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A B S T R A C T   

The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is 
compounded by the emergence of virulent and high-risk bacterial strains such as “ESKAPE” 
pathogens – (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care 
units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss 
the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into 
AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We exten-
sively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic 
interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some 
bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence 
of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially 
within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated 
pathogens, implication of AMR and factors influencing emerging AMR mechanisms.   

1. Introduction 

Hospital care-associated infections (HCAI) are major health safety issues worldwide and are defined as infections acquired while 
receiving treatment for medical or surgical conditions, which were not present during time of admission [1]. HCAIs include 
hospital-acquired (nosocomial), long-term care-associated, outpatient care-associated and home care-associated infections [2]. In-
formation on the burden of HCAIs outside of the hospital setting is limited due to the onerous process in gathering reliable data on 
infection, prevention and control practices [3]. However, data on hospital settings points to hospital-acquired infections (HAIs) as the 
most frequent health challenge within the hospital setting [4]. Hospital-acquired infections (HAIs) occur globally in developed and 
developing countries with high morbidity and mortality [5]. For example, in the USA and Europe, HAIs are among the leading cause of 
death [6]. Additionally, HAIs result in prolonged hospital stay, increased microbial resistance to antimicrobials and elevated financial 
burden on the patient, family and the economy. HAIs from high-income countries show incidence rates ranging from 3.5% to 12% 
(Fig. 1) and are especially prevalent within intensive care units (ICU) with patient rate of infection about 40% [7,8]. These incidences 
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varied from body sites and determined by the underlying condition of the patient following exposure to medical interventions and 
hospital environment [7]. High-risk population individuals include patients admitted to ICUs, burn wound and transplant patients, and 
neonates. The most frequent types of HAIs reported include central line-associated blood stream infections, surgical site infections 
(SSIs), and ventilator-associated pneumonia, as well as catheter-associated urinary tract infections as the most predominant pathol-
ogies [5]. There is an urgency to understand the evolving dimensions of AMR globally, especially in Africa with the recent emergence 
of ‘Global Priority Pathogens’ in association with HAIs. Therefore, this mini review highlights relevant pathogens majorly implicated 
in HAIs, prevalence in developed and developing countries. It also provided insights into possible AMR mechanisms employed by 
Gram-negative ESKAPE pathogens and re-emerging HAI pathogens such as Citrobacter spp. and Proteus spp., majorly to last resort 
antibiotic polymyxins. Additionally, some of the strategies to mitigate AMR and HAIs in ICUs and the general hospital environment are 
highlighted. 

2. Methods 

2.1. Literature search strategy and extraction 

Search terms “Antimicrobial Resistance”, “Antimicrobial Resistance Mechanisms”, “Global Burden of Hospital Acquired or 
Nosocomial Infections”, “ESKAPE and Pathogens Implicated in HAIs”, “Polymyxins Antimicrobial Resistance Mechanisms” “Plasmid- 
mediated Mobile Colistin Resistance” “Infection Prevention and Control of AMR” were used by at least two independent reviewers to 
conduct literature search. The search was conducted broadly on the global relevance of the highlighted keywords with special focus on 
their implications in Africa. Pubmed (National Library Medicine), Google Scholar, Scopus, Medline and Web of Science databases were 
used for literature search. Literature mapping and ranking performed with visual tools like Connected Papers (https://www. 
connectedpapers.com/), Open Knowledge Maps (https://openknowledgemaps.org/) and LitMap (https://www.litmaps.com/). 
Referenced database was built with Mendeley (Version 1.19.8) and information generated where processed and represented as figures, 
graphs and tables; other relevant data processed into paragraphs with headings and subheadings. 

2.2. Pathogens Implicated in HAIs 

Gram-negative bacteria are commonly implicated in HAIs, contributing as much as 87% of reported cases [9]; however, Staphy-
lococcus aureus is the predominant Gram-positive strain [7]. Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae 
are the most predominant Gram-negative strains within Europe and Asia [7,10,11]. A. baumannii is the most prevalent pathogen 
causing ventilator-associated pneumonia (VAP) and catheter-associated bloodstream infections (CAB) among high-risk populations, 
especially the immunocompromised in the ICUs [12]. In Africa, Klebsiella spp., S. aureus, Acinetobacter spp., and E.coli are the pre-
dominant pathogens [13] causing HAIs. High levels of HAI-related methicillin-resistant S. aureus (MRSA) are reported globally [12]. 
Carbapenem-resistant and Extended spectrum β-lactamases Enterobacteriaceae have been associated with paediatric HAIs [14]. 

2.3. Burden of antibiotic resistant bacteria and HAIs 

Antibiotic resistant bacteria have contributed to the burden of HAIs globally with increasing health-risks especially in developing 
countries. Their consistent emergence and evolution have made many conventional antibiotics ineffective [15], where there is often 
only a limited set of last-resort antibiotics as the main treatment option for multidrug resistant (MDR) HAIs [16]. In 2017, the WHO 

Fig. 1. Prevalence of health care-associated infection in high and low/middle income countries by prevalence of HAIs, 1995–2020. 123.  
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listed twelve antibiotic resistant priority pathogens (Fig. 2.) requiring urgent attention for the development of new antibiotics [17]. 
The critical group included several high-risk pathogens, namely MDR A. baumannii, carbapenem-resistant Pseudomonas aeruginosa and 
Enterobacteriaceae. These pathogens exhibit both multidrug resistance and high levels of virulence, especially the notorious ‘ESKAPE’ 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter 
species) pathogens [18,19]. These pathogens have been implicated in HAIs in both developed and developing countries, with a ten-
dency to ‘escape’ lethal doses of antibiotics [20,21]. 

ESKAPE pathogens represent a group of Gram-positive and -negative bacterial pathogens with high-risk public health implications 
[20]. Methicillin and vancomycin–resistant S. aureus (MRSA-VRSA) as well as vancomycin-resistant E. faecium (VRE) (the 
Gram-positive bacteria of the ESKAPE group) have drawn global attention; however, infections caused by Gram-negative (“KAPE”) 
pathogens are likewise extremely critical causing high morbidity and mortality [23,24]. These pathogens are ubiquitous as they are not 
restricted to clinical inpatients only, but thrive in diverse environments including water, soil, poultry and air. This environmental 
diversity promotes unrestricted shedding, sharing and spread of antibiotic resistance genes (ARGs) aided by mobile genetic elements 
such as plasmids and integrons [25]. 

2.3.1. Acinetobacter baumannii 
Acinetobacter spp., are widely distributed within hospital environments [26]. Acinetobacter spp are non-fermentative, non-motile 

Gram-negative coccobacilli which represent some notable nosocomial pathogens that rapidly develop resistance to multiple antibiotics 
[27]. An important member of the genus is A. baumannii, which colonises the skin, infects the bloodstream, urinary tracts and other soft 
tissues, especially in the immunocompromised individuals, accounting for 20% of ICU-associated infections globally [7]. A. baumannii 
is becoming MDR globally (to chloramphenicol, first and second-generation cephalosporins and aminopenicillins) with some hospitals 
reporting pan drug-resistant strains [28]. Also, it exhibits diverse resistance mechanisms such as production of β-lactamases, modifying 
aminoglycoside target sites, multidrug efflux pumps and antibiotic impermeability [29]. Combination therapy of minocycline/tige-
cycline and polymyxin is the treatment option since the emergence of A. baumannii strains resistant against carbapenems (meropenem, 
doripenem, imipenem) [27,30]. 

2.3.2. Pseudomonas aeruginosa 
Pseudomonas aeruginosa is ubiquitously present within the normal intestinal flora of humans and widely distributed in the envi-

ronment, including commonly hospital ICUs [31]. Its broad environmental distribution is based on its metabolic versatility as a 
pathogen that adapts and survives diverse environmental conditions (broad temperature ranges, salinity, actinomycin, etc) [32]. 
P. aeruginosa is an opportunistic pathogen that rarely causes infections in healthy individuals; however, it readily causes community 
and hospital-acquired infections in patients with weakened immune systems. P. aeruginosa has been implicated in surgical site in-
fections, burn and eye injuries, skin/soft tissue, non-healing diabetic wounds, UTIs, bloodstream infections (BSIs) and pneumonia [31]. 
It is the fourth most isolated nosocomial pathogen, second major cause of VAP, the third most common Gram-negative pathogen 
implicated in BSIs and a major concern in patients with cystic fibrosis [33,34]. Inherently resistant to a number of antibiotics and 
antiseptics; P. aeruginosa exhibits diverse AMR mechanisms to many classes of antibiotics [35], including β-lactams, fluoroquinolones, 
aminoglycosides and third-generation cephalosporins. Historically, carbapenems were the antibiotics of choice for MDR P. aeruginosa; 
however, with emerging resistance, a combination of polymyxin and anti-pseudomonal agents (piperacillin/tazobactam, imipenem, 
aztreonam, ceftazidime, cefepime) are currently most effective in treating MDR P. aeruginosa infections [36]. 

Fig. 2. WHO Pathogen Priority list of antibiotic resistant bacteria; figure designed by the authors as adapted from WHO [22].  

M.K. Abban et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e20561

4

2.3.3. Enterobacteriaceae 
Enterobacteriaceae contain both opportunistic and “professional” pathogens which cause diverse infections, including UTIs, BSI, 

enteric infections, and hospital-acquired pneumonia. The notable pathogens include species of Klebsiella, Enterobacter, Escherichia coli, 
and Citrobacter [37]. The global challenge associated with Enterobacteriaceae is the production of ESBL for AMR [37]. ESBL hydrolyse 
most beta lactam antibiotics, including cephalosporins. These genes are present on plasmids that also harbour resistance to amino-
glycosides, sulphonamides and cross-resistance to fluoroquinolones, typically making carbapenem the drug of choice for treatment of 
ESBL-producing pathogens [38]. However, the increased use of carbapenem has resulted in the development of Carbapenem-resistant 
Enterobacteriaceae (CRE) [39]. Currently, the treatment of infections from MDR Enterobacteriaceae is challenging due to limited 
treatment options that include some aminoglycosides, tigecycline and polymyxins [40]. 

2.3.4. Escherichia coli 
Escherichia coli is the most common Gram-negative bacterium presenting both a clinical and epidemiological challenge [41]. It is 

naturally a commensal of the intestinal tract; however, several strains are specialized pathogens of humans and animals [42]. The 
commensal form inhabits the gastrointestinal tract of humans aiding in digestion [43], whiles the pathogenic forms cause infections 
resulting in two million deaths annually [44]. Pathogenic E. coli strains are subdivided into several pathotypes causing infections with 
three main clinical syndromes; UTIs, meningitis/sepsis and enteric diseases [45]. E. coli infections are commonly treated with cip-
rofloxacin, levofloxacin, fosfomycin and fluoroquinolones; however, resistance to multiple antibiotics have been reported [46]. 
Resistance to fluoroquinolones and the emergence of ESBLs are of major concerns in treatment [47]. Carbapenems are considered the 
drug of choice for MDR E. coli infections; however, resistance to carbapenems is also emerging [48]. 

2.3.5. Klebsiella pneumoniae 
Klebsiella is second to E. coli as the most common member of the Enterobacteriaceae. It is responsible for community and hospital- 

acquired infections (respiratory tract infections, cardiovascular, bacteraemia and UTI [49]. K. pneumoniae causes HAIs, and is 
frequently isolated in immunocompromised patients with pneumonia, as well as neonatal infections [50]. K. pneumoniae is second to 
E. coli as the most frequent cause of hospital-acquired BSI globally [51]. It is mainly an opportunistic pathogen; however, hyper-
virulence (typically associated with hypercapsulation) [52] and resistance to antibiotics has emerged [53,54]. Carbapenem-resistant 
K. pneumoniae are emerging globally, causing high mortality rates [55], mostly due to acquisition of the namesake Klebsiella pneu-
moniae carbapenemases (KPC). MDR K. pneumoniae can thus be resistant to all beta-lactams, aminoglycosides, fluoroquinolones. 
Typically, polymyxin B and colistin E in combination with fosfomycin/tigecycline and some aminoglycosides are used as last resort 
treatment options [56]. 

2.4. Enterobacter species 

Enterobacter spp. are facultative anaerobic bacteria that are natural commensals of the human gut microbiota [56], but also 
opportunistic pathogens, typically in the immunocompromised. Twenty-two species of Enterobacter have been identified with 
E. aerogenes and E. cloacae as the most frequently reported human pathogens. E. cloacae has been implicated in hospital-acquired sepsis, 
pneumonias, UTIs and postsurgical wound infections [57]. Most isolates of Enterobacter are susceptible to fluoroquinolones, 
trimethoprim, aminoglycosides and some β-lactams, however intrinsic resistance has emerged to ampicillin, cephalothin and 
first-generation cephalosporins [58,59] due to the possession of an AmpC type beta lactamase, often in conjunction with porin mu-
tations [60]. The use of extensive broad-spectrum antibiotics has facilitated the development of resistant Enterobacter strains, 
particularly ESBL-producers in conjunction with multiple other resistance genes circulating globally [58]. Fourth-generation cepha-
losporins and carbapenems remain effective for treating infections, although there are reports of resistance to these antibiotics [58,61]. 
In addition, species of Enterobacter easily acquire antibiotic resistance mechanisms hence often restricting treatment options to tige-
cycline and colistin [57]. 

2.4.1. Citrobacter spp. 
Citrobacter species are motile, non-spore forming bacilli diversely distributed in the soil, water, intestinal tracts of humans and 

animals as commensals [62,63]. There are 13 species of Citrobacter with Citrobacter freundii as the most commonly isolated [63]. As 
opportunistic pathogens, they are associated with UTIs, meningitis, septicemia, intestinal infections in neonates and immunocom-
promised individuals [64]. The different species of Citrobacter show different antimicrobial susceptibility profiles, with C. freundii 
displaying inherent resistance to ampicillin, carbenicillin and some quinolones [65,66]. Clinical species of Citrobacter are often re-
ported to harbor ESBLs [67] and plasmid-mediated quinolone resistant markers [68]. C. freundii often displays resistance to piper-
acillin [69], third-generation cephalosporins [70], monobactams and some carbapenems [71]. MDR isolates of C. freundii resistant 
against quinolones, aminoglycosides, tetracycline and sulfonamides mediated by plasmids have been reported [69,72]. Based on 
limited therapeutic options for treating current MDR Citrobacter infections, selecting the appropriate antibiotic is imperative. The 
current treatment recommendation is with meropenems as first choice and fluroquinolones (moxifloxacin, ciprofloxacin) as alter-
natives [65]. 

2.5. Polymyxins and AMR bacteria implicated in HAIs 

Polymyxins are a group of antibiotics of clinical importance in treating Gram-negative bacterial infections. They are natural 
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products first isolated from Bacillus polymyxa in 1947 [73,74]. Polymyxin use declined in the 1970s due to toxicity concerns and the 
availability of effective and broader spectrum alternative antibiotics [75]. The rise of MDR pathogens and lack of new antibiotics has 
necessitated reconsideration of the therapeutic use of polymyxin B and colistin E [75]. Polymyxins are active against P. aeruginosa, 
A. baumannii and some Enterobacteriaceae; however, Proteus spp., and Serratia marcescens are intrinsically resistant [76]. Polymyxins 
disrupt the outer membrane integrity of bacterial cells in a poorly-understood way [77,78]. The current toxicity reports of polymyxins 
show less incidence of nephrotoxicity [79,80]. Following reduction in clinical use, polymyxins were reserved for management of cystic 
fibrosis, ear and eye infections [81]. However, due to the recent emergence of MDR pathogens, polymyxins B and E have resurfaced as 
a single dosage and in combinations with other antibiotics (meropenem, imipenem/cilastatin, ampicillin/sulbactam) for clinical use 
[76]. 

2.6. Structure and mechanism of action 

The polymyxins are five structurally different compounds (A, B, C, D and E), with polymyxin B/E in clinical use [79]. The phys-
icochemical properties of polymyxins are similar to cationic antimicrobial peptides such as defensins of the eukaryotic innate im-
munity [82]. Polymyxins are non-ribosomal, cyclic lipopeptides and contain a mixture of D and L-amino acids as a general 
characteristic of most peptide antibiotics. They possess a heptapeptide ring of amino acids and a fatty acid attached to a tripeptide side 
chain through an amide bond [83]. The amino acid component of polymyxin B includes D-phenylalanine, L-threonine and six 2, 4-dia-
minobutyric acid residues. Colistin has D-leucine in place of D-phenylalanine. This mixture of lipophilic and hydrophilic groups confers 
an amphiphilic nature to polymyxins, giving them their bactericidal activity [84]. 

2.7. Polymyxin interactions with LPS-divalent cations 

Polymyxin B interacts with the LPS of the outer and potentially LPS precursors in the inner membrane [77] of Gram-negative 
bacteria by competitively displacing divalent cations (Ca2+and Mg2+) from the negatively charged phosphate group of lipid A. This 
ultimately results in disruption of the barrier function of the outer membrane [77], as well as depolarization of the inner membrane 
[85]. This process is described as a self-promoted uptake pathway, where the break in membrane results in passage of various mol-
ecules including the cationic peptides (polymyxin). The interaction of the divalent cations on the polypeptide, whose binding affinity is 
three orders greater than the affinity of the native cations, competitively displaces cations on the binding surface of the LPS. The bulky 
nature of the polypeptide also disrupts the normal barrier property of the outer membrane (Fig. 3.) [86]. The divalent cations 
displacement weakened the outer membrane resulting in membrane leakage/breakage. Subsequently, the fatty acid chain of the 
peptide is directed towards the interior of the cell membrane allowing the heptapeptide ring of amino acids to form an inward channel 
to further disrupts the membrane integrity leading to bacterial cell death [86,87]. The high transmembrane potential, high negatively 
charged lipids, lack of cationic lipids and cholesterol generated enhances polymyxins selectivity for bacterial pathogens to eukaryotic 
hosts [86]. 

2.8. Bacterial mechanisms of resistance to polymyxins 

Resistance to polymyxin has been reported in a number of bacterial pathogens, especially MDR bacteria that used to be sensitive, 

Fig. 3. The self-promoted uptake of cationic peptides across the outer membrane of Gram-negative bacteria, (a.) The cationic peptide competitively 
displaces Mg2+ from the LPS causing outer membrane disruption and uptake of antibiotic; (b.) Mechanism of bacterial killing by cationic 
peptides: the positively charged peptides bind to the negatively charged LPS leading to thinning of the bilayer (cytoplasmic membrane). Membrane 
potential generated inserts peptide into the membrane to form channels leading to leakage of cytoplasmic molecules and cell death. Figure adapted 
from (1) [86]. 
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Table 1 
Mechanisms of polymyxin resistance.  

Bacteria Polymyxin Mechanisms of Resistance References 

Klebsiella 
pneumoniae  

• Expression of phoP/phoQ and pmrA/pmrB  
• Point mutations within pmrA/B upregulation of the operon arnBCADTEF and pmrC  
• Production of capsular polysaccharide (CPS) inhibits binding of polymyxins to lipid A  
• KpnEF and AcrAB encodes efflux pumps  
• Mutations in KpnEF and AcrAB   

[82,92,93] 

Acinetobacter 
baumannii  

• Mutations in pmrA and pmrB genes  
• Upregulation of the pmrCAB operon resulting in transcription of pmrC encoding EptA  
• Mutations in lpxA, lpxB or lpxC involved in lipid A biosynthesis pathway 

[92] 

Pseudomonas 
aeruginosa 

• Five Two-Component Systems (PmrAB, PhoPQ, ParRS, ColRS and CprRS) in P. aeruginosa influence L-Ara4N modifica-
tions on the lipid A  

• Outer membrane protein (OprH or H1) of P. aeruginosa binds to the phosphate groups on the LPS hindering polymyxin 
binding  

[82,93] 

Enterobacter  • Mutation in phoP  
• Inactivation of the mgrB gene  
• Ecr transmembrane protein acts on the phoPQ component system to activate the pbgP operon leading to increase in LPS 

modification  
• Heteroresistance to polymyxin   

[94–96] 

E. coli  • Modification of the PmrAB  
• arnT gene encode a glycosyltransferase catalysing the transfer of L-Ara4N to a phosphate group of lipid A  
• Polymyxin efflux activity involving marRAB, sap AcrAB-TolC efflux genes   [74, 

97–99] 
Proteus  • Proteus spp. exhibit natural resistance to polymyxins due to the presence of L-arabinose-4-amine attached to the Kdo (3- 

deoxy-D-manno-oct-2-ulosonic acid) residue on the lipid A moiety of the LPS  
• EptC gene involved in modification of the LPS with PEtN addition  

[100,101] 

Citrobacter  • Mutations in the TCS sensor kinase pmrB  
• MgrR negatively regulates eptB to mediate the modification of the outer Kdo residues of LPS with PEtN.  [82,95]  

Fig. 4. Schematic overview of mechanisms of LPS modification involved in polymyxin resistance in Gram-negative bacilli (Adapted from Ezadi 
et al., 2019). [104]. 
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but became polymyxin resistant after their reintroduction [88]. This emerging resistance is attributed to the increased and inappro-
priate use of polymyxins globally [89,90]. Investigating polymyxin resistance has led to the detection of diverse mechanisms, including 
modification of LPS, loss of LPS, efflux pump activity, capsule formation and overexpression of outer membrane protein (OprH) [82]. 
These resistance mechanisms are either intrinsic (such as in Proteus spp., Serratia spp., Morganella morganii, and Burkholderia spp.), 
mutational, acquired or adaptive [91] (Table 1). 

The majority of the resistance mechanisms target the lipid A of LPS, the initial site of action of polymyxin [74]. Two major 
two-component systems (TCS) (PhoPQ and PmrAB) play crucial roles in regulating gene expressions for lipid A modification in 
Gram-negative bacteria [94]. In some Enterobacteriaceae, the LPS is targeted by modification of lipid A moiety with 4-amino-4--
deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN) [77]. In environments with low Mg2+ and Ca2+, PhoQ is activated 
leading to activation and phosphorylation of cytoplasmic phoP, promoting transcription of the pmrD gene. The pmrD product activates 
PmrAB at a posttranscriptional level ensuring phosphorylation of PmrA to mediate synthesis or incorporation of L-Ara4N into the lipid 
A moiety of LPS [102] (Fig. 4.). In some Enterobacteriaceae, like E. cloacae, the L-Ara4N modification is exclusively controlled by the 
PhoPQ system [103]. 

2.9. Role of the mgrB gene in bacterial resistance to polymyxins 

MgrB [105] is a small regulatory transmembrane protein with 47 amino acids whose function inhibits the kinase activity of PhoQ or 
stimulates its phosphatase [106] (Fig. 3b). MgrB thus represses PhoQ activity post-translationally and inactivation of MgrB therefore 
results in high baseline activation of the PhoPQ signalling pathway. Consequently, PhoPQ-controlled OM modifications are also 
induced, resulting in high Polymyxin resistance. Mutations in MgrB have been observed in clinical isolates displaying colistin resis-
tance, implicating the mgrB gene in clinical treatment failure [107,108]. Mutations include frameshifts, deletion of gene segments, 
amino acid substitutions, nonsense mutations and inactivation; the most frequently reported is by transposition of insertional se-
quences [105]. MgrB is conserved particularly in Klebsiella pneumoniae [109], E. coli [106] and Enterobacter spp [110]. 

2.10. Plasmid-mediated polymyxin resistance 

Resistance to polymyxin was historically linked to chromosomal-related mechanisms with no reports on horizontal gene transfer. 
However, a plasmid-mediated colistin resistance gene encoding a PEtN transferase was detected in E. coli strains from animal sources in 
China [111]. The modification with PEtN is not a novel mechanism of resistance; rather, the transferability of the gene among bacteria 
especially MDR strains, represents a challenge for polymyxin treatment. This plasmid-borne mobile colistin resistance gene (mcr-1) has 
been reported in more than 30 countries [112], in species of Klebsiella, Enterobacter, Citrobacter, Proteus, Salmonella and E. coli [113]. 
Currently, new mcr-like genes have emerged with mcr-2 [114], mcr-3 [115], mcr-4 [116], mcr-5 [117], mcr-6 (3) [118], mcr-7 [119], 
mcr-8 [120], mcr-9 [121] and mcr-10 [122] currently in circulation. These genes have variations compared to the ancestral mcr-1, with 
about 30 SNPs in mcr-3 [123]. Mcr-2, 3, 4, 5, 6, 7, 8, 9 and 10 share 81%, 32.5%, 34%, 36.1%, 83%,35%, 31%, 36% and 29.31% amino 
acid sequence similarity with MCR-1 respectively [122,124,125]. The presence of mcr genes on conjugative plasmids replicon such as 
IncI2, IncHI2, IncX4 and IncF have been confirmed [113,125]. The origin of the mcr-1 gene is unclear; however, the chromosomal 
region in a Moraxella porci displays significant homology to the mcr-1 structure [118]. The gene is also flanked by insertion sequence 
(ISApl1) with the transposon Tn6330 as the key element mediating the translocation of mcr-1 into various plasmids [126]. Although 
mcr genes were initially mainly reported as plasmid-mediated, the ISApl1 and the mcr-1 cassette has been found on the chromosome of 
E. coli suggesting its integration into the bacterial chromosome [127,128]. The mcr-1 is currently the predominant gene circulating 
globally with prevalence in the environment (22%), animals (11%) and humans (2.5%) [128] necessitating investigations into its 
epidemiology and the resistance mechanisms to improve clinical treatment. 

2.11. Bacterial phenotypic mechanisms of survival against polymyxins 

Host organisms utilize diverse defence mechanisms to reduce the burden of infections from bacterial pathogens. They avoid 
exposure to pathogens (barriers for protection), resist infections (host immunity) or tolerate the presence of the pathogen [129]. 
However, bacteria alter their lifestyle in response to these host survival mechanisms [130]. These responses include gene expression 
and protein activity, lifestyle switch from avirulent to more virulent forms within the hosts, biofilm formation/swarming and other 
adaptive mechanisms [131]. As a particularly well-understood example, bacterial LPS modifications promote bacterial survival against 
host immunity factors like antimicrobial peptides [132]. The O antigen of the LPS complex has repeating oligosaccharide units that are 
highly variable immunologically and block the initiation of the complement system of the host innate immune system [133], while the 
non-repeating lipid A core strengthens the integrity of the outer membrane [133]. 

3. Discussion 

The hospital is characterized as a high health risk environment particularly with reports of HAIs within developed and developing 
countries [134]. The burden HAIs poses ranges from elevated financial burden, increase in disease severity, high incidence of anti-
microbial resistance, morbidity and elevated rates of mortality. Within the hospital setting, bacterial pathogens are associated with 
nosocomial infections with majority displaying resistance to conventional and last resort antibiotics [4]. Members of ESKAPE path-
ogens are high-risk pathogens and majorly implicated in HAIs with increased tendency to display multidrug resistance. They are 
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characterized as global priority pathogens as they play critical roles in increasing disease severity by compounding rates of morbidity 
and mortality. 

The multidrug resistance phenotype exhibited by ‘Global Priority Pathogens’ particularly Gram-negative bacteria prompted 
dependence on two last resort antibiotics carbapenems and polymyxins. Between 2000 and 2010, global use of carbapenems and 
polymyxins increased by 34% and 14% respectively (4) [135]. However, this emergence of resistance to carbapenems and polymyxins 
coupled with presence of mobile genetic elements such as plasmids harboring resistant markers challenged treatment options. 
Gram-negative bacteria developed resistance to polymyxins following reintroduction into clinical and animal use. 

Polymyxin resistance mechanisms commonly employed by bacteria were chromosomally or intrinsically mediated with mecha-
nisms such as modification and loss of LPS, efflux pump activity, formation of capsule and overexpression of membrane outer protein. 
However, recent emergence of circulating plasmid-mediated colistin resistance genes in bacterial strains from animal sources has been 
reported in over 20 countries with Gram-negative bacteria majorly implicated [112]. The variations in the mobile colistin resistance 
genes (mcr) predominant in the environment as compared to animals and humans complicates AMR challenges and HAIs. This is 
further compounded by the transfer of these MDR genes as facilitated by these plasmids. 

3.1. Strategies to combat AMR in ICUs 

Generally, strategies to combat AMR would majorly involve Infection Prevention/Control (IPCs) and antimicrobial management 
strategies. By implementing IPCs and antimicrobial stewardship programs in hospital environments and ICUs, the burden AMR poses 
would be mitigated. 

4. Infection Prevention and Control 

Emergence of AMR is inevitable as bacteria develop ways to circumvent effectiveness of antibiotics. Administration of antibiotics 
contributes to selection of antimicrobial resistant bacteria; however, increased complications is linked with prolong antibiotic se-
lection pressure during treatment within the ICU. In this regard, AMR is better prevented and best mitigated by nonpharmacological or 
Infection Prevention and Control practices (5) [136]. Also, good hygiene practices including hand washing and proper disinfection 
practices, frequent hospital surveillance of emerging pathogens, establishing effective patient cohorting systems, effective waste 
disposal protocols/systems and building infrastructural/human capacity and expertise. 

5. Antimicrobial management strategies 

Proper antibiotic management strategies would involve establishment of good antimicrobial stewardship program in hospitals and 
use of narrow spectrum antibiotics. Also, effective diagnosis coupled with treatment of infection, shorter course administration of 

Table 2 
Strategies to combat AMR in ICUs.  

Strategies Interventions Relevant global guides and tools/Evidence based study/ 
References 

Nonpharmacological/Infection, 
Prevention and control  

1. Hand hygiene and good sanitation practices that limit 
transmission of infectious MDR bacteria 

137–139  

2. Proper disinfection, decontamination and waste 
management disposal within and around ICUs 

[140,141] 
https://apps.who.int/iris/handle/10665/312226. License: 
CC BY-NC-SA 3.0 IGO;  

3. Routine epidemiological surveillance of hospital 
environments for emerging and circulating microbes 

[142]  

4. Isolation or patient cohorting systems WHO Global strategy for containment of AMR, 2001; https:// 
apps.who.int/iris/handle/10665/66860  

5. Development and strengthening of national reference 
microbiological laboratories 

[143,144]  

6. Building human capacity in microbial diagnostics, testing 
and treatment 

[143,145] 

Antibiotic management  7. Establishing effective antimicrobial stewardship programs 
in hospitals, especially in ICUs 

[144] 
WHO Global strategy for containment of AMR, 2001; https:// 
apps.who.int/iris/handle/10665/66860 https://apps.who. 
int/iris/bitstream/handle/10665/329404/9789241515481- 
eng.pdf  

8. Appropriate diagnostic tests and microbial identification, 
antimicrobial susceptibility tests coupled with treatment 
of implicated microorganism 

[145] https://apps.who.int/iris/bitstream/handle/10665/ 
205912/B4691.pdf  

9. Development of guidelines for antimicrobial treatment [146–149] https://apps.who.int/iris/bitstream/handle/ 
10665/205912/B4691.pdf  

10. Shorter course administration of antibiotics; effective 
application of pharmacodynamics and kinetics dose 
optimization 

[150,151] https://apps.who.int/iris/bitstream/handle/ 
10665/205912/B4691.pdf  
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antibiotics and effectively applying pharmacodynamics and kinetics principles in drug administration could help mitigate the rise and 
spread of resistant bacteria in ICUs and within the hospital environment. Combating antibiotic resistance requires a multifaceted 
approach that entails international, national and individual level collaborative action to mitigate global spread. Table 2 summarizes a 
list of strategies to reduce the burden of AMR particularly in hospital setting. 

6. Conclusion 

The burden of hospital acquired infections is increasing globally. The consistent emergence of antimicrobial resistant bacteria, 
particularly Gram-negative bacteria is contributing to the challenge of HAIs. The plethora of innate resistance mechanisms coupled 
with acquired genes displayed by Gram-negative bacteria further complicates the efficiency of antibiotics, especially last-resort such as 
polymyxins. An understanding of the interplay of HAIs and antimicrobial resistant Gram-negative bacteria could inform effective 
infection control practices to enable implementation of safety protocols. 
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[78] A. Sabnis, K.L. Hagart, A. Klöckner, M. Becce, L.E. Evans, R. Furniss, D.A. Mavridou, R. Murphy, M.M. Stevens, J.C. Davies, G.J. Larrouy-Maumus, T.B. Clarke, 

A.M. Edwards, Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane, Elife 10 (2021), e65836, https://doi.org/10.7554/ 
eLife.65836. 

[79] M.E. Falagas, S.K. Kasiakou, Toxicity of polymyxins: a systematic review of the evidence from old and recent studies, Crit. Care 10 (1) (2006) R27, https://doi. 
org/10.1186/CC3995. 

[80] K. Phe, Y. Lee, P.M. McDaneld, N. Prasad, T. Yin, D.A. Figueroa, V.H. Tam, In vitro assessment and multicenter cohort study of comparative nephrotoxicity 
rates associated with colistimethate versus polymyxin b therapy, Antimicrob. Agents Chemother. 58 (5) (2014) 2740–2746, https://doi.org/10.1128/ 
AAC.02476-13/SUPPL_FILE/ZAC005142831SO1.PDF. 

[81] M.D. Reed, R.C. Stern, M.A. O’Riordan, J.L. Blumer, The pharmacokinetics of colistin in patients with cystic fibrosis, J. Clin. Pharmacol. 41 (6) (2001) 
645–654, https://doi.org/10.1177/00912700122010537. 

[82] A.O. Olaitan, S. Morand, J.M. Rolain, Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Frontiers in Microbiology, Frontiers 
Media S.A, 2014, November 26, https://doi.org/10.3389/fmicb.2014.00643. 

[83] A. Gallardo-Godoy, C. Muldoon, B. Becker, A.G. Elliott, L.H. Lash, J.X. Huang, M.A. Cooper, Activity and Predicted Nephrotoxicity of Synthetic Antibiotics 
Based on Polymyxin B, 2016, https://doi.org/10.1021/acs.jmedchem.5b01593. 

[84] T. Velkov, K.D. Roberts, R.L. Nation, P.E. Thompson, J. Li, Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics, Future Microbiol. 8 (6) 
(2013) 711–724, https://doi.org/10.2217/FMB.13.39. 

[85] R.M. Epand, C. Walker, R.F. Epand, N.A. Magarvey, Molecular mechanisms of membrane targeting antibiotics, Biochim. Biophys. Acta 1858 (5) (2016) 
980–987, https://doi.org/10.1016/j.bbamem.2015.10.018. 

[86] R.E.W. Hancock, Peptide antibiotics, Lancet 349 (9049) (1997) 418–422, https://doi.org/10.1016/S0140-6736(97)80051-7. 
[87] S.S. Mohapatra, S.K. Dwibedy, I. Padhy, Polymyxins, the last-resort antibiotics: mode of action, resistance emergence, and potential solutions, J. Biosci. (3) 

(2021) 1–18, https://doi.org/10.1007/S12038-021-00209-8, 2021 46:3, 46. 
[88] T. Bogdanovich, J.M. Adams-Haduch, G.B. Tian, M.H. Nguyen, E.J. Kwak, C.A. Muto, Y. Doi, Colistin-resistant, Klebsiella pneumoniae carbapenemase (KPC)– 

Producing Klebsiella pneumoniae belonging to the international epidemic clone ST258, Clin. Infect. Dis. 53 (4) (2011) 373–376, https://doi.org/10.1093/ 
CID/CIR401. 

[89] S. Baron, L. Hadjadj, J.M. Rolain, A.O. Olaitan, Molecular mechanisms of polymyxin resistance: knowns and unknowns, Int. J. Antimicrob. Agents 48 (6) 
(2016) 583–591, https://doi.org/10.1016/j.ijantimicag.2016.06.023. 

[90] P. Srinivas, K. Rivard, Polymyxin resistance in gram-negative pathogens, Curr. Infect. Dis. Rep. 19 (11) (2017) 1–9, https://doi.org/10.1007/S11908-017- 
0596-3, 2017 19:11. 

[91] L. Poirel, A. Jayol, P. Nordmanna, Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes, 
Clin. Microbiol. Rev. 30 (2) (2017) 557–596, https://doi.org/10.1128/CMR.00064-16. 

[92] K. Jeannot, A. Bolard, P. Plésiat, Resistance to polymyxins in Gram-negative organisms, Int. J. Antimicrob. Agents 49 (5) (2017) 526–535, https://doi.org/ 
10.1016/j.ijantimicag.2016.11.029. 

[93] M.A. Ahmed, E.-S. E.-G, L.-L. Zhong, C. Shen, Y. Yang, Y. Doi, G.-B. Tian, Colistin and its role in the Era of antibiotic resistance: an extended review 
(2000–2019), Emerg. Microb. Infect. 9 (1) (2020) 868, https://doi.org/10.1080/22221751.2020.1754133. 

[94] J. Huang, C. Li, J. Song, T. Velkov, L. Wang, Y. Zhu, J. Li, Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ 
and PmrAB 15 (6) (2020) 445–459, https://doi.org/10.2217/FMB-2019-0322. 

[95] M.E. Wand, J. Mark Sutton, Mutations in the two component regulator systems PmrAB and PhoPQ give rise to increased colistin resistance in Citrobacter and 
Enterobacter spp, J. Med. Microbiol. 69 (4) (2020) 521–529, https://doi.org/10.1099/JMM.0.001173/CITE/REFWORKS. 

[96] A.A. Telke, A.O. Olaitan, S. Morand, J.M. Rolain, soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the 
acrAB-tolC efflux pump, J. Antimicrob. Chemother. 72 (10) (2017) 2715–2721, https://doi.org/10.1093/JAC/DKX215. 

[97] M.-D. Phan, N.T.K. Nhu, M.E.S. Achard, B.M. Forde, K.W. Hong, T.M. Chong, M.A. Schembri, Modifications in the pmrB gene are the primary mechanism for 
the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli, J. Antimicrob. Chemother. 72 (10) (2017) 
2729–2736, https://doi.org/10.1093/JAC/DKX204. 

[98] V.I. Petrou, C.M. Herrera, K.M. Schultz, O.B. Clarke, J. Vendome, D. Tomasek, F. Mancia, Structures of aminoarabinose transferase ArnT suggest a molecular 
basis for lipid A glycosylation, Science 351 (6273) (2016) 608–612, https://doi.org/10.1126/SCIENCE.AAD1172. 

[99] D.M. Warner, S.B. Levy, Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial 
peptides (CAMPs): rob-dependent CAMP induction of the marRAB operon, Microbiology 156 (Pt 2) (2010) 570, https://doi.org/10.1099/MIC.0.033415-0. 

[100] A. Ro′z, R. Ro′z, ̇ Alski, Z. Sidorczyk, K. Kotełko, Potential virulence factors of Proteus bacilli, Microbiol. Mol. Biol. Rev. 61 (1) (1997) 65–89. 
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