
male population. In the female population, 284 MRSA isolates
and 314 MSSA isolates were identified. The average ages (stan-
dard deviation) of male and female individuals were 55.90 (22.65)
and 57.44 (19.61) for MRSA and MSSA, respectively. The ratio
of MRSA to MSSA was 732:788, which was also approximately
1:1, in the testing dataset. The composition of the specimens in
the testing dataset was similar to that of the training dataset,
where the top three major specimen types were wound, blood
and respiratory tract specimens for both MRSA and MSSA iso-
lates. The independent testing dataset was adopted to evalu-
ate the optimal model, which was trained by using the entire
training dataset with the optimal ML parameters and feature
set.

Comparisons of MS spectra between MRSA and MSSA

Figure 3 demonstrates the peak distribution in the MS spectra
to investigate the differences between MRSA and MSSA isolates.
The number of isolates with adequate intensity at specific peaks
is shown in Figure 3A. It should be noted that the number of
isolates with adequate intensity at specific peaks was inde-
pendent of their intensities. Figure 3A provides an overview of
the peak distribution over a wide range, starting from 2000 to
17 000 Da. Since the number of peaks occurring within 7000–
17 000 Da is much less than that occurring within 2000–7000 Da,
a detailed view of the peak distribution ranging from 2000 to

7000 Da is displayed in Figure 3B. In other words, peaks with m/z
values lower than 7000 Da would be more informative for further
investigation. Figure 3A implies that the majority of peaks of
approximately 3000–5000 Da in both MRSA and MSSA isolates
show adequate intensities. Figure 3C further illustrates the dis-
tribution of intensity and number (proportion) of spectra with
adequate intensity at the specific peak. These results indicated
that the peaks shown in the range lower than 3000 Da had
larger intensities. In contrast, the peaks in the range of 3000–
5000 Da usually had lower intensities. Additionally, the peak
distribution in the range between 2000 and 3000 Da, shown in
Figure 3, illustrates the differences between MRSA and MSSA
isolates. Note that the region with blank indicates the difference
between MRSA and MSSA spectra. Compared with MSSA, MRSA
spectra tended to show peaks in the range of 2410–2419 and
6430–6439 Da. Therefore, these specific regions were thought
to be highly related to the classification of MRSA and MSSA
isolates, and were expected to be selected by feature selection
methods.

Feature evaluations for prediction

In this study, ribosomal proteins, which correspond to specific
M/Z values of a spectrum, were used to construct the classifica-
tion models. The M/Z values of the ribosomal proteins, between
2000 and 20 000 Da were detected by MALDI-TOF MS. This large
range was split into different bin sizes to extract applicable
features and further deal with the peak shifting problem. There
were 15 different bin sizes used in this study: 1–15 Da. For
example, if the bin size was 10 Da, the first bin ranged from
2000.000 to 2009.999 Da, which was denoted as ‘2000–2009.’ For
instance, if a spectrum had peaks at 2003 or 2008 Da, the value
of this feature was 1, indicating that this isolate had peaks
in this range. In addition, the features were removed if the
number of spectra showing the peak in the range was lower
than 5% of the number of spectra. Table 2 shows the number
of features without the feature-selection strategy for different
bin sizes. Basically, the number of features decreased as the
bin size increased. Table 2 also provides the number of features,
which are sequentially forward selected, based on the ranking
of PCC and OneR for different bin sizes when the RF model
was adopted. In this investigation, PCC and OneR provided two
different feature sets ranked according to their relevance in
discriminating between MRSA and MSSA isolates. In addition,
Supplementary Table S2 provides a table of the top 20 features

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
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Figure 3. Comparison of peak distributions between MRSA and MSSA spectra. (A) Distribution of peaks in the region between 2000 and 17 000 Da. (B) Distribution of

peaks in the region between 2000 and 7000 Da. (C) The intensity distribution and number (proportion) of spectra with specific peaks.

selected by PCC for a bin size of 10 Da. The features ranked with
1st, 2nd, 15th and 20th covered the m/z values approximately
2400 Da, which was regarded as the preferable peaks for MRSA
samples. These results are also consistent with those in Figure 3.
Particularly, the range between 2410 and 2419 Da yielded the
highest score among all features.

Comparisons of the predictive models

In this study, we developed different classification models using
different classifiers and feature selection strategies. Specifically,
4 ML methods, two feature sets determined by PCC and OneR,
and 15 bin sizes were taken into consideration. Figures 4 and
5 show the results for different bin sizes without and with
the consideration of intensity values, respectively. Nested cross-
validation was adopted to determine the optimal parameters of
ML methods and the final feature set. When considering the
PCC-based feature set, the models with bin sizes of 7, 10 or
12 Da achieved better ACC and AUC values. More importantly,
the model trained using bin size 10 Da attained the lowest
standard deviation, which indicated a more stable prediction

performance. Supplementary Table S3 shows the top 16 predic-
tive models with their detailed information, including classifier,
bin size, feature-ranking method, SEN, SPE, ACC, MCC and AUC.

As shown in Supplementary Table S3, the RF-based model
trained with bin size 7 Da and PCC-ranked feature set can
provide the best AUC (0.8997) in MRSA prediction. However,
the ACC fluctuation (standard deviation) tends to be higher
(0.0074). To ensure the robustness of the model, a lower
standard deviation was the major concern. As a result, the
RF model trained using the PCC feature set with the bin
size 10 Da was selected. Since intensity could represent the
signal strength at a specific region, we further took it into
consideration using a bin size of 10 Da to construct the
classification models. Supplementary Table S4 demonstrates
the performance of different classifiers when considering
the intensity value and a bin size of 10 Da. Note that the
intensity values were normalized by their mean and standard
deviation. The AUC value of the RF-based model trained with
PCC feature set (0.8853) in Supplementary Table S4 is slightly
lower than that (0.8921) in Supplementary Table S3. Without
considering the intensity values of the peaks, the RF-based
model could provide better ACC (0.8101) and AUC (0.8921) values.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
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Figure 4. The means and standard deviations of (A) sensitivity, (B) specificity, (C) accuracy and (D) AUC on 5-fold cross-validation for different bin sizes when the

intensity is not incorporated. In each column of the four subfigures, the means and standard deviations are represented by dots and bars, respectively, for the four ML

methods, namely DT (black), RF (red), KNN (green) and SVM (blue).

Figure 5. The means and standard deviations of (A) sensitivity, (B) specificity, (C) accuracy and (D) AUC on five cross-validation for different bin sizes when the intensity

is incorporated. In each column of the four subfigures, the means and standard deviations are represented by dots and bars, respectively, for the four ML methods,

namely DT (black), RF (red), KNN (green), and SVM (blue).
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Table 2. Number of features with or without feature selection for
different bin sizes. Given a specific bin size (in the first column),
without the feature selection method, the number of features (peaks)
containing adequate intensity value is provided in the second col-
umn. In this investigation, the peaks that occur in less than 5% of
the samples are not considered in the feature selection process. The
number of sequentially forward selected features (peaks) based on
the ranking of PCC and OneR are provided in the third and fourth
columns, respectively

Bin size
(M/Z)

Number of
features

Number of
selected
features (PCC)

Number of
selected
features (OneR)

1 936 501 706
2 662 237 526
3 521 343 508
4 455 375 447
5 391 336 296
6 349 243 338
7 327 281 323
8 299 216 281
9 284 245 264
10 268 193 201
11 259 222 239
12 245 178 238
13 243 227 221
14 223 220 202
15 219 201 219

The AUC slightly decreased when the RF-based model was
trained using the normalized intensity values, which implied
that the feature of normalized intensity values could improve
the classification between MRSA and MSSA samples. Neverthe-
less, the presence or absence of peaks was sufficiently useful in
the prediction of MRSA samples.

Investigation of informative peaks

Table 3 shows that the optimal model was developed by DT and
PCC feature selection when the bin size was 10 Da. We then
further investigated the summary statistics for these selected
features. Specifically, there were 108 features selected by the
PCC, and 110 features selected by OneR. Table 4 demonstrates
the information about the peaks selected by these two fea-
ture selection methods simultaneously. Some informative peaks
have been mentioned in previous studies that are shown in the
last column of Table 4. However, we found informative peaks
that had not been mentioned so far. Specifically, most of the
selected peaks showed significant differences between MRSA
and MSSA isolates. However, previous studies have mainly found
that MRSA has specific peaks. Specifically, 2410–2419 Da [15,
29], 6590–6599 Da [30], 2450–2459 Da [29, 31, 32], 5000–5009 Da
[15, 30], 2540–2549 Da [29, 31], 6420–6429 Da [30], 5520–5529 Da
[15, 30], 3030–3039 Da [30] and 3890–3899 Da [29, 30] have been
reported. We also found that the number of MRSA peaks was
larger than that of MSSA peaks in the range of 2430–2439 Da,
which had not been mentioned before. In contrast, few studies
mentioned the size of the MSSA peaks. The proportion of peaks
between 5280 and 5289 Da for MSSA spectra was 11.97% higher
than that of the MRSA spectra. In addition, the range of 6900–
6909 Da also indicated that the MSSA isolates had more peaks
than MRSA did. Even though we needed 108 features to construct
an optimal classifier to discriminate between MRSA and MSSA

isolates, these data statistics could also provide information for
further experiments to identify the corresponding peptides.

Box plots were adopted to investigate the difference in
intensities between MRSA and MSSA peaks, and are shown
in Figure 3C. The remarkable difference observed from the
box plots implied that these peaks were able to discriminate
between MRSA and MSSA isolates. Although some box plots
did not show remarkable differences, the number of peaks
appearing in the specific region could help classify MRSA and
MSSA isolates. In addition to the individual peaks, we also
investigated the pairwise correlation between any pair of two
peaks. Supplementary Figure S4 illustrates the heatmap of PCC
between two selected peaks in MRSA and MSSA samples. This
investigation implied that the correlations of selected peaks
for MRSA samples tended to be higher than those for MSSA
samples. For instance, the correlation between peaks 2410–
2419 Da and 3000–3009 Da in MRSA samples is higher than that
in MSSA samples. In addition, the PCCs between the peak 2410–
2419 Da and other selected peaks in MRSA and MSSA samples
are provided in Supplementary Table S5. The number of samples
containing both peaks (the peak 2410–2419 Da and another
specific peak) with or without adequate intensity values are
provided for MRSA and MSSA samples. Then, the PCC value was
calculated for each pair of two selected peaks. For instance, the
number of samples containing both peaks 2410–2419 Da and
3000–3019 Da with adequate intensities in MRSA (469 samples)
is higher than that in MSSA (six samples). Additionally, the
absolute values of PCCs in MRSA samples are higher than those
in MSSA samples except the pair containing peak 6420–6429 Da.

Performance of independent testing

Table 3 shows the predictive performances of the four ML meth-
ods trained with a bin size of 10 Da using the independent testing
data. This investigation demonstrated that the models trained
using the selected features could provide a better predictive
power, especially for the KNN model in which the AUC value
increased from 0.7672 to 0.8289. In the independent testing, the
RF model performed best with SEN, SPE, ACC, MCC and AUC
at 0.7664, 0.7665, 0.7664, 0.5326 and 0.8450, respectively. The
testing results indicated that the consideration of fewer, but
more informative features, could provide better discriminating
power. In addition, the ROC curves of the four models with and
without the feature selection strategy are shown in Figure 6.

Discussion and Conclusion
Predicting MRSA using MALDI-TOF MS is not a novel approach
in biology, but the reported performance varies considerably
between studies. Previous studies have attempted to associate a
few single peptides/proteins to MRSA isolates [14, 15, 33]. Alksne
et al. had used 2412 ± 2 Da as the indicator peak to identify MRSA,
which attained the sensitivity of 61% and specificity of 100% on
272 S. aureus isolates [33]. If we adopted the same criterion to
identify MRSA isolates, Table 4 has revealed that only 27.49%
MRSA samples contain the peaks with adequate intensity in
the range of 2412 ± 2 Da. In recent years, several studies [34–37]
had adapted ML algorithms to conduct the detection of MRSA
based on hundreds of MS spectra. Bai et al. [35] had adopted a
two-step binning approach with genetic algorithm to construct
SVM classifier based on 727 S. aureus isolates, and the predictive
accuracy was around 72% in average. Sogawa et al. [37] also
applied the SVM approach on 160 S. aureus isolates, in which
100 samples were used to train the model and the remaining

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
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Table 3. Prediction performance when bin size is 10 in the independent testing

Classifier #Features SEN SPE ACC MCC AUC

DT 268 0.6981 0.7284 0.7138 0.4267 0.7497
47 0.6981 0.7284 0.7138 0.4267 0.7497

RF 268 0.7650 0.7652 0.7651 0.5300 0.8486
193 0.7664 0.7665 0.7664 0.5326 0.8450

KNN 268 0.6981 0.698 0.6980 0.3958 0.7672
46 0.7527 0.7500 0.7513 0.5025 0.8289

SVM 268 0.7418 0.7424 0.7421 0.4839 0.8110
209 0.7418 0.7424 0.7421 0.4839 0.8097

Table 4. Comparison of the number of samples containing the selected peaks between MRSA and MSSA

Peak range #MRSA (%) #MSSA (%) Difference (%) PCC rank OneR rank Reference

2410–2419 486 (27.49) 16 (1.02) 470 (26.47) 1 1 [15, 29]
2430–2439 275 (15.55) 1 (0.06) 274 (15.49) 2 17
6590–6599 531 (30.03) 142 (9.04) 389 (20.99) 3 2 [30]
5280–5289 5 (0.28) 188 (11.97) −183 (−11.69) 4 3
2450–2459 224 (12.67) 2 (0.13) 222 (12.54) 5 40 [29, 31, 32]
6900–6909 6 (0.34) 179 (11.40) −173 (−11.06) 6 5
6430–6439 11 (0.62) 183 (11.66) −172 (−11.03) 7 6
6520–6529 0 (0) 136 (8.66) −136 (−8.66) 8 9
3450–3459 10 (0.57) 153 (9.75) −143 (−9.18) 10 7
10 460–10 469 10 (0.57) 138 (8.79) −128 (−8.22) 11 10
5000–5009 1 (0.06) 105 (6.69) −104 (−6.63) 12 11 [15, 30]
6560–6569 6 (0.34) 102 (6.50) −96 (−6.16) 13 12
2540–2549 512 (28.96) 232 (14.78) 280 (14.18) 14 14 [29, 31]
6420–6429 1658 (93.78) 1317 (83.89) 341 (9.89) 16 8 [30]
5520–5529 1472 (83.26) 1098 (69.94) 374 (13.32) 17 4 [15, 30]
11 550–11 559 4 (0.23) 81 (5.16) −77 (−4.93) 18 16
7030–7039 2 (0.11) 66 (4.20) −64 (−4.09) 19 21
2220–2229 42 (2.38) 122 (7.77) −80 (−5.4) 22 15
3030–3039 751 (42.48) 487 (31.02) 264 (11.46) 24 20 [30]
3890–3899 84 (4.75) 160 (10.19) −76 (−5.44) 30 18 [29, 30]

Figure 6. The ROC curve for independent testing when the bin size is 10 Da. (A) and (B) are the ROC curves for the four ML models trained with and without, respectively,

the consideration of feature-selection strategy.

60 samples were regarded as testing data. The sensitivity and
specificity values were 86.7 and 93.3%, respectively. Tang et al.
[34] had examined 10 MRSA and 10 MSSA clinical isolates, and
the prediction accuracy was higher than 90%. Kim et al. [36] had
exploited the DT algorithm to train the predictive model using
320 S. aureus isolates; additionally, 181 S. aureus isolates were

used to test the DT model, which attained the sensitivity and
specificity at 87.6 and 71.4%, respectively.

Regarding sample size, the number of MRSA and MSSA iso-
lates used in this study is much larger than those in previous
reports [14, 15, 33–35]. With a larger sample size, more bacte-
rial diversity is included and the possibility of overfitting can
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be mitigated. Moreover, ML models were trained using Linkou
CGMH data and the ML models were independently tested using
the Kaohsiung CGMH data. External validation was the optimal
validation method to examine the robustness of ML models;
however, external validation on a large-scale was not done in
other studies. A possible bias and lack of robustness could be the
reasons why the reported results have not been widely applied
in clinical practice. Regarding the technical aspects of MALDI-
TOF analysis, we did not use technical replicates or biological
replicates, which can be used to increase the sample size and
improve reproducibility [34]. In the routine workflow of MALDI-
TOF analysis in clinical microbiology laboratories, only single
MALDI-TOF measurements were available for a bacterial isolate.
With the aim of developing an ML tool useful in clinical prac-
tice, we used single MALDI-TOF measurements alone to train,
validate and independently test ML models. For reproducibility,
which could be compromised using single MALDI-TOF mea-
surements, we proposed and validated a binning method that
could deal with the problem of peak drift/shift issues. In brief,
we developed and validated an MRSA prediction model using
a comprehensive dataset with a rigorous validation process,
which has not yet been reported in previous studies. Addi-
tionally, the proposed scheme is ready to be used in a clinical
setting because the ML model was trained and validated using
data consecutively collected from clinical daily work in the real
world.

In this study, all the MS data were generated during routine
tests in the clinical microbiology laboratory. Thus, we analyzed
unique bacterial isolates only once; no technical or biological
replications were performed. We developed an applicable tool
for fast detection of MRSA isolates in clinical practice. In the
routine work of clinical microbiology laboratories, we usually
spread bacteria onto a single spot of the analytical plate
and have only a single analytical measurement of MALDI-
TOF MS spectra for each bacterial isolate. For real integration
and application into real-world workflow, we used single
measurements without replications and evaluated whether
MRSA detection was possible using the proposed methods.
The major obstacle in MRSA detection based on MALDI-
TOF MS spectra is the peak-shifting issue of MALDI-TOF
MS [11, 38]. Consequently, we proposed and evaluated if the
binning method was an adequate method for preprocessing
MALDI-TOF MS spectra to facilitate the incorporation of ML
algorithms.

The reproducibility of the spectra is recognized as an intrinsic
limitation of MALDI-TOF MS. Several studies have indicated the
lack of reproducibility of the mass spectra when MALDI-TOF
MS was used for strain typing or predicting AST. In fact, the
peak-level reproducibility of peak presence/absence seems to be
approximately 90%, as reported in a review article [39]. There
are many factors which would affect the reproducibility of MS
spectra. Regarding the media, in the study, we cultivated S. aureus
isolates on BBL™ Trypticase™ Soy Agar with 5% Sheep Blood
(TSA II) (Becton Dickinson, MD, USA) for 16–18 h to obtain single
colonies for MALDI-TOF analysis. Direct on-plate preparation of
the sample was adapted, in which the bacterial amount was only
semi-quantitatively measured by experienced medical technol-
ogists. We conducted cell lysis and manual processes to pre-
pare the sample-matrix mixture according to the manufacturer’s
instructions (Bruker Daltonics GmbH, Bremen, Germany). As rou-
tinely processed in clinical microbiology laboratories, detailed
information including bacterial amount, degree of cell lysis and
other possible factors were not precisely defined. The score
(log score ≥ 2) provided by Biotyper 3.1 (Bruker Daltonics GmbH,

Bremen, Germany) could be the quality indicator showing that
analytical processes were correctly performed. In the literature
[40], in-tube extraction rather than on-plate extraction can pro-
vide more precise bacterial amounts, cell lysis, sample-matrix
mixing and higher quality MS spectrum. However, given the aim
of developing an ML tool useful in clinical practice, we should fit
the ML tool into the existing workflow. In the current workflow
of MALDI-TOF analysis, direct on-plate sample preparation is the
only possible method for dealing with overwhelming numbers of
test orders in clinical microbiology laboratories [41].

This investigation employed different feature selection
methods, such as PCC and OneR to identify informative
peaks for the construction of MRSA prediction models. Then
four different classification algorithms were used to build
the models. Evaluation by 5-fold cross-validation indicated
that the selected peaks were effective in the prediction.
According to PCC feature selection with a bin size 10 Da, 193
selected peaks could provide the best predictive power for the
independent testing data (76.64% accuracy, 76.64% sensitivity,
76.65% specificity, 0.5326 MCC and 0.8450 AUC) based on the
RF classifier. With rapid, accurate prediction, S. aureus will be
classified immediately, which can help clinicians to admin-
ister appropriate treatment to patients without wasting any
time.

There are limitations to this study. First, bacterial strains cir-
culating in different regions vary considerably. Directly applying
ML models to other areas or regions would be inappropriate,
although we have validated the ML models with rigorous cross-
validation and at an independent institute. In contrast, clinical
microbiologists from other areas or regions could collect their
own local MS data and follow the generalized approach proposed
by the study to build a locally relevant ML model. Second, we
trained and validated the ML models using data derived from
the MALDI-TOF MS of Bruker Daltonics GmbH. MALDI-TOF MS
spectra analyzed using other MS platforms may be different
from Bruker systems. We did not conduct a comparison between
different MALDI-TOF MS platforms in the study. Third, the infor-
mative peaks were not identified. Most of the informative peaks
selected for feature selection presented a higher frequency in
the resistant strains. Identification of the informative peaks
would provide a more comprehensive view on the mechanism of
antibiotic resistance and would be valuable for the development
of novel antibiotics.

Key Points
• A binning method was incorporated to cluster MS

shifting ions into a set of representative peaks based
on a large-scale MS dataset of clinical S. aureus, includ-
ing 2500 MRSA and 2358 MSSA isolates.

• In the evaluation of independent testing, the random-
forest model performed best with the AUC at 0.8450,
sensitivity at 0.7664 specificity at 0.7665 accuracy at
0.7664 and Mathews correlation coefficient at 0.5326.

• This work has demonstrated that incorporating
machine learning method with a large-scale dataset
of clinical MS spectra may be a feasible means for
clinical physicians on the administration of correct
antibiotics in shorter turn-around-time, which could
reduce mortality, avoid drug resistance, and shorten
length of stay in hospital in the future.



12 Wang et al.

Author Contributions

H.Y.W. and C.R.C. carried out the data collection and
curation. C.R.C. and B.Y.C. participated in the data analyses,
model construction and drafted the manuscript. H.Y.W.,
C.R.C., Z.W., S.L., B.Y.C. and T.Y.L. participated in the design of
the study and performed the draft revision. J.T.H., T.Y.L. and
J.J.L. conceived of the study, and participated in its design
and coordination and helped to revise the manuscript. All
authors read and approved the final manuscript.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#
supplementary-data.

Acknowledgments

This work was supported by the Warshel Institute for
Computational Biology, The Chinese University of Hong
Kong, Shenzhen, China, Chang Gung Memorial Hospital
(CMRPG3G1722), and the Ministry of Science and Technology,
Taiwan (108-2221-E-008s-043-MY3).

Conflicts of interest

The authors declare that they have no competing interests.

References
1. Washer P, Joffe H. The “hospital superbug”: social represen-

tations of MRSA. Soc Sci Med 2006;63:2141–52.
2. Cosgrove SE, Sakoulas G, Perencevich EN, et al. Compari-

son of mortality associated with methicillin-resistant and
methicillin-susceptible Staphylococcus aureus bacteremia:
a meta-analysis. Clin Infect Dis 2003;36:53–9.

3. Nathwani D, Morgan M, Masterton RG, et al. Guidelines
for UK practice for the diagnosis and management of
methicillin-resistant Staphylococcus aureus (MRSA) infec-
tions presenting in the community. J Antimicrob Chemother
2008;61:976–94.

4. Hallin M, Maes N, Byl B, et al. Clinical impact of a PCR assay
for identification of Staphylococcus aureus and determina-
tion of methicillin resistance directly from blood cultures. J
Clin Microbiol 2003;41:3942–4.

5. Rolain JM, Mallet MN, Fournier PE, et al. Real-time PCR
for universal antibiotic susceptibility testing. J Antimicrob
Chemother 2004;54:538–41.

6. Wieser A, Schneider L, Jung J, et al. MALDI-TOF MS in
microbiological diagnostics—identification of microorgan-
isms and beyond (mini review). Appl Microbiol Biotechnol
2012;93:965–74.

7. Ryzhov V, Fenselau C. Characterization of the protein subset
desorbed by MALDI from whole bacterial cells. Anal Chem
2001;73:746–50.

8. Carbonnelle E, Mesquita C, Bille E, et al. MALDI-TOF mass
spectrometry tools for bacterial identification in clinical
microbiology laboratory. Clin Biochem 2011;44:104–9.

9. Bizzini A, Durussel C, Bille J, et al. Performance of matrix-
assisted laser desorption ionization-time of flight mass
spectrometry for identification of bacterial strains routinely

isolated in a clinical microbiology laboratory. J Clin Microbiol
2010;48:1549–54.

10. Jhong JH, Chi YH, Li WC, et al. dbAMP: an integrated
resource for exploring antimicrobial peptides with func-
tional activities and physicochemical properties on tran-
scriptome and proteome data. Nucleic Acids Res 2019;47:
D285–97.

11. Wang HY, Lee TY, Tseng YJ, et al. A new scheme for strain
typing of methicillin-resistant Staphylococcus aureus on the
basis of matrix-assisted laser desorption ionization time-
of-flight mass spectrometry by using machine learning
approach. PLoS One 2018;13:e0194289.

12. Suarez S, Ferroni A, Lotz A, et al. Ribosomal proteins as
biomarkers for bacterial identification by mass spectrome-
try in the clinical microbiology laboratory. J Microbiol Methods
2013;94:390–6.

13. Huang KY, Lee TY, Kao HJ, et al. dbPTM in 2019: explor-
ing disease association and cross-talk of post-translational
modifications. Nucleic Acids Res 2019;47:D298–308.

14. Jackson KA, Edwards-Jones V, Sutton CW, et al. Optimi-
sation of intact cell MALDI method for fingerprinting
of methicillin-resistant Staphylococcus aureus. J Microbiol
Methods 2005;62:273–84.

15. Wolters M, Rohde H, Maier T, et al. MALDI-TOF MS fin-
gerprinting allows for discrimination of major methicillin-
resistant Staphylococcus aureus lineages. Int J Med Microbiol
2011;301:64–8.

16. Murray PR, Washington JA. Microscopic and bacerio-
logic analysis of expectorated sputum. Mayo Clin Proc
1975;50:339–44.

17. Maki DG, Weise CE, Sarafin HW. A semiquantitative culture
method for identifying intravenous-catheter-related infec-
tion. N Engl J Med 1977;296:1305–9.

18. Su MG, Huang KY, Lu CT, et al. topPTM: a new mod-
ule of dbPTM for identifying functional post-translational
modifications in transmembrane proteins. Nucleic Acids Res
2014;42:D537–45.

19. Kao HJ, Weng SL, Huang KY, et al. MDD-carb: a combinatorial
model for the identification of protein carbonylation sites
with substrate motifs. BMC Syst Biol 2017;11:137.

20. Bui VM, Lu CT, Ho TT, et al. MDD-SOH: exploiting maximal
dependence decomposition to identify S-sulfenylation sites
with substrate motifs. Bioinformatics 2016;32:165–72.

21. Holte RC. Very simple classification rules perform well on
most commonly used datasets. Mach Learn 1993;11:63–90.

22. Lee TY, Hsu JB, Chang WC, et al. A comprehensive resource
for integrating and displaying protein post-translational
modifications. BMC Res Notes 2009;2:111.

23. Therneau TM, Atkinson EJ. An introduction to recursive
partitioning using the RPART routines. Technical Report 61.
1997. https://cran.r-project.org/web/packages/rpart/vigne
ttes/longintro.pdf.

24. Wright MN, Ziegler A. Ranger: a fast implementation of
random forests for high dimensional data in C++ and R.
arXiv 2015.

25. Hechenbichler K, Schliep K. Weighted k-nearest-neighbor
techniques and ordinal classification. 2004.

26. Meyer D, Dimitriadou E, Hornik K, et al. Package ‘e1071’. R J
2019.

27. Bui VM, Weng SL, Lu CT, et al. SOHSite: incorporating
evolutionary information and physicochemical properties
to identify protein S-sulfenylation sites. BMC Genomics
2016;17(Suppl 1):9.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa138#supplementary-data
https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf


Large-scale investigation and identification of methicillin-resistant Staphylococcus aureus 13

28. Chung CR, Kuo TR, Wu LC, et al. Characterization and identi-
fication of antimicrobial peptides with different functional
activities. Brief Bioinf 2019;21(3):1098–114.

29. Josten M, Dischinger J, Szekat C, et al. Identification of agr-
positive methicillin-resistant Staphylococcus aureus har-
bouring the class A mec complex by MALDI-TOF mass
spectrometry. Int J Med Microbiol 2014;304:1018–23.

30. Josten M, Reif M, Szekat C, et al. Analysis of the matrix-
assisted laser desorption ionization–time of flight mass
Spectrum of Staphylococcus aureus identifies mutations
that allow differentiation of the main clonal lineages. J Clin
Microbiol 2013;51:1809–17.

31. Du Z, Yang R, Guo Z, et al. Identification of Staphylococcus
a ureus and determination of its methicillin resistance by
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry. Anal Chem 2002;74:5487–91.

32. Majcherczyk PA, McKenna T, Moreillon P, et al. The
discriminatory power of MALDI-TOF mass spectrometry
to differentiate between isogenic teicoplanin-susceptible
and teicoplanin-resistant strains of methicillin-resistant
Staphylococcus aureus. FEMS Microbiol Lett 2006;255:
233–9.

33. Alksne L, Makarova S, Avsejenko J, et al. Determina-
tion of methicillin-resistant Staphylococcus aureus and
Staphylococcus epidermidis by MALDI-TOF MS in clin-
ical isolates from Latvia. Clin Mass Spectrom 2020;16:
33–9.

34. Tang W, Ranganathan N, Shahrezaei V, et al. MALDI-TOF
mass spectrometry on intact bacteria combined with a
refined analysis framework allows accurate classification of
MSSA and MRSA. PLoS One 2019;14:e0218951.

35. Bai J, Fan Z, Zhang L, et al. Classification of methicillin-
resistant and methicillin-susceptible Staphylococcus aureus
using an improved genetic algorithm for feature selection
based on mass spectra. In: Proceedings of the 9th International
Conference on Bioinformatics and Biomedical Technology. 2017,
pp. 57–63.

36. Kim J-M, Kim I, Chung SH, et al. Rapid discrimination of
methicillin-resistant Staphylococcus aureus by MALDI-TOF
MS. Pathogens 2019;8:214.

37. Sogawa K, Watanabe M, IshigE T, et al. Rapid discrimina-
tion between methicillin-sensitive and methicillin-resistant
Staphylococcus aureus using MALDI-TOF mass spectrome-
try. Biocontrol Sci 2017;22:163–9.

38. Wang HY, Li WC, Huang KY, et al. Rapid classification
of group B streptococcus serotypes based on matrix-
assisted laser desorption ionization-time of flight mass
spectrometry and machine learning techniques. BMC Bioinf
2019;20:703.

39. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-
TOF mass spectrometry in clinical diagnostic microbiology.
FEMS Microbiol Rev 2012;36:380–407.

40. Alatoom AA, Cunningham SA, Ihde SM, et al. Comparison
of direct colony method versus extraction method for iden-
tification of gram-positive cocci by use of Bruker Biotyper
matrix-assisted laser desorption ionization–time of flight
mass spectrometry. J Clin Microbiol 2011;49:2868–73.

41. Theel ES, Schmitt BH, Hall L, et al. Formic acid-based direct,
on-plate testing of yeast and Corynebacterium species
by Bruker Biotyper matrix-assisted laser desorption ion-
ization–time of flight mass spectrometry. J Clin Microbiol
2012;50:3093–5.


	A large-scale investigation and identification of methicillin-resistant Staphylococcus aureus based on peaks binning of matrix-assisted laser desorption ionization-time of flight MS spectra
	Introduction
	Materials and Methods
	Sample preparation and MS spectra
	Data preprocessing and feature extraction
	Feature selection and construction of ML models
	Performance measurement of predictive models

	Results
	Data statistics of MRSA and MSSA samples in training and independent testing datasets
	Comparisons of MS spectra between MRSA and MSSA
	Feature evaluations for prediction
	Comparisons of the predictive models
	Investigation of informative peaks
	Performance of independent testing

	Discussion and Conclusion
	Key Points

	Author Contributions
	Supplementary Data
	Conflicts of interest


