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ABSTRACT

Objective: To study the effect on patient cohorts of mapping condition (diagnosis) codes from source billing vo-

cabularies to a clinical vocabulary.

Materials and Methods: Nine International Classification of Diseases, Ninth Revision, Clinical Modification

(ICD9-CM) concept sets were extracted from eMERGE network phenotypes, translated to Systematized Nomen-

clature of Medicine - Clinical Terms concept sets, and applied to patient data that were mapped from source

ICD9-CM and ICD10-CM codes to Systematized Nomenclature of Medicine - Clinical Terms codes using Obser-

vational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP)

vocabulary mappings. The original ICD9-CM concept set and a concept set extended to ICD10-CM were used to

create patient cohorts that served as gold standards.

Results: Four phenotype concept sets were able to be translated to Systematized Nomenclature of Medicine -

Clinical Terms without ambiguities and were able to perform perfectly with respect to the gold standards. The

other 5 lost performance when 2 or more ICD9-CM or ICD10-CM codes mapped to the same Systematized No-

menclature of Medicine - Clinical Terms code. The patient cohorts had a total error (false positive and false neg-

ative) of up to 0.15% compared to querying ICD9-CM source data and up to 0.26% compared to querying ICD9-

CM and ICD10-CM data. Knowledge engineering was required to produce that performance; simple automated

methods to generate concept sets had errors up to 10% (one outlier at 250%).

Discussion: The translation of data from source vocabularies to Systematized Nomenclature of Medicine - Clini-

cal Terms (SNOMED CT) resulted in very small error rates that were an order of magnitude smaller than other

error sources.

Conclusion: It appears possible to map diagnoses from disparate vocabularies to a single clinical vocabulary

and carry out research using a single set of definitions, thus improving efficiency and transportability of

research.
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INTRODUCTION

Much observational research relies on structured data such as diag-

noses, medications, procedures, and laboratory tests. Each area

draws its structured codes from some combination of disparate

vocabularies and local coding schemes. Diagnoses are among the

most used in phenotype definitions in observational research, and in

the United States, they include International Classification of Dis-

eases, Ninth Revision, Clinical Modification (ICD9-CM)1 billing
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codes for data before October 2015, ICD10-CM2 billing codes for

data after that, Systematized Nomenclature of Medicine - Clinical

Terms (SNOMED CT)3 codes for some problem lists and natural

language processing of narrative clinical notes, MedDRA4 for drug

side effects, and local codes for some problem lists and narrative

notes. International databases show more diversity, also including,

eg, ICD10 (non-CM) codes and Read Codes.5

While it is possible to define phenotypes made of sets of concepts

defined separately from each of the above vocabularies, the process

is difficult because of the number of vocabularies and because query

authors do not generally have access to databases with all of the vo-

cabularies to train or test on; the result is also hard to maintain.

Limiting the number of vocabularies in the phenotype definition lim-

its the generalizability of the phenotype. For example, with only 5%

of the world population, the United States can study hypotheses

only on more prevalent diagnoses, treatments, and effects. Focusing

only on ICD codes, as most U.S. phenotyping activities do, relies on

coarse diagnostic codes and suffers from the limitations of ICD’s hi-

erarchical organization.

The Observational Health Data Sciences and Informatics

(OHDSI)6,7 initiative has produced and maintains mappings from

80 source vocabularies to a smaller set of “standard” vocabularies

that are usually queried. SNOMED CT is OHDSI’s standard vocab-

ulary for diagnoses, which are called “conditions” in the OHDSI

data model. SNOMED CT was chosen for its international reach, its

clinical as opposed to billing focus, its fine granularity, its extensive

hierarchy, and its increasing use in clinical data entry methods such

as natural language processing and problem lists. Source data are

mapped to standard vocabularies, and both the mapped and source

data are stored in OHDSI’s data model, commonly referred to as the

Observational Medical Outcomes Partnership (OMOP) Common

Data Model,8 named after OHDSI’s predecessor, OMOP.

For ICD9-CM and ICD10-CM conditions, OHDSI’s primary

source of mappings is a combination of the National Library of Medi-

cine’s Unified Medical Language System Metathesaurus Mapping

Project9 and a mapping from the United Kingdom National Health

Service Terminology Service. OHDSI contracts a knowledge engineer-

ing vendor (Odysseus Data Services, Cambridge, MA) to import these

mappings, expand and correct them as needed, and, as appropriate,

suggest additions and corrections back. Mappings for other vocabu-

laries may have other sources or may be generated by the vendor. All

mappings are freely available (OHDSI.org). Typical mappings are

ICD9-CM 3-digit non-billing code 410 “Acute myocardial infarction”

to SNOMED CT 57054005 “Acute myocardial infarction,” and

ICD9-CM 5-digit billing code 410.00 “Acute myocardial infarction of

anterolateral wall, episode of care unspecified” to SNOMED CT

70211005 “Acute myocardial infarction of anterolateral wall.” The

first two terms, 410 and 57054005, are both ancestors of the second

two terms, 410.00 and 70211005, in the respective hierarchies.

There is concern about information loss any time there is a map-

ping: does the new coding scheme retain distinctions that were ap-

parent in the original? Previous work by Reich et al.10 showed that

while there are vocabulary differences in mapping from ICD9-CM

to SNOMED CT, and while those differences cause differences in

cohorts, the studies that use the mappings showed minimal differen-

ces from the original studies.

In this study, we extend the analysis to ICD10-CM source data

in addition to ICD9-CM, looking at the accuracy of code mappings

and at the effect on patient cohorts that are generated by the map-

pings. We hypothesize that differences between vocabularies will

create imperfect code mappings, but that the actual effect on patient

cohorts will be minor, possibly because more frequently used codes

tend to be better matched between vocabularies and because of re-

dundancy in the concepts that define a cohort (several related codes

may be included in the definition) and in patient records (one patient

may have several related codes).

METHODS

In this study, we create patient cohorts by selecting all patients

whose structured patient record contains at least one code that is

included in a list of concepts, referred to in this paper as a “concept

set.” Our goal was to assess the effect of mapping patient data from

a source vocabulary, which was ICD9-CM and ICD10-CM in this

case, to an OHDSI standard vocabulary, which was SNOMED CT

for conditions (diagnoses). We used the OHDSI mappings for the

conversion.

Once the patient data are mapped to a different vocabulary, then

any concept sets used to query those data must also be mapped. For

example, if a concept set includes ICD9-CM 410.00 “Acute myocar-

dial infarction of anterolateral wall, episode of care unspecified” to

query the ICD9-CM data, then after the data are mapped, a new

concept set should include SNOMED CT 70211005 “Acute myo-

cardial infarction of anterolateral wall.” As will be seen below, map-

ping codes in concept sets is different from mapping codes in patient

records, and several approaches are possible. A secondary goal was

therefore to assess the performance of different approaches to map-

ping concept sets. We assessed both the effect on the codes in the

concept sets and the effect on patient cohorts generated by applying

those concept sets to our clinical database. See Figure 1 for an over-

view of the study.

Source of phenotypes
We used 9 phenotypes11–17 from the eMERGE18 initiative (Table 1).

This initiative was chosen because the phenotype definitions were

validated, because the phenotypes were explained in each case, thus

allowing us to assess intent, and because the sets were made avail-

able on the Internet. The phenotypes were chosen based on having a

predominant concept set (as opposed to, say, relying primarily on

laboratory values). Our study addressed only the concept sets, not

the logic that surrounds them, because our goal was specifically to

study the mappings. For example, a phenotype definition may re-

quire multiple diagnosis concept sets, impose temporal constraints,

combine diagnosis evidence with evidence from medications and

other areas, or exploit narrative data.

Concept sets
We used several versions of concepts sets to query the data (Table 2).

The original ICD9-CM concept set served as a baseline, and it was

run on the unmapped ICD9-CM patient data. The rest of the con-

cept sets comprised SNOMED CT codes and were run on the

mapped data. A hand-engineered SNOMED CT concept set was

intended to mimic the behavior of the original ICD9-CM concept

set. A second hand-engineered concept set was optimized to extend

the original query author’s intent to ICD10-CM codes (and

SNOMED CT codes, but we had no such data for testing). These

two concept sets might not be identical because adding a SNOMED

CT concept that pulls in a needed ICD10-CM code might pull in

unwanted ICD9-CM codes or because a SNOMED CT concept that

is needed to pull in an ICD9-CM code might also pull in an

unwanted ICD10-CM code that has many more patients.
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Several concept sets were generated automatically by applying

OHDSI data mappings to the ICD9-CM codes in the original con-

cept sets to generate SNOMED CT concept sets. The first version,

“no descendants,” takes only the SNOMED CT concepts that are

directly mapped from ICD9-CM codes in the original concept set.

This works for the ICD9-CM patient data, but can miss much of the

ICD10-CM data because ICD10-CM has greater granularity than

ICD9-CM. If one includes descendants of the SNOMED CT con-

cepts, one can often pull in these needed ICD10-CM codes. There-

fore a second choice is to include all descendants of the SNOMED

CT concepts. Because that often also pulls in many unwanted ICD9-

CM and ICD10-CM codes, we also studied a pair of intermediate

algorithms. They pull in the descendants of a SNOMED CT concept

only if none of that concept’s children or descendants (depending on

which algorithm) is also in the list. The intuition in these algorithms

is that if a query author is selecting some children or descendants

and not others, then there may be a reason that those other children

or descendants are excluded.

We then assessed concept sets by determining whether the

SNOMED CT codes included in a given set would retrieve data that

were mapped from the desired ICD9-CM codes and implied ICD10-

CM codes (see “Gold standards,” below). The concept sets are avail-

able in the Supplementary Materials and online (https://github.com/

mattlevine22/emerge2ohdsi_information_loss_CURATED.git).

Patient cohorts
We applied the concept sets to the New York Presbyterian/Colum-

bia University Irving Medical Center patient database. The database

has over 5 million patients. It has ICD9-CM codes for about 30

years and ICD10-CM codes since October 2015. While our concept

sets would also retrieve data originally stored as SNOMED CT

codes, our OHDSI database did not actually include SNOMED CT

codes as source concepts (we use them for natural language process-

ing, and that has not been pulled into the database yet). We defined

cohorts of patients as those who had at least one of the codes from

the concept set ever in their records. This OHDSI study was ap-

proved by our institutional review board.

Table 1. Original ICD9-CM definition of concept sets used in pheno-

types

Algorithm Original ICD9-CM concept set‡

Heart failure (HF)11 428.*

Heart failure as exclusion

diagnosis (HF2)11

428.*

Type-1 diabetes mellitus

(T1DM)12

250.x1, 250.x3

Type-2 diabetes mellitus

(T2DM)12

250.x0, 250.x2

Appendicitis (Appy)13 540.*

Attention deficit hyperactivity

disorder (ADHD)14

314, 314.0, 314.01, 314.1, 314.2,

314.8, 314.9

Cataract (Catar)15 366.10, 366.12, 366.13, 366.14,

366.15, 366.16, 366.17, 366.18,

366.19, 366.21,

366.30, 366.41, 366.45, 366.8,

366.9

Crohn’s disease (Crohn)16 555, 555.0, 555.1, 555.2, 555.9

Rheumatoid arthritis (RA)17† 714, 714.0, 714.1, 714.2

‡Within a code list, “*” means one or more digits or a period; “x” means

one digit.
†Only rheumatoid arthritis also had ICD10-CM codes in its original defini-

tion, namely, M05* and M06*, and these were used in the second gold

standard.

Figure 1. Design of the vocabulary study. The OHDSI (OMOP) database comprises the source data in ICD9-CM and ICD10-CM (bottom left) and the mapped data

in SNOMED CT (bottom right). The gold standard concept sets include the original ICD9-CM concept set, run only on the ICD9-CM codes in the source data, and

the extension of that concept set to ICD10-CM (and SNOMED CT but not used here) based on the current authors’ interpretation of the original authors’ intent

11-17. New SNOMED CT concept sets are generated from the original concept set both using knowledge engineering and via automatic translation. The gener-

ated concept sets and the gold standard concept sets are run against their respective data sets, and the resulting patient cohorts are compared for false positives

(FP) or false negatives (FN) with the original concept set serving as the gold standard for Table 3 and the extended concept set that is based on the original

authors’ intent serving as the gold standard in Table 4.
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Gold standards
We used 2 gold standards to assess patient cohorts. The first was the

simple application of the original ICD9-CM concept sets to the origi-

nal ICD9-CM patient data. This gold standard reflects the basic fidel-

ity of the translated query. The second gold standard was created by

the authors to extend the query beyond ICD9-CM codes to ICD10-

CM and SNOMED CT codes based on the original intent described

by the phenotype definition authors. It was created by casting a broad

net using mappings and search terms on the source vocabularies, enu-

merating every code in the hierarchies under those terms, and—code

by code in all 3 vocabularies—deciding whether it matched the phe-

notype authors’ intent. In 2 cases, heart failure as an exclusion diag-

nosis and cataract, ICD9-CM codes were also added because it

appeared that the query authors had missed the codes. In general, we

assumed the query authors were correct unless there were other in-

cluded codes that made it clear that new codes were intended and

that the new codes would improve the phenotype. These gold stan-

dard concept sets were applied to the source codes (not the mapped

data) in the database to create gold standard patient cohorts. For the

evaluation, we counted the number of patients inappropriately in-

cluded in (false positive or FP) or missing from (false negative or FN)

the patient cohort generated by the new SNOMED CT concept sets

compared to the patient cohorts generated from the gold standard.

RESULTS

Patient cohorts
Here we show how mapping source data affected patient cohorts

and, further, how different approaches to mapping concept sets af-

fected that performance (examples will be provided in the diagnos-

tics section). Table 3 shows how the different concept set mapping

methods performed for the specific task of mimicking what the orig-

inal ICD9-CM concept sets returned for only ICD9-CM patients. By

definition, the “ICD9 set” was perfect, as it was the gold standard

and was run on the unmapped data. The knowledge-engineered con-

cept sets performed well, with the query intended to mimic the

ICD9-CM concept set, “SNOMED mimic,” having a maximum er-

ror rate, defined as the number of FP and FN divided by the total

true cases, of less than 0.15%.

The concept sets that were created automatically from the origi-

nal ICD9-CM concept sets varied in performance. All of the errors

were FP because the algorithms always included all the SNOMED

CT codes that the ICD9-CM codes mapped to. The most restrictive,

“SNOMED no desc” resulted in the fewest FP: FP were less than

half a percent for all but 1 phenotype, attention deficit hyperactivity

disorder, which got to almost 10% (2 orders of magnitude greater

than the knowledge engineered query). The least restrictive,

“SNOMED all desc,” had an error rate of over 250% on rheuma-

toid arthritis.

Table 4 shows performance on ICD9-CM and ICD10-CM data,

based on the current authors’ interpretation of the original authors’

intents. The original ICD9-CM query missed the ICD10-CM codes,

resulting in errors up to 2.2%.

The optimized knowledge-engineered query performed well,

with maximum error rates of 0.26% and 0.13%, with the rest less

than 0.1%. The automated queries achieved rates up to 10% other

than the one outlier at 250%.

Code mapping diagnostics
The following analysis is based on the “SNOMED optimize” con-

cept set, which represents the current authors’ best effort at generat-

ing a concept set.

Error-free translations

Some phenotype concept sets such as appendicitis could be translated

without inappropriately including or losing codes and therefore

Table 2. Methods to generate concept sets from ICD9-CM concept set

Method Description

Original (no mapping) Original concept set.

ICD9 set Original ICD9-CM concept set generated by the phenotype author. This set is always run

against the patients’ original ICD9-CM terms to show what would have happened be-

fore either data or concept sets were mapped.

Knowledge engineered (automatically map data; manu-

ally translate concept sets)

These SNOMED CT concept sets were created by hand. They are run against data in the

form of SNOMED CT terms that were generated by mapping data from ICD9-CM

and ICD10-CM to SNOMED CT using the OHDSI vocabulary mappings.

SNOMED mimic SNOMED CT concept set designed to mimic the original ICD9-CM concept set as much

as possible, ignoring data from other vocabularies.

SNOMED optimize SNOMED CT concept set designed to carry out phenotype author’s intent to ICD9-CM,

ICD10-CM, and SNOMED CT.

Automatically generated (automatically map data and

concept sets)

These SNOMED CT concept sets were generated automatically from the original ICD9-

CM set using OHDSI vocabulary mappings. Like knowledge engineered, they are run

against data in the form of SNOMED CT terms that were generated by mapping data

from ICD9-CM and ICD10-CM to SNOMED CT using the OHDSI vocabulary map-

pings.

SNOMED no desc SNOMED CT concept set generated by using OHDSI vocabulary mappings to map from

ICD9-CM terms to SNOMED CT, not using the SNOMED hierarchy.

SNOMED all desc Like “SNOMED no desc,” but includes all terms in the SNOMED CT hierarchy that are

descendants of the mapped terms.

SNOMED desc x child Like “SNOMED no desc,” but includes descendants for mapped terms only if none of the

term’s children is also in the concept set. Can be seen as limited descendants.

SNOMED desc x desc Like “SNOMED no desc,” but includes descendants for mapped terms only if none of the

term’s descendants is also in the concept set. Can be seen as more limited descendants.
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without FP or FN patients. The optimized query used a single code,

SNOMED CT 85189001 “Acute appendicitis,” and all its descend-

ants. Similarly, Crohn’s Disease was encoded without FP or FN using

two codes, SNOMED CT 34000006 “Crohn’s disease” and

1085911000119103 “Complication due to Crohn’s disease,” and all

their descendants. Heart failure as an exclusion diagnosis was

straightforward without FP or FN, using 3 codes, SNOMED CT

84114007 “Heart failure,” 371037005 “Systolic dysfunction,”

3545003 “Diastolic dysfunction,” and all their descendants. Heart

failure as an inclusion diagnosis—which emphasizes specificity over

sensitivity—was less straightforward, including 29 SNOMED CT

terms, some with and some without descendants, but could be

mapped to the intended terms without FP or FN. (This latter pheno-

type achieved higher specificity despite more terms than heart failure

as an exclusion diagnosis because each of the terms was more

specific.)

Multiple source codes (ICD) to one standard code (SNOMED CT)

The primary difficulty we found related to ambiguity when 2 or

more ICD9-CM or ICD10-CM source codes mapped to the same

SNOMED CT standard code. The difficulty arises when a pheno-

type concept set includes 1 of the source codes but excludes another.

There is then no way in the mapped data to get them all right; some

must be erroneously included or excluded. Take attention deficit hy-

peractivity disorder as an example. The original definition includes

ICD9-CM 314.0 “Attention deficit disorder of childhood” but

excludes its child, 314.00 “Attention deficit disorder without men-

tion of hyperactivity.” Both of these terms map to SNOMED CT

192127007 “Child attention deficit disorder.” Because 314.0 is not

a reimbursable code and should have fewer cases, it was deemed

more important to exclude 314.00, which is a reimbursable code,

which also meant excluding SNOMED code 192127007.

Type-1 diabetes mellitus had 8 standard codes with multiple

source codes, 1 of which did cause consequential ambiguities

(“consequential” here means it caused FP or FN in the patient

cohorts): SNOMED CT 420662003 “Coma associated with diabe-

tes mellitus” was mapped from ICD9-CM 250.30 “Diabetes with

other coma, type II or unspecified type, not stated as uncontrolled,”

250.31 “Diabetes with other coma, type I [juvenile type], not stated

as uncontrolled,” and 2 others (thus this set of type 1 and type 2

patients could not be separated after mapping). Type-2 diabetes mel-

litus had 8 standard codes with multiple source codes, and 2 of these

caused consequential ambiguities. Cataract also had several ambigu-

ities: ICD9-CM 366 “Cataract” was included because it was

mapped to SNOMED 193570009 “Cataract,” which was needed to

pull in other source codes; 1 other extra code was included, and 7

codes were excluded because of ambiguities.

Rheumatoid arthritis was similarly affected: ICD9-CM 714

“Rheumatoid arthritis and other inflammatory polyarthropathies”

was included but pulled in some other inappropriate codes (they

Table 4. Performance on ICD9-CM and ICD10-CM source data mapped to SNOMED CT (FP false positive, FN false negative)

Pheno #Cases Original Knowledge engineered Automated concept set creation

ICD9

set

SNOMED

mimic

SNOMED

optimize

SNOMED

no desc

SNOMED

all desc

SNOMED

desc x child

SNOMED

desc x desc

FP FN FP FN FP FN FP FN FP FN FP FN FP FN

HF 75 626 0 314 0 0 0 0 0 0 1332 0 1116 0 1116 0

HF2 75 958 0 1646 0 1332 0 0 0 1332 0 0 0 216 0 216

T1DM 27 935 0 74 0 23 0 23 108 67 943 0 943 67 108 67

T2DM 126 828 0 1486 3 1412 3 30 34 1486 1317 0 104 1382 34 1382

Appy 9920 0 33 0 0 0 0 0 8 0 0 0 8 0 8

ADHD 14 547 0 148 0 39 0 19 1359 19 1359 0 1359 19 1359 19

Catar 50 953 0 194 39 26 39 2 39 26 2451 0 51 8 51 8

Crohn 4679 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RA 9793 0 138 0 25 0 25 0 25 25 151 0 0 25 0 25

Table 3. Performance on ICD9-CM source data mapped to SNOMED CT (FP false positive, FN false negative)

Pheno #Cases Original Knowledge engineered Automated concept set creation

ICD9

seta
SNOMED

mimic

SNOMED

optimize

SNOMED

no desc

SNOMED

all desc

SNOMED

desc x child

SNOMED

desc x desc

FP FN FP FN FP FN FP FN FP FN FP FN FP FN

HF 75 312 0 0 0 0 0 0 0 0 1262 0 1054 0 1054 0

HF2 75 312 0 0 0 0 0 0 0 0 1262 0 1054 0 1054 0

T1DM 27 861 0 0 0 23 0 23 108 0 943 0 943 0 108 0

T2DM 125 342 0 0 3 30 3 30 34 0 1318 0 104 0 34 0

Appy 9887 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADHD 14 399 0 0 0 19 0 19 1362 0 1362 0 1362 0 1362 0

Catar 50 879 0 0 50 0 74 0 50 0 2491 0 80 0 80 0

Crohn 4679 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RA 9655 0 0 0 0 0 0 0 0 25 103 0 0 0 0 0

aThis column is used as the gold standard and is run on unmapped source data and therefore must have perfect performance.
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turned out to have no consequence), and ICD10-CM M06.4

“Inflammatory polyarthropathy” was not included because it pulled

in too many inappropriate codes (it did turn out to cause some FN).

Based on the definitions, we do not believe either one should have

been in the original concept set, but the original authors included

them, and we acquiesced. A number of codes related to specific

joints were ambiguous: ICD10-CM M08.011 “Unspecified juvenile

rheumatoid arthritis, right shoulder” had to be inappropriately in-

cluded because it mapped to a more general SNOMED CT term for

the joint, such as SNOMED CT 201766009 “Rheumatoid arthritis

of shoulder”; it was not consequential.

One source code (ICD) to multiple standard codes (SNOMED CT)

In some cases, 1 source code mapped to multiple standard codes.

This usually occurs because the source code is a compound concept

that exists only as separate codes in the standard vocabulary. This is

generally easily addressed in the mapped concept set by including a

conjunction of both terms. In type-1 diabetes mellitus, ICD9-CM

250.03 “Diabetes mellitus without mention of complication, type I

[juvenile type], uncontrolled” mapped to both SNOMED CT

46635009 “Type 1 diabetes mellitus” and 444073006 “Type 1 dia-

betes mellitus uncontrolled,” which was likely just an oversight in

the mapping process. No conjunction was necessary because the first

subsumes the second. Type-2 diabetes mellitus had a similar circum-

stance with ICD9-CM 250.02 “Diabetes mellitus without mention

of complication, type II or unspecified type, uncontrolled,” which

also had no consequence.

Missing OMOP codes

In some cases, source codes had no corresponding OHDSI code and

therefore could not be mapped to a standard code. This generally

reflected a lag between the creation of new ICD10-CM codes and

their incorporation into OHDSI. Type-1 diabetes mellitus had 57

such codes at the time of the evaluation, such as ICD10-CM

E10.3211 “Type 1 diabetes mellitus with mild nonproliferative dia-

betic retinopathy with macular edema, right eye.” We verified that

the codes were new enough that they had not been used in patient

care yet in our institution. Type-2 diabetes mellitus also had 57

missing codes, also with no consequence.

Information gain

We found that the mapping process also produced some benefits.

For example, in heart failure as an exclusion diagnosis, the original

ICD9-CM query eliminated heart failure only under ICD9-CM 428

“Heart failure.” The SNOMED CT hierarchy pulled in relevant ex-

clusion diagnoses that were not under 428, but under other codes

such as 398, 402, 404, and 415. Because the goal was for the pheno-

type to be specific, these codes were deemed to be relevant to an ex-

clusion diagnosis and included in the intent gold standard.

DISCUSSION

Main finding: source data mapping produces minimal

error
We found that the vocabulary mapping process produced little error

in creating cohorts. For 4 of 9 phenotypes, the concept set mapping

was straightforward without ambiguity. For the other 5, some num-

ber of ambiguities arose, although the number was always small

compared to the number of concepts involved. For the patient

cohorts, the differences were very small at a few patients per thou-

sand (0.26%) or less. Compare that rate to the rate of erroneous di-

agnosis codes at 14%19 or the rate of entering notes on the wrong

patient at 0.5%.20 The consequential ambiguities were always in the

form of 2 or more source codes (ICD9-CM or ICD10-CM) mapping

to 1 SNOMED CT code. Most of those ambiguities involved ICD9-

CM codes, so we guess that over time as more billing data are

encoded in ICD10-CM, the error rates will drop further.

Concept set mapping
The OHDSI vocabulary mappings were designed to map data from

source vocabularies to their standard vocabularies. They were not

designed to map concept sets. We found that none of our automated

algorithms to map concept sets performed that well, with error rates

up to 10% (with 1 larger outlier). The alternative is manually trans-

lating the concept sets using knowledge engineering. In our study,

the process of creating the gold standard was merged with the pro-

cess of translating the concept set, and we estimate times from 1

hour to 2 days to create an optimized concept set depending on com-

plexity.

While we found that knowledge engineering was necessary to

optimize the query, we also found that the process could improve

the concept sets. ICD9-CM has a strict hierarchy, so that a term can

have only 1 parent; for example, an infection of an anatomical struc-

ture must be stored with infections or with the relevant structure but

not with both. SNOMED CT is a multiple hierarchy and can place

concepts under several parents. We found, especially for heart fail-

ure as an exclusion diagnosis, that the SNOMED CT hierarchy

could identify codes that would have been missed by simply looking

at the ICD9-CM hierarchy.

Use of SNOMED CT
Our study demonstrates feasibility of using SNOMED CT as the ba-

sis of concept sets for accurate phenotype definitions. The use of

SNOMED CT brings several benefits. International studies can use

a single coding scheme for conditions and distribute studies broadly.

Attempting to write every phenotype definition to accommodate

ICD9-CM, ICD10-CM, ICD10, SNOMED CT, Read codes, Med-

DRA, etc., separately is not feasible, especially because no pheno-

type author will have access to patient databases with all the

diagnosis codes to test the accuracy of the phenotype. As electronic

health records advance, enabling clinicians to enter clinically rele-

vant data more easily, we should see greater availability of problem

lists and clinical documentation that are encoded in SNOMED CT

either directly or through natural language processing. We believe

that shifting the entire nation toward clinically oriented vocabularies

may do more to improve research than carefully querying poorly

coded billing data.

Related work
Our work corroborates previous studies about vocabulary mapping.

In the study closest to ours, Reich et al.10 looked at ICD9-CM,

SNOMED CT, and MedDRA diagnosis concept sets in OMOP, and

they found the same kinds of ambiguities in mapped concept sets

due to many-to-one source-to-standard mappings. They then carried

out drug-outcome studies using those concept sets, pre- and post-

mapping, and they found that the ambiguities caused minimal

changes in the study results. Our study uses independently validated

concept set definitions, uses newer versions of the OHDSI mappings,

bridges ICD9-CM and ICD10-CM, and includes an optimized
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knowledge engineered version of the mapped concept sets that are

intended to minimize the differences before and after mapping.

In related work, Defalco et al.21 showed incomplete OMOP

mappings among 3 drug classification schemes but did not look at

the consequences of those differences. A number of studies look at

coverage. For example, Cartagena et al.22 measured the incomplete

overlap between SNOMED CT problem lists and ICD10-CM codes

using National Library of Medicine SNOMED-to-ICD mappings in

the Unified Medical Language System,23 on which the OHDSI

mappings are largely based. Fung et al.24 look at ways to automate

mappings from ICD9-CM to ICD10-CM exploiting the Centers for

Medicare and Medicaid Services General Equivalent Maps (GEMs).

With respect to the potential switch from billing to more clinical

vocabularies, Bodenreider25 looked at using SNOMED CT to enter

clinical concepts related to drug reactions and the possible subse-

quent mapping to MedDRA for research and reporting, and Elkin

et al.26 showed that the use of a more clinically oriented terminology

such as SNOMED-RT outperformed the ICD9-CM billing terminol-

ogy for encoding and querying clinical text diagnoses.

Alternatives
One could carry out an analogous study going from ICD9-CM to

ICD10-CM instead of SNOMED CT using Centers for Medicare

and Medicaid Services mappings. We do not currently have our

database encoded that way, but we expect similarly good perfor-

mance, especially given that ICD9 is the precursor to ICD10. Some

ambiguities do occur. For example, the attention deficit hyperactiv-

ity disorder ICD9-CM concept set includes 314.01 but excludes

314.00, but both map to the same ICD10-CM term. We still advo-

cate for the SNOMED CT mapping for the broader reach and clini-

cal focus.

While our study measures inaccuracies produced by data map-

pings and concept set mappings, it does not imply that these inaccu-

racies are properties of the OHDSI data model. OHDSI retains the

source data so that queries can always go back to the original data if

desired, and no records are lost even if mappings do not exist yet.

Limitations
This study has several limitations. Only a small number of pheno-

types were studied. The size was limited by the amount of work nec-

essary to create the gold standard based on the original authors’

intent, which represented the bulk of the work. Once that gold stan-

dard was created, the rest of the knowledge engineering followed

logically. We chose phenotypes from the eMERGE set based on the

presence of a concept set that steered the majority of the phenotype

definition. No phenotype definitions were rejected based on perfor-

mance, good or bad. A second limitation is that we did not measure

the clinical accuracy of the assignment of patients in the cohort but

relied on their billing codes in both gold standards. Based on our

very low error rate (0.26%), however, we can reuse the original

authors’ clinically derived error rates (around 5%) to infer contin-

ued good performance. A third limitation is that we cannot prove

that the errors in our patient cohorts are not the patients who would

have been most important in the study. Our very low error rate

points against a large effect, the codes that caused errors did not

seem to be especially clinically unique, and the Reich et al.10 study

corroborated little effect. Finally, we optimized our codes for our

database, which had mostly ICD9-CM codes. The optimal concept

set for a database of mostly ICD10-CM codes might be different.

CONCLUSION

Mapping data from source ICD billing codes to SNOMED CT codes

produced only a very small effect on the generated patient cohorts,

and one can infer that the corresponding phenotype definitions

would maintain their accuracies. Only the concept sets that were

hand-engineered achieved that performance; simple automated

translation of concept sets did not work as well. The implication is

that it should be feasible to define phenotypes using a single diagno-

sis vocabulary.
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