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Abstract
The cell adhesion molecule 2 (CADM2) gene has appeared among the top associations in a wide range of genome-wide 
association studies (GWASs). This study aims to: (1) examine how widespread the role of CADM2 is in behavioural traits, 
and (2) investigate trait-specific effects on CADM2 expression levels across tissues. We conducted a phenome-wide asso-
ciation study in UK Biobank (N = 12,211–453,349) on 242 psycho-behavioral traits, both at the SNP and the gene-level. 
For comparison, we repeated the analyses for other large (and high LD) genes. We found significant associations between 
CADM2 and 50 traits (including cognitive, risk taking, and dietary traits), many more than for the comparison genes. We 
show that many trait associations are reduced when taking geographical stratification into account. S-Predixcan revealed 
that CADM2 expression in brain tissues was significantly associated with many traits; highly significant effects were also 
observed for lung, mammary, and adipose tissues. In conclusion, this study shows that the role of CADM2 extends to a wide 
range of psycho-behavioral traits, suggesting these traits may share a common biological denominator.
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In the last 15  years, genome-wide association studies 
(GWASs) have identified tens of thousands of associations 
between genetic variants and a range of human behavioral 

and physical traits. One gene that has popped up surprisingly 
often in behavioral GWASs is the cell adhesion molecule 2 
gene (CADM2). Common variations (single nucleotide poly-
morphisms, SNPs) in the CADM2 gene have been implicated 
in various traits, including substance use traits (Pasman et al. 
2018; Liu et al. 2019) and risk-taking behavior (Strawbridge 
et al. 2018; Arends et al. 2021), but also in traits associ-
ated with personality (Boutwell et al. 2017), cognition and 
educational attainment (Ibrahim-Verbaas et al. 2016; Lee 
et al. 2018), reproductive success (Day et al. 2016), autism 
spectrum disorders (Casey et al. 2012), physical activity 
(Klimentidis et al. 2018), BMI/obesity (Locke et al. 2015; 
Morris et al. 2019), and metabolic traits (Morris et al. 2019).

CADM2 encodes a member of the synaptic cell adhesion 
molecules (SynCAMs) involved in synaptic organization and 
signalling, suggesting that alterations in CADM2 expression 
affect neuronal connectivity. CADM2 is expressed more 
abundantly in brain tissue than in other tissue and in par-
ticular in areas important for reward processing and addic-
tion, including the frontal anterior cingulate cortex (Ibrahim-
Verbaas et al. 2016), substantia nigra, and insula (Ndiaye 
et al. 2019). Accordingly, CADM2 is a gene that warrants 
further exploration.
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In this study we performed a phenome-wide association 
analysis (PheWAS), in which we tested for associations of 
CADM2 (on SNP and gene level) with a comprehensive 
selection of psycho-behavioral phenotypes as measured 
in the UK Biobank cohort. Results provide insights about 
whether the role of CADM2 is confined to a specific set of 
traits or is involved in a wider range of phenotypes. This 
will inform future studies on the function of CADM2 and the 
neurobiological underpinnings of different psycho-behavio-
ral traits. An additional advantage is that the multiple test-
ing burden is reduced as compared to genome-wide studies, 
resulting in higher statistical power.

UK Biobank is a nationwide study in the United King-
dom containing phenotypic and genetic information for up to 
500,000 individuals (Bycroft et al. 2018). We analyzed data 
from 12,211 to 453,349 UK Biobank participants with Euro-
pean ancestry for whom genetic and phenotypic data were 
available. About half (54.3%) of the sample was female, 
and mean age was M = 56.8 (range 39–73, SD = 8.0). We 
extracted the CADM2 region 250 kb up- and downstream 
(all HRC best-guess imputed SNPs from bp 84,758,133 
to 86,373,579 on 3p12.1, GRCh37/hg19) and selected 
4,265 SNPs with missingness rates < 5%, minor allele fre-
quency > 1%, and p-value for violation of Hardy–Weinberg 
equilibrium above  10–6 (quality control details are described 
in ); with the only difference that we included all HRC 
imputed SNPs, whereas Abdellaoui (2020) only included 
HapMap3 SNPs).

We selected 242 psychological and behavioral pheno-
types, representing 12 categories, with a sample size above 
N = 10,000 (for binary traits we used effective sample size 
N

eff
= 4∕

1∕N
cases

1∕N
controls

 ). To maximize sample size, we used the 
first available measurement for each individual; if the first 
instance was not available, we took the second, otherwise 
the third, etc. In addition, we included eight traits that were 
derived for recent genetic studies, including seven substance 
use traits and educational attainment in years (for an over-
view of all included traits, see Table S1). Continuous phe-
notypes were cleaned such that theoretically implausible 
values were set on missing and extreme values of more than 
4 SDs from the mean were winsorized at 4SDs from the 
mean. Binary and ordinal variables were left unchanged. 
Ordinal variables were analyzed as continuous variables.

The SNP-based association analyses were performed in 
fastGWA (Jiang et al. 2019), taking into account genetic 
relatedness. Analyses were controlled for effects of age, sex, 
and 25 genetic principal components [PCs, to control for 
genetic ancestry (Abdellaoui et al. 2019)]. We used linear 
mixed modeling for all traits and Haseman-Elston regression 
to estimate the genetic variance component. To test the sig-
nificance of CADM2-associations on gene-level, we con-
ducted a MAGMA gene-based test (de Leeuw et al. 2015), 

which aggregates the SNP effects (regardless of direction) 
in a single test of association. We used the default SNP-wise 
mean procedure (averaging SNP effects across the gene) and 
checked the results of the SNP-wise top procedure for com-
parison (this procedure is more sensitive when only a small 
proportion of SNPs has an effect). As significance threshold 
for the SNP-based test we adopted a genome-wide signifi-
cance threshold of p < 5E−08. As this is rather stringent 
given that we test within a single gene, we also used a sig-
nificance threshold of 0.05 corrected for the number of inde-
pendent SNPs (n = 133, at  R2 = 0.10 and 250 kb) and the 
number of traits, resulting in 0.05/(133*242) = 1.55E−06. 
For the gene-based test we used a threshold of 2.62E−05, 
corresponding to 0.05 divided by the total number of genes 
included in the test (19,082). To provide an estimation of the 
effect size of the top-SNP for each trait, we used 
R
2 =

2�2MAF(1−MAF)

2�2MAF(1−MAF)+(se(�))22NMAF(1−MAF)
 , as described in 

(Shim et al. 2015), with adaptations for binary traits as 
described in (Pasman et al. 2018).

At the SNP-level, 37 traits (out of 242) reached signifi-
cant associations at a genome-wide corrected p-value, and 
58 traits at the lenient threshold of p < 1.55E−06 (Fig. 1a, 
Table 1). In the gene-based test, 50 traits showed signifi-
cant associations (Fig. 1b, Table 1). Thirteen of the 60 
substance use traits showed a significant association with 
CADM2. Furthermore, strong associations were found for 
cognitive ability, risk taking, diet, BMI, daytime sleeping, 
sedentary behaviors, nervousness-like traits, and reproduc-
tive traits. There were fewer associations with occupational, 
traumatic experiences, social connection, and non-worry 
related depression traits. Full SNP and gene-based results 
are provided in Tables S2 and S3a and Figs. S1a and S1b. 
Table S3b shows the gene-based results for the SNP-wise top 
procedure. There were some differences with the SNP-wise 
mean results, with only 34 significant associations and a 
correlation of r = 0.64 between the p-values from the respec-
tive tests.

In the main PheWas analysis, we controlled for potential 
bias in estimated associations due to population stratifica-
tion using 25 genetic PCs. However, CADM2 is located in 
a long-range linkage disequilibrium (LD) region, making it 
potentially unfeasible to adequately control for population 
structure with PCs. Also, there may be genetic signal picked 
up by genetic association analyses that is due to social strati-
fication, which will not be accounted for by these 25 PCs. 
We therefore performed a sensitivity analysis in which 
we—in addition to the 25 PCs—controlled for the partic-
ipants’ region of birth and region of current address (see 
Supplementary methods). Controlling for these geographical 
covariates attenuated the association results: from the 50 
significant trait associations at the gene level, 26 were no 
longer significant, and on average the betas of the top-SNPs 
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within these genes were attenuated with by 16% (Table S3c, 
Fig. S1c). These findings implicate that (social) stratifica-
tion introduces regional-level gene-environment correlations 
that affect the genetic association results (Abdellaoui 2020), 
although the lower number of significant gene associations 
could in part be the result of reduced power due to the inclu-
sion of hundreds of dummy covariates coding geographical 
region. Even after controlling for effects of stratification/
gene-environment correlation there remained evidence of 
widespread associations with CADM2.

We assessed whether the high number of associations dis-
covered for CADM2 was unusual or similar to those found 
for other genes. We therefore selected a random set of 50 
genes (that were maximum 50% smaller or larger), repeated 
the SNP-based analysis for these genes and compared the 
number of traits with significant associations. Most of the 
random comparison genes contained fewer than 5 SNP-trait 
associations, with an average of 2.6 associated traits per 
gene and a maximum of 13 (as compared to 50 for CADM2; 
Table S4). We additionally made a comparison with five 

large genes from regions with a similar level of LD as the 
CADM2 region (five was the number of similarly sized genes 
that were within LD regions defined in Price et al. (2008)). 
The number of significant associations within these genes 
was still substantially lower than those in CADM2 (maxi-
mum 6, Table S5). Results from these comparison analyses 
show that the high number of associations discovered for 
CADM2 is exceptional (Fig. S2).

The CADM2 SNPs that showed the highest number of 
significant trait-associations (with a maximum of 26 traits 
at p < 1.55E−6, Table S6) clustered around loci at 85.53 
and 85.62 Mb. As can be seen in Fig. 2, most SNPs that 
were independently (LD  R2 < 0.01, distance > 250 kb) sig-
nificantly associated with at least one trait cluster in the mid-
dle of the gene, a region rich in expression quantitative trait 
loci (eQTLs).

To further investigate eQTL effects, we used S-Predixcan 
with the 49 precalculated GTEx Elastic Net models (Bar-
beira et al. 2018) to establish association between traits and 
CADM2 expression levels in 17 brain and non-brain tissues 

Fig. 1  PheWAS results. Panel A shows the subset of significant asso-
ciations of the SNP-based test (58 out of 242 traits). The x-axis shows 
the traits (colored by trait category) and the y-axis the p-values of the 
association. Each dot represents a SNP association. SNPs exceeding 
the red horizontal line have a p-value significant at a genome-wide 
threshold of p = 5E−08. The blue horizontal line represents the sug-

gestive threshold of p = 1.55E−06. Full SNP-based results are given 
in Supplementary Fig.  1. Panel B shows the subset of significant 
results of the MAGMA gene-based test (50 out of 242 traits), with 
p-values on the y-axis. The red dotted line represents a threshold of 
p = 2.62E−06. The full gene-based results are depicted in Supplemen-
tary Fig. S2
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(see Supplementary Methods). From each trait category 
(with significant associations, N = 9) we selected the trait 
with the strongest association with CADM2. For all traits 
we found significant associations with CADM2 expression 
in multiple tissues (Table S7, Fig. 3). Highly significant 
effects were observed for lung, mammary, and adipose tis-
sues across all traits. CADM2 expression in brain tissues was 
significantly associated with many traits, including risk tak-
ing, nervous feelings, and hot drink temperature. Smaller to 
negligible effects were observed for spleen and tibial nerve 
tissues.

This PheWAS showed that CADM2 was involved in a 
wide spectrum of traits, thereby reproducing and extend-
ing on previous findings. Interestingly, comparison with 50 
other genes showed that this number of trait-associations 
was exceptionally high, emphasizing the distinctive role of 
CADM2 in psycho-behavioral traits. Substance use traits did 
not seem highly overrepresented among the significantly 
associated traits, suggesting that the involvement of CADM2 
is of a more general nature. Many of the associations we 
found have been reported in previous literature [Table S6, 
based on GWAS Catalog (Buniello et al. 2019)]. Others 
were previously calculated by Neale et al. and Watanabe 
et al. using PheWAS in the same dataset, but not reported 

in a scientific paper [see Open Targets Genetics Platform, 
Carvalho-Silva et al. (2019), or GWAS Atlas, Watanabe 
et al. (2019)]. We add to these findings by identifying trait 
associations that remain strong after taking into account geo-
graphical stratification (e.g., age at first sexual intercourse, 
nervous feelings, and risk taking), and how the strongest 
traits were associated with differential CADM2 expression. 
The variance explained by CADM2 was highest for number 
of children fathered, age at first sexual intercourse, and hot 
drink temperature. Overall, effect sizes were small (less than 
0.04% for number of children), in range with what is nor-
mally found for single variants. Few associations were found 
in the social interaction, sleep, traumatic experiences, and 
occupational categories. Also, there were not many mental 
health traits that showed an association (8 out of 52 traits). It 
is interesting to note the significant associations with worry 
and nervousness-like traits in the absence of association with 
other depression- and anxiety-related traits. There may be 
something specific to these seemingly overlapping traits, 
translating to distinct biological pathways.

It needs to be noted that sample sizes for the phenotypes 
differed substantially (from N = 12,211 to 453,349), and as 
such, it is possible that the pattern of associations was driven 
in part by differences in power. The correlation between 

Fig. 1  (continued)
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Table 1  Phenotypes with a significant association with CADM2 according to the MAGMA gene-based test (SNP-wise mean) at p < 2.62E−06

Category Variable label N p (Gene) Top SNP A1 β p R2 (%)

Diet Bread intake 448,094 2.23E−15 rs2326128 A 0.016 4.71E−14 0.013
Diet Fresh fruit intake 451,780 5.02E−13 rs12638798 T 0.015 1.43E−11 0.010
Diet Hot drink temperature 448,694 1.70E−27 rs17023019 A  − 0.021 5.05E−22 0.021
Diet Lamb/mutton intake 450,800 3.19E−08 rs10865611 G 0.010 3.19E−06 0.005
Diet Oily fish intake 451,232 5.37E−14 rs11712915 C 0.016 2.92E−10 0.009
Diet Salad/raw vegetable intake 447,874 4.77E−13 rs1248825 A  − 0.015 4.19E−11 0.010
Diet Salt added to food 453,342 7.97E−21 rs6780346 C 0.020 4.77E−20 0.019
Exercise and sedentary behavior Length of mobile phone use 447,844 3.41E−08 rs13092059 A 0.017 2.36E−06 0.005
Exercise and sedentary behavior Number of days/week of vigorous 

physical activity 10 + minutes
431,710 3.91E−14 rs2326123 T  − 0.015 3.78E−11 0.010

Exercise and sedentary behavior Time spent driving 446,785 4.51E−07 rs7609594 G 0.010 3.37E−06 0.005
Exercise and sedentary behavior Time spent outdoors in summer 428,237 2.22E−21 rs62250754 G 0.019 1.75E−18 0.018
Exercise and sedentary behavior Time spent outdoors in winter 428,219 6.86E−17 rs62252461 A  − 0.016 1.10E−13 0.013
Exercise and sedentary behavior Time spent using computer 449,808 1.42E−07 rs7642644 C  − 0.015 4.69E−07 0.006
Exercise and sedentary behavior Time spent watching television 

(TV)
449,932 5.92E−14 rs9824301 C  − 0.018 3.93E−16 0.015

Exercise and sedentary behavior Usual walking pace 450,739 2.03E−06 rs2290338 T  − 0.013 5.80E−07 0.006
Mental health Frequency of tiredness/lethargy in 

last 2 weeks
440,095 6.95E−08 rs818215 C  − 0.014 1.09E−10 0.010

Mental health Irritability 433,481 1.46E−09 rs6800177 T 0.016 5.07E−11 0.001
Mental health Nervous feelings 441,735 2.61E−22 rs1449386 T  − 0.019 8.56E−19 0.002
Mental health Neuroticism score 367,274 7.35E−09 rs818219 C  − 0.012 1.57E−07 0.008
Mental health Seen doctor (GP) for nerves, anxi-

ety, tension or depression
450,401 1.03E−06 rs12631564 A 0.010 2.72E−06 0.000

Mental health Suffer from 'nerves' 436,976 2.07E−19 rs7652808 T  − 0.017 2.68E−14 0.001
Mental health Tense/'highly strung' 439,320 4.72E−12 rs9811546 A  − 0.012 6.58E−08 0.000
Mental health Worrier/anxious feelings 441,798 5.63E−19 rs62250713 A  − 0.020 1.93E−20 0.002
Physical health Body mass index (BMI) 452,169 5.52E−27 rs114781816 A 0.024 5.46E−04 0.003
Physical health Childhood sunburn occasions 339,522 1.77E−08 rs9880919 A 0.017 3.16E−09 0.010
Reproductive Age first had sexual intercourse 398,273 5.84E−28 rs62263912 G  − 0.027 1.15E−29 0.033
Reproductive Lifetime number of sexual part-

ners
371,577 4.45E−13 rs4856598 A 0.014 3.40E−09 0.010

Reproductive Number of children fathered 205,643 1.02E−17 rs1368750 T 0.029 1.67E−19 0.039
Reproductive Number of live births 245,754 1.34E−09 rs1972994 A 0.020 7.43E−11 0.017
Risk taking Risk taking 437,506 1.42E−24 rs7649296 A 0.016 4.97E−05 0.001
Sleep Daytime dozing/sleeping (narco-

lepsy)
451,752 5.63E−11 rs960986 T  − 0.015 2.95E−11 0.010

Sleep Nap during day 453,172 1.81E−07 rs3943782 G 0.012 5.85E−08 0.007
Social interaction Frequency of friend/family visits 450,658 1.56E−06 rs1248860 G 0.010 9.34E−07 0.005
Socioeconomic status and intel-

ligence
Average total household income 

before tax
390,130 3.05E−07 rs426444 T  − 0.013 4.34E−08 0.008

Socioeconomic status and intel-
ligence

Educational attainment trans-
formed to ISCED categories, 
derived for PMID 27225129

449,507 3.76E−19 rs11915747 G 0.019 3.83E−18 0.017

Socioeconomic status and intel-
ligence

Fluid intelligence score 233,219 2.42E−08 rs72903244 A  − 0.047 2.84E−08 0.013

Socioeconomic status and intel-
ligence

Number in household 450,766 2.67E−07 rs62250661 A  − 0.011 7.80E−08 0.006

Substance use Alcohol intake frequency 453,062 7.17E−15 rs9814516 T  − 0.017 1.10E−12 0.011
Substance use Alcohol usually taken with meals 231,191 1.03E−08 rs12493621 C 0.016 5.74E−08 0.001
Substance use Average weekly beer plus cider 

intake
322,313 7.02E−09 rs9824301 C  − 0.013 1.09E−08 0.010
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The top-SNP for the phenotype is given with the minor allele (A1), beta (β), p-value (p), and percentage of explained variance in the respective 
trait  [R2 (%)]. Most top-SNPs were significant at p < 1.55E−6 (bold-faced)
For binary traits, the effective sample size is given (determined using N

eff
= 4∕

1∕N
cases

1∕N
controls

)

Table 1  (continued)

Category Variable label N p (Gene) Top SNP A1 β p R2 (%)

Substance use Average weekly red wine intake 321,719 4.40E−07 rs382210 G  − 0.015 1.28E-08 0.010
Substance use Current tobacco smoking 453,148 2.65E−11 rs56262138 A  − 0.013 2.61E−08 0.000
Substance use Ever smoked 451,812 5.16E−23 rs6790699 A 0.017 8.26E−16 0.001
Substance use Ever taken cannabis 146,758 1.08E−18 rs62263912 G 0.031 7.61E−16 0.013
Substance use Frequency of alcohol use, derived 

for PMID 30874500
453,070 7.02E−15 rs9814516 T  − 0.017 1.09E−12 0.011

Substance use Frequency of drinking alcohol 146,785 3.78E−07 rs9832119 T  − 0.019 1.07E−06 0.016
Substance use Lifetime cannabis use, derived for 

PMID 30150663
146,758 3.41E−16 rs67336646 T 0.026 2.02E−12 0.007

Substance use Light smokers, at least 100 
smokes in lifetime

121,322 1.53E−10 rs62253088 T 0.023 7.45E−08 0.004

Substance use Past tobacco smoking 416,587 1.45E−22 rs6780346 C  − 0.019 7.48E−18 0.002
Substance use Smoking initiation, derived for 

PMID 30643251
301,588 2.08E−21 rs62263910 G 0.020 3.82E−14 0.000

Cognition & SES

Exercise and sedentary behavior

Mental health
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Physical health

Reproductive 

Risk taking
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Substance use 
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sample size and p-value of the gene-based test was moder-
ate and significant, r = − 0.38 (p = 1.42E−9) showing that 
well-powered traits were more likely to result in a significant 
association. It is clear that high power was a requirement: the 
effect sizes of CADM2 were diminutive, as is expected for 
single genes and complex traits. Also, our tests were limited 
to the psycho-behavioral traits measured in the UK-Biobank; 
inclusion of more measures, such as longitudinal or non-
self-report measures could contribute to a more complete 
picture. Still, the range of tested traits was quite broad and 
enabled us to discern interesting patterns.

More research is needed to elucidate these links between 
CADM2 and this spectrum of psycho-behavioral traits in 
terms of neurobiological mechanisms. For example, it could 
be that CADM2 is important for the learning aspects of 
behavior, given its role in synaptic connectivity. Specula-
tively, CADM2 could then contribute to reward-learning and 
associative learning, giving rise to risky behavior, substance 
use, and other kinds of behaviors that involve such processes 
(Volkow et al. 2016).

This study presents a comprehensive and rigorous test 
of associations between CADM2 and psycho-behavioral 
traits, showing strong associations for a wide range of traits. 
Results could be used as starting point for future research 
into the function of CADM2. Research on the trait-associa-
tions and function of CADM2 will further our understanding 
of the biology of behavior.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10519- 022- 10109-8.
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