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Abstract

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar 

(Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome 

duplication (TGD). The slowly evolving gar genome conserved in content and size many entire 

chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the 

evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). 

Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct 

human-teleost comparisons become apparent using gar: functional studies uncovered conserved 

roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide 

association studies. Transcriptomic analyses revealed that the sum of expression domains and 

levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent 

with subfunctionalization. The gar genome provides a resource for understanding evolution after 

genome duplication, the origin of vertebrate genomes, and the function of human regulatory 

sequences.
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Teleost fish represent about half of all living vertebrate species1 and provide important 

models for human disease (e.g. zebrafish and medaka)2-9. Connecting teleost genes and gene 

functions to human biology (Fig. 1a) can be challenging, however, due to 1) two rounds of 
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early vertebrate genome duplication (VGD1 and VGD210, but see11) followed by reciprocal 

loss of some ohnologs (gene duplicates derived from genome duplication38) in teleosts and 

tetrapods, including humans (e.g.,12,13); 2) the teleost genome duplication (TGD), which 

resulted in duplicates of many human genes14,15; and 3) rapid teleost sequence 

evolution16,17, often due to asymmetric rates of ohnolog evolution that frustrates ortholog 

identification. To help connect teleost biomedicine to human biology, we sequenced the 

genome of spotted gar (Lepisosteus oculatus, henceforth ‘gar’; see also Supplementary Note 

1, Supplementary Fig. 1), because its lineage represents the unduplicated sister group of 

teleosts18,19 (Fig. 1a).

Gar informs the evolution of vertebrate genomes and gene functions after genome 

duplication and illuminates evolutionary mechanisms leading to teleost biodiversity. The gar 

genome evolved comparatively slowly and clarifies the evolution and orthology of 

problematic teleost protein-coding and miRNA gene families. Surprisingly, many entire gar 

chromosomes have been conserved with some tetrapods for 450 million years. Importantly, 

gar reveals conserved non-coding elements (CNEs), which are often regulatory, that teleosts 

and humans share but that direct sequence comparisons do not detect. Global gene 

expression analyses show that expression domains and levels of TGD duplicates usually sum 

to those in gar, as expected if ancestral regulatory elements partitioned after the TGD. By 

illuminating the legacy of genome duplication, the gar genome bridges teleost biology to 

human health, disease, development, physiology, and evolution.

RESULTS

Genome assembly and annotation

The genome of a single adult gar female collected in Louisiana (USA) was Illumina 

sequenced to 90X coverage. The ALLPATHS-LG20 draft assembly covers 945 Mb with 

quality metrics comparable to other vertebrate Illumina assemblies20. To generate a 

‘chromonome’ (chromosome-level genome assembly21), we anchored scaffolds to a meiotic 

map19 capturing 94% of assembled bases in 29 linkage groups (LGs) (Supplementary Note 

2). Transcriptomes from adult tissues and developmental stages (Supplementary Note 3) 

facilitated a MAKER22-annotated gene set of 21,443 high confidence protein-coding genes, 

while ENSEMBL annotation identified 18,328 protein-coding genes (mostly a subset of 

MAKER annotations), 42 pseudogenes, and 2,595 ncRNAs (Supplementary Note 4), 

compared to human (20,296 protein coding genes) and zebrafish (25,642). About 20% of the 

gar genome is repetitive, including transposable elements (TEs) representing most lobe-

finned and teleost TE superfamilies and a TE profile similar to that of coelacanth23, thus 

clarifying TE phylogenetic origins (Supplementary Note 5, Supplementary Tabs.1-3, 

Supplementary Figs. 2-5).

The gar lineage evolved slowly

Phylogenies of 243 one-to-one orthologs in 25 jawed vertebrates16, including gar and our 

transcriptome of bowfin Amia calva (Supplementary Notes 3,4, Supplementary File 1), 

strongly support the monophyly of Holostei (gar+bowfin) as sister group to teleosts (Fig. 1b, 
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Supplementary Note 6, Supplementary Fig. 6)24-27, suggesting that morphologies shared by 

bowfin and teleosts28,29 may be convergent or ancestral traits altered in the gar lineage.

Darwin applied his term ‘living fossil’ to ‘ganoid fishes’, including gars30; indeed, gars 

show low rates of speciation and phenotypic evolution31. Evolutionary rate analyses using 

cartilaginous fish outgroups show that gar and bowfin proteins evolved significantly slower 

than teleost sequences. Holostei have a significantly shorter branch length to the 

cartilaginous outgroup than most other bony vertebrates except coelacanth, the slowest 

evolving bony vertebrate16,32 (Fig. 1b, Supplementary Note 7, Supplementary Tab. 4). Our 

results support the hypothesis that the TGD could have facilitated the high rate of teleost 

sequence evolution 16,17,33. Gar TEs also show a low turnover rate compared to teleosts, 

mammals, and even coelacanth23 (Supplementary Note 5, Supplementary Fig. 5).

Gar informs the evolution of bony vertebrate karyotypes

Gar represents the first chromonome21 of a non-tetrapod, non-teleost jawed vertebrate, 

allowing for the first time long-range gene order analyses without the confounding effects of 

the TGD. The gar karyotype (2N=58) contains both macro- and microchromosomes (Fig. 2a, 

Supplementary Note 8.1, Supplementary Fig. 7). Aligning gar chromosomes to those of 

human, chicken, and teleosts revealed distinct conservation of orthologous segments in all 

species (Fig. 2b-e, Supplementary Note 8.2, Supplementary Figs. 8,9). Strikingly, gar-

chicken comparisons revealed conservation of many entire chromosomes (Fig. 2c). Chicken 

and gar karyotypes differ only by about 17 large fissions, fusions, or translocations. Almost 

half of the gar karyotype (14/29 chromosomes) showed a nearly one-to-one relationship in 

gar-chicken comparisons, including macro- and microchromosomes with highly correlated 

chromosome assembly lengths (Fig. 2d, Supplementary Note 8.2). Similarity in 

chromosome size and gene content is strong evidence that the karyotype of the common 

bony vertebrate ancestor possessed both macro-and microchromosomes as Ohno (1969)34 

hypothesized, consistent with microchromosomes in coelacanth35 and cartilaginous fish34, 

for which no chromonomes are yet available.

The gar chromonome also tests the hypothesis that an increase in interchromosomal 

rearrangements occurred in teleosts after, and possibly due to, the TGD19. For each gar 

chromosome segment, teleosts usually have two ohnologous segments, verifying a pre-TGD 

gar-teleost divergence19. Each TGD pair in teleosts usually shares conserved synteny with 

more than one gar chromosome, indicating rearrangements before the TGD (Fig. 2e, 

Supplementary Note 8.2, Supplementary Figs. 8,9). Gar shares many whole chromosomes 

with chicken (Fig. 2c) but few with teleosts (Fig. 2e). These results show that chromosome 

fusions thought to have occurred in the ray-finned lineage after divergence from the lobe-

finned lineage36 actually occurred in the teleost lineage after divergence from gar but before 

the TGD (Fig. 2f, Supplementary Fig. 10). This finding explains how spotted gar has more 

chromosomes (N=29, Fig. 2a) than typical teleosts (N~24-2537) without experiencing the 

TGD. Comparisons taking the TGD into account further revealed an average fission/

translocation rate in percomorphs (stickleback, medaka, pufferfish) relative to gar similar to 

that in the chicken lineage. Zebrafish has a higher rearrangement rate, however, even after 

accounting for the TGD (Supplementary Note 8.2, Supplementary Fig. 11). These 
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comparisons indicate that the TGD might not fully account for high teleost rearrangement 

rates.

Gar clarifies vertebrate gene family evolution

Lineage-specific loss of ohnologs often followed VGD1, VGD2, and the TGD (Fig. 1a), 

which complicates identification of true orthologs21,39 and frustrates translating knowledge 

from teleosts biomedical models to human biology, e.g.,12. Gar is uniquely informative 

because its lineage did not experience the TGD and often retained ancestral VGD1/VGD2 

ohnologs that were reciprocally lost in teleosts and tetrapods, thus clarifying the evolution of 

gene families involved in vertebrate development, physiology, and immunity 

(Supplementary Note 9).

Developmental gene family analyses revealed stability in the gar gene repertoire, including 

Hox clusters (Supplementary Note 9.1). Gar has 43 hox genes organized in four clusters 

expected for an unduplicated ray-finned fish (Supplementary Fig. 12). No hox gene has been 

completely lost in gar since divergence from the last common ray-finned ancestor. The 

hoxD14 gene, missing from teleosts but present in paddlefish40, is recognizable as a 

pseudogene in gar (Supplementary Fig. 13). In contrast, teleosts have far fewer hox cluster 

genes than the 82 expected after genome duplication (e.g., zebrafish, 49 genes; stickleback, 

46), demonstrating massive hox cluster gene loss after the TGD. Teleosts lack orthologs of 

hoxA6 and hoxD2, zebrafish lacks all hoxDb cluster protein-coding genes14, and 

percomorphs lack the hoxCb cluster41, but gar lacks just one hox cluster gene from the last 

common bony vertebrate ancestor (hoxA14), fewer than tetrapods (e.g., human: three losses) 

and coelacanth (two) (Supplementary Fig. 12). Gar ParaHox clusters (Supplementary Note 

9.2, Supplementary Tab. 5) are also more complete than those in teleosts and tetrapods, with 

four clusters containing seven genes. Gar retained cdx2, revealing a VGD1/VGD2 ohnolog 

‘gone missing’ from teleosts (Supplementary Fig. 14). Gar possesses the VGD1/VGD2 

ohnolog pdx2, previously found only in cartilaginous fish and coelacanth42, showing that 

pdx2 was lost independently in teleosts and tetrapods (Supplementary Figs. 14,15). Retinoic 

acid regulates Hox cluster gene expression43 but retinoic acid-synthesizing Aldh enzymes 

(Supplementary Note 9.3) vary in number among vertebrates44: tetrapods have three genes 

(Aldh1a1, Aldh1a2, Aldh1a3), zebrafish has two (aldh1a2, aldh1a3), medaka just one 

(aldh1a2)45. Finding all three genes in gar rules out the hypothesis45 that Aldh1a1 was a 

lobe-finned innovation (Supplementary Fig. 16).

Physiological mechanisms are shared among vertebrates, including light control of 

circadian rhythms, despite important gene repertoire differences between teleosts and 

tetrapods 46,47. Analyses of gar circadian clock (Supplementary Note 9.4, Supplementary 

Tab. 6, Supplementary Fig. 17)48 and opsin genes (Supplementary Note 9.5, Supplementary 

Tab. 7, Supplementary Fig. 18)49 link gene repertoires of teleosts and tetrapods: e.g., gar 

clarifies circadian gene origins in VGD vs. TGD events. Gar has pinopsin, present in 

tetrapods but absent from teleosts, along with exo-rhodopsin, previously thought to 

compensate the lack of pinopsin in teleosts50.

Evolution of vertebrate immunity becomes clearer using gar (Supplementary Note 9.6). 

Major-histocompatibility complex (MHC) class I and class II genes (Supplementary Figs. 
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19-21) are tightly linked in tetrapods and cartilaginous fish but are unlinked in teleosts51,52. 

In gar, at least one pair of class I and class II genes are linked as in tetrapods53,54, suggesting 

that gar retains the ancestral configuration although most gar MHC genes remain on 

unassembled scaffolds (Supplementary Fig. 21). Gar has some class I genes thought to be 

teleost-specific (Z/P-, L-, and U/S-like, e.g.54-56; Supplementary Fig. 19) and some class II 

genes similar to, and some distinct from, teleost DA/DB and DE lineages (Supplementary 

Fig. 20). Several gar MHC region genes are on unassembled scaffolds linked to genes whose 

human orthologs are encoded in MHC class II or MHC class III regions on Hsa6 and some 

are adjacent to orthologs of teleost MHC class I genes (Supplementary Tab. 8). The human 

MHC class III region on Hsa6 has syntenic segments on Hsa1, Hsa9, and Hsa19; these four 

ohnologons likely arose in VGD1 and VGD257 as supported by the gar genome 

(Supplementary Tab. 8).

Gar immunoglobulin (Ig) genes (Supplementary Fig. 22) and transcripts generally resemble 

those of teleosts. Unexpectedly, gar has a second, distinct IgM locus but lacks IgT (IgZ)58,59, 

thought to provide mucosal immunity60, suggesting that IgT is teleost-specific and that gar 

ganoid scales may suffice for exterior surface protection. Gar T-cell receptor genes 

(Supplementary Fig. 23) are tightly linked as in mammals, but unlike in Xenopus61, they are 

downstream of VH and JH segments. Phylogenetic analyses of Toll-like receptor (TLR) 

genes (Supplementary Fig. 24) from tetrapods, teleosts, and gar revealed that the 16 

identifiable gar TLRs embrace all six major TLR families62. Gar TLRs appear to share 

evolutionary histories with teleosts and/or tetrapods. Gar encodes NITR (novel immune-type 

receptor) genes (Supplementary Fig. 25), which function in allorecognition and were 

thought to be teleost-specific63,64. The 17 gar nitr genes form 15 families, suggesting few 

recent tandem duplications or rapid divergence after gene duplication. In sum, the gar 

immunogenome bridges teleosts to tetrapods.

Gar uncovers evolution of vertebrate mineralized tissues

Bony vertebrates share mineralized tissues (bone, dentin, enameloid, and enamel), yet gene 

repertoires for the secretory calcium-binding phosphoproteins (Scpp) that form these 

tissues65,66 differ substantially between teleosts and tetrapods and their evolution remains 

controversial17,67,68. Gar clarifies understanding because it retains ancient characteristics 

both in its ganoid scales, which contain ganoin, hypothesized to be a type of enamel69, and 

in its teeth, which are covered by both enameloid and enamel70 (Supplementary Note 10). 

Mammalian genomes were thought to contain the largest number of Scpp genes (human, 23 

genes; coelacanth, 14; zebrafish, 15) and only two (Spp1 and Odam) seemed common 

between lobe-finned vertebrates and teleosts68 (Fig. 3a). We identified 35 scpp genes in gar 

in two clusters on LG2 and LG4 (Fig. 3a, Supplementary Note 10, Supplementary Tab. 9), 

which contain spp1 and odam, respectively. Importantly, gar includes orthologs of five scpp 
genes previously found only in teleosts and six known only from lobe-finned vertebrates. 

Another 18 gar scpp genes have no identified ortholog in either lobe-finned vertebrates or 

teleosts (Fig. 3a, Supplementary Note 10, Supplementary Tab. 9).

Enamel matrix protein genes Ameloblastin (Ambn), Enamelin (Enam), and Amelogenin 
(Amel) are found in lobe-finned vertebrates with enamel-bearing teeth, but not in teleosts, 
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which lack enamel-bearing teeth66,68. For the first time in a ray-finned vertebrate, we 

identified ambn and enam genes (but no Amel ortholog) in gar genome and transcriptomes. 

Gar ambn and enam genes show sequence similarities to zebrafish scpp6 and fa93e10, 

respectively, suggesting that teleosts may have divergent orthologs, supported by conserved 

gene orders in gar and zebrafish clusters (Fig. 3a).

RT-PCR and our gar skin transcriptome revealed expression of ambn and enam in enamel-

containing gar teeth and in gar skin that includes scales with ganoin (Supplementary Note 

10, Supplementary Tab. 9), suggesting that strong expression of ambn and enam is limited to 

enamel and ganoin. Thus, enamel in teeth and ganoin in ganoid scales likely represent the 

same tissue and common expression of Ambn and Enam in lobe-finned enamel and in gar 

enamel/ganoin supports homology of these tissues. Analysis of gnathostome fossils 

suggested that ganoin is plesiomorphic for crown osteichthyans and arose before enamel71; 

thus, enamel-bearing teeth likely evolved by co-opting enamel matrix genes originally used 

in ganoid scales. Amel may have evolved subsequently to encode the principal organic 

component of “true enamel” that appears to have originated in lobe-finned vertebrates68.

Gar expressed twelve additional scpp genes (including odam and scpp9 hypermineralization 

genes66) in both teeth and scales and another four genes in bone (Supplementary Tab. 9), 

strongly suggesting that the common ancestor of extant bony vertebrates had a rich 

repertoire of Scpp genes, many of which were expressed in mineralized tissues, and that 

although teleosts and lobe-finned vertebrates independently lost subsets of ancient Scpp 
genes65, gar retained characteristics of both lineages.

Gar connects vertebrate microRNAomes

MicroRNA genes could become teleost- or tetrapod-specific17,72 by loss in one lineage or 

gain in the other. We studied gar miRNAs computationally (Supplementary Note 11.1, 

Supplementary Tab. 10, Supplementary Fig. 27) and annotated them using a sequence-based 

approach (Supplementary Note 11.2). Small RNA sequencing from four tissues identified 

302 mature miRNAs from 233 genes, 229 belonging to 107 families and four without a 

known family (Supplementary Tab. 11, Supplementary Fig. 28). Gar-zebrafish73,74 

comparisons showed that four families and four individual miRNA genes emerged in 

teleosts. Of 22 families thought to be teleost losses17, two actually belong to the same family 

and orthologs of four gar miRNA genes were previously overlooked in teleosts. Fourteen 

families are absent from both gar and teleosts, and three are present in gar and many 

teleosts74 but absent from zebrafish. A single family present in teleosts and lobe-finned fish 

(mir150) was not found in gar. Notably, no miRNA family loss was teleost-specific, 

suggesting that the TGD did not accelerate family loss.

The ‘gar bridge’ helps identify miRNA orthologies. For example, mammalian Mir425 and 

Mir191, thought to be lost in teleosts17, are orthologs of teleost mir731 and mir462, 

respectively (Fig. 3b). Additionally, mammalian Mir135B is orthologous to gar mir135c and 

zebrafish TGD ohnologs mir135c-1 and mir135c-2 (Fig. 3c). The post-TGD retention rate 

for zebrafish miRNA ohnologs is 39% (81/208 analyzable cases), considerably higher than 

the rate for protein-coding genes (20-24%75), consistent with the hypothesis that miRNA 
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genes are likely to be retained after duplication due to their incorporation into multiple gene 

regulatory networks76-79.

Gar reveals hidden orthology of cis-regulatory elements

Conserved non-coding elements (CNEs) often function as cis-acting regulators80,81, but 

many are not visible in teleosts, presumably due to rapid teleost sequence evolution (Fig. 1b, 

Supplementary Note 7); ancient CNEs identified in tetrapods, however, might be detected in 

ray-finned fish using the slowly evolving gar.

CNE analyses near developmental gene loci (Hox/ParaHox clusters, Pax6, IrxB) showed 

that gar contains more gnathostome CNEs (conserved between bony vertebrates and 

elephant shark) than teleosts. Analyses incorporating gar identified many bony vertebrate 

CNEs (i.e., absent from elephant shark) that were not predicted by direct human-teleost 

comparisons; furthermore, gar-based alignments identified CNEs recruited in the common 

ancestor of ray-finned fishes (Supplementary Notes 9.2, 12.1, Supplementary Tabs. 12-19, 

Supplementary Figs. 14-15,29-35).

Gar unravels the origins of tetrapod limb enhancers, evidenced by whole-genome alignments 

for 13 vertebrates (gar, five teleosts, coelacanth, five tetrapods, elephant shark, 

Supplementary Note 12.2, Supplementary Tabs. 20-21, Supplementary Fig. 36). For 153 

known human limb enhancers 32, 82-84, human-centric alignments identified 71% (108) in 

gar but only 53% (81) in direct human-teleost alignments. Of 72 limb enhancers lacking a 

human-teleost alignment, 40% (29/72) aligned to gar, confirming their presence in the bony 

vertebrate ancestor and loss or considerable divergence in teleosts. Of these 29 enhancers, 15 

also aligned to elephant shark, revealing their existence in the gnathostome ancestor. 

Fourteen occurred in gar but not teleosts and would have been incorrectly characterized as 

lobe-finned innovations without gar (Supplementary Note 12.3, Supplementary Tab. 22).

Using the ‘gar bridge’ (Fig. 4a), we tested whether these 29 enhancers not directly identified 

in teleosts might represent rapid divergence rather than definitive loss. Inspection of human-

centric and gar-centric alignments revealed 48% (14/29) aligning to at least one teleost 

(Supplementary Tab. 22). Gar thus substantially improves understanding of the evolutionary 

origin of vertebrate limb enhancers and their fate in teleosts (Fig. 4b, Supplementary Tab. 

22, Supplementary Fig. 37). Strikingly, despite using the ‘gar bridge’, we found that teleosts 

lost substantially more limb enhancers (15) than gar (two) (Fig. 4b, Supplementary Fig. 37), 

suggesting gar as a better model than teleosts for investigating the fin-to-limb transition85.

Functional studies of a HoxD limb enhancer tested the utility of a ‘gar CNE bridge’. 

HoxD and HoxA clusters pattern proximal and distal mammalian limbs by ‘early’ and ‘late’ 

phases of gene expression, respectively86. Early phase HoxD expression in fins and limbs 

shows several presumed homologous features87 and may derive from shared but cryptic 

regulatory elements. Elements CNS39 and CNS65 drive early phase HoxD activation in 

mammals88 (Figure 5a). Human-centric (Supplementary Tab. 22) and local mouse-centric 

alignments (Figure 5a) failed to detect CNS39 in ray-finned fish, but identified CNS65 in 

gar. Significantly, CNS65 appeared in teleosts only using the ‘gar bridge’ (Figure 5a, 

Supplementary Tab. 22).
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To test if cryptic CNE orthologs preserve enhancer function, we used CNS65-driven reporter 

constructs to generate transgenic zebrafish and mice (Supplementary Note 12.4). CNS65 

from either gar or zebrafish drove early expression in the developing zebrafish pectoral fin 

(Figure 5b). Gar CNS65 drove expression in fore- and hindlimbs of stage e10.5 mice (Figure 

5c) indistinguishable from murine CNS6588. Zebrafish CNS65 activated forelimb expression 

somewhat weaker than gar CNS65 (Figure 5c). At e12.5, gar CNS65 activated proximal but 

not distal limb expression (Figure 5c), mimicking the endogenous murine enhancer88. These 

functional experiments demonstrate that regulation of HoxD early phase expression in limbs 

and fins is an ancestral, conserved feature of bony vertebrates and that gar connects 

otherwise cryptic teleost regulatory mechanisms to mammalian developmental biology.

Gar bridges human CNEs to teleost biomedical models—Genome-wide, we 

identified approximately 28% of human-centric CNEs (39,964/143,525) in gar, more than in 

any of five aligned teleost genomes. Around 19,000 human-centric CNEs aligned to gar but 

not to any teleost (Supplementary Note 12.2, Supplementary Tab. 21). Without gar, one 

would have erroneously concluded that these elements originated in lobe-finned vertebrates 

or were lost in teleosts. The ‘gar bridge’ (Fig. 4a) established hidden orthology from human 

to gar to zebrafish for many of these human-centric CNEs (30-36%, depending on overlap; 

Supplementary Note 12.2, Supplementary Tab. 21). These approximately 6,500 newly 

connected human CNEs contain around a thousand SNPs linked to human conditions in 

genome-wide association studies (GWAS), thereby connecting otherwise undetected 

disease-associated haplotypes to genomic locations in zebrafish (Supplementary Tab. 21). 

The gar bridge thus helps identify biomedically relevant candidate regions in model teleosts 

for functional testing, thereby enhancing teleost models for personalized medicine.

Gar illuminates gene expression evolution following the TGD

Ohnologs experience several non-exclusive fates after genome duplication: loss of one copy, 

evolution of new expression domains or protein functions, and the partitioning of ancestral 

functions89-92. Because the contribution of various fates has not yet been studied using a 

close TGD outgroup, we generated a list of gar genes and their orthologous TGD ohnologs 

or singletons in zebrafish and medaka using phylogenetic93 and conserved synteny 

analyses94 (Fig. 6a,b, Supplementary Note 13.1, Supplementary Tab. 23).

To compare tissue-specific gene expression patterns, we conducted RNA-seq for ten adult 

organs and for stage-matched embryos for gar, zebrafish, and medaka, then normalized reads 

across tissues for each gene in each species (Supplementary Notes 3.2,13.2). For example, 

gar expressed slc1a3 mainly in brain, bone, and testis, but both teleosts expressed one 

ohnolog primarily in brain and the other primarily in liver, a novel expression domain, with 

little expression in bone or testis (Fig. 6c). Novel expression domains like this are expected 

if one ohnolog maintained ancestral patterns while the other evolved new functions95 before 

the teleost radiation. In contrast, gar expressed gpr22 mostly in brain and heart but both 

teleosts expressed one ohnolog in brain, the other in heart (Fig. 6d), as expected by 

partitioning of ancestral regulatory subfunctions89.
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To characterize effects of the TGD on evolution of gene expression, we plotted tissue-

specific expression levels in gar vs. 1) expression of orthologous teleost singletons, 2) 

expression of each TGD ohnolog when both were retained, and 3) the averaged expression 

level of both retained ohnologs (‘ohnolog-pair’), and then calculated correlation coefficients. 

Results showed that the correlation of expression patterns of gar genes to their teleost 

singleton orthologs (‘Singl’ in Fig. 6e,f) was not significantly different from the correlation 

of expression patterns of gar genes to either copy of their teleost TGD co-orthologs 

(‘Ohno1’ and ‘Ohno2’ in Fig. 6e,f); thus, compared to ancestral single-copy genes as 

estimated from gar, teleost ohnologs binned at random do not appear to have evolved 

expression pattern differences significantly more rapidly than singletons. In contrast, the 

average tissue-specific patterns of both TGD duplicates (‘OhnoPair’ in Fig. 6e,f) correlated 

significantly more closely to gar than either ohnolog taken alone and more closely than 

singletons; thus, ancestral gene subfunctions tended to partition between TGD ohnologs and 

to maintain ancestral functions as a gene pair, as predicted by the subfunctionalization 

model89.

We next calculated average expression levels for each gene over the 11 tissues and computed 

the ratio of each teleost gene to its gar ortholog. Comparisons showed that individual 

ohnologs (Fig. 6g,h) were each expressed at significantly lower levels than singletons (Fig. 

6g,h) compared to their gar orthologs. The ratio of expression levels of ohnolog-pairs to gar 

expression levels, however, showed no statistical difference from singleton/gar expression 

ratios (Fig. 6g,h). This finding suggests that the aggregate expression level of ohnolog-pairs 

tends to evolve to approximate the level of the pre-duplication gene as expected by 

quantitative subfunctionalization89,90,96.

Taken together, our analyses indicate that post-TGD, ohnolog-pairs evolved so that the sum 

of their expression domains and the sum of their expression levels usually approximated the 

patterns and levels of pre-duplication genes.

DISCUSSION

Gar is the first ray-finned fish genome sequence not impacted by the TGD. Due to its 

phylogenetic position, slow rate of sequence evolution, dense genetic map, and ease of 

laboratory culture, this resource provides a unique bridge between tetrapods and teleost 

biomedical models. Analysis revealed that gar bridges teleosts to tetrapods in genome 

arrangement, identifying orthologous genes, possessing ancient VGD ohnologs lost 

reciprocally in teleosts and tetrapods, understanding evolution of vertebrate-specific features 

including adaptive immunity and mineralized tissues, and the evolution of gene expression. 

Clarification of gene orthology and history is crucial for the design, analysis, and 

interpretation of teleost models of human disease, including those generated with CRISPR/

Cas9-induced genome editing97,98. Gar analyses show that sequences formerly considered 

unique to teleosts or tetrapods are often shared between ray-finned and lobe-finned 

vertebrates including human. Importantly, the gar bridge helps identify potential gene 

regulatory elements that are shared by teleosts and humans but invisible in direct teleost-

tetrapod comparisons. Availability of gar embryos and ease of raising eggs to adults in the 

laboratory21 (Supplementary Fig. 1) makes gar a ray-finned species of choice when 
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analyzing many vertebrate developmental and physiological features. In conclusion, the gar 

bridge facilitates the connectivity of teleost medical models to human biology.

ONLINE METHODS

A full description of methods can be found in the Supplementary Note. Animal work was 

approved by the University of Oregon Institutional Animal Care and Use Committee 

(Animal Welfare Assurance Number A-3009-01, IACUC protocol 12-02RA).

Gar genome sequencing and assembly

The spotted gar genome was sequenced and assembled using DNA from a single adult 

female gar wild-caught in Bayou Chevreuil, St. James Parish, Louisiana, USA 

(Supplementary Note 1). It was sequenced by Illumina sequencing technology and jumping 

libraries to 90X coverage and assembled into LepOcu1 (accession number 

AHAT00000000.1) using ALLPATHS-LG20. The draft assembly is 945 Mb in size and is 

composed of 869 Mb of sequence plus gaps between contigs. The spotted gar genome 

assembly has a contig N50 size of 68.3 kb, a scaffold N50 size of 6.9 Mb, and quality 

metrics comparable to other vertebrate Illumina genome assemblies20. A total of 209 

scaffolds were anchored in 29 linkage groups using 2,153 of 8,406 meiotic map RAD-tag 

markers19, thus capturing 891 Mb of sequence or 94.2% of bases in the chromonome 

assembly (Supplementary Note 2).

RNA-seq transcriptomes

The Broad Institute gar RNA-seq transcriptome (Supplementary Note 3.1) was generated 

from 10 tissues (stage 28 embryo99, 8 day larvae, eye, liver, heart, skin, muscle, kidney, 

testis) and assembled using Trinity100. PhyloFish RNA-seq transcriptomes of gar 

(Supplementary Note 3.2), bowfin (Supplementary Note 3.3), zebrafish, and medaka 

(Supplementary Note 13.2) were generated from 10 adult tissues (ovary, testis, brain, gills, 

heart, muscle, liver, kidney, bone, intestine) and one embryonic stage (‘pigmented eye’ stage 

of gar, zebrafish, medaka) and assembled using the Velvet/Oases package101.

Genome annotation

Using evidence from the Broad and PhyloFish gar transcriptomes (Supplementary Note 3), 

all RefSeq teleost proteins, and all Uniprot/Swissprot proteins, MAKER222 annotated 

25,645 protein-coding genes (Supplementary Note 4.1). Using the Broad transcriptome 

(Supplementary Note 3.1), the Ensembl gene annotation pipeline identified 18,328 protein-

coding genes for 22,470 transcripts along with 42 pseudogenes and 2,595 ncRNAs 

(Supplementary Note 4.2). Annotations for 762 and 6,877 genes are specific to Ensembl and 

MAKER, respectively. The 21,443 high confidence gene set predicted by MAKER is likely 

close to the true number of gar protein-coding genes.

Annotation of transposable elements

Manual and automatic classification (using RepeatScout and RepeatModeler) of gar TEs 

was performed on the basis of Wicker’s nomenclature102 and identified elements were 

combined into a single library (Supplementary Note 5), which was then used to mask the 
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genome with RepeatMasker. The TE age profile was determined using Kimura distances of 

individual TE copies to the corresponding TE consensus sequence (Supplementary Note 5).

Phylogenomic and evolutionary rate analyses

Phylogenetic analyses (Supplementary Note 6) were based on protein-coding sequence 

alignments described for the coelacanth genome analysis16 but updated with orthologous 

sequences from gar and bowfin (Supplementary Notes 3,4) and from the slowly evolving 

Western painted turtle103. Phylogenetic reconstructions were carried out with RAxML104 

and PhyloBayes MPI105. Molecular rate analyses (Supplementary Note 7) were performed at 

the protein alignment level with Tajima’s relative rate tests106 and at the level of the 

reconstructed phylogenies with Two-Cluster tests107.

Genome structure analyses

The spotted gar karyotype was determined from caudal fin fibroblast cell cultures 

established as described for zebrafish108 (Supplementary Note 8.1). Conserved synteny 

analyses between gar, tetrapods (human, chicken) and teleosts (Supplementary Note 8.2) 

were performed with 1) Circos plots109 based on orthology relations from Ensembl75 and as 

described in Supplementary Note 13.1); 2) the Synteny Database94 after integration of the 

gar genome assembly (Ensembl74 version); and 3) comparative synteny maps derived as 

described in refs.16,110.

Gene family analyses

Individual gene families were analyzed as described in Supplementary Notes 9. RT-PCR and 

sequencing was performed to annotate and to analyze gene expression of scpp 
mineralization genes using cDNA libraries from gar teeth, jaw, and scales (Supplementary 

Note 10).

miRNA annotation and analysis

Gar miRNAs were studied in silico (Supplementary Note 11.1) by blasting teleost and 

tetrapod miRNAs from miRBase74,111-113 against the gar genome assembly and confirmed 

with RNAfold114 (see also ref.72). miRNA annotation and analyses based on sequencing 

data of gar miRNAs (Supplementary Note 11.2) was performed as described for zebrafish73 

by utilizing small RNA-seq data from adult brain, heart, testis, and ovary tissue, which were 

processed and annotated with Prost!115 according to miRNA gene nomenclature 

guidelines116; miRNA orthologies based on conserved synteny were established using 

Ensembl117, the Synteny Database94 and Genomicus118,119.

Analysis of conserved non-coding elements

Investigation of CNEs in developmental gene loci were performed using SLAGAN120 in 

VISTA121 (Supplementary Notes 9.2,12.1). Gar-, zebrafish-, and human-centric 13-way 

multi-genome alignments were generated with MultiZ122 based on lastZ123 pairwise whole 

genome alignments (WGAs). We used phyloFit124 to generate a neutral model of 4d site 

evolution to identify conserved elements with phastCons124; genic elements and repetitive 

sequences were filtered out to obtain CNEs. Evolution of human limb enhancers32,82-84 was 
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established using WGAs and conserved synteny curation. Genome-wide connectivity of 

CNEs and embedded GWAS-SNPs from human to zebrafish through gar was established 

from WGAs using liftOver125 and BEDtools126 (Supplementary Notes 12.2,12.3).

HoxD enhancer functional analysis

Gar and teleost orthologs of HoxD early enhancer CNS65 were identified with VISTA 

(LAGAN)121. Gar and zebrafish CNS65 were cloned into pXIG-cFos-eGFP and Gateway-

Hsp68-LacZ vectors for zebrafish127 and mouse transgenesis (Cyagen Biosciences), 

respectively (Supplementary Note 12.4).

Comparative gene expression analyses

Curated lists of TGD ohnologs and TGD singletons of zebrafish and medaka and their gar 

(co-)orthologs were generated by integrating phylogenetic information from 

EnsemblCompara GeneTrees93 (Ensembl74) and conserved synteny data from the Synteny 

Database94 (Supplementary Note 13.1). For all three species, RNA-seq reads from the 

PhyloFish transcriptomes (Supplementary Note 3.2,13.2) were mapped against the longest 

Ensembl reference coding sequence of each gene with BWA-Bowtie128,129, counted with 

SAMtools130 and normalized for each gene across the 11 tissues using DESeq131. The 

correlation of expression patterns and relative levels of expression between each zebrafish/

medaka gene and its gar ortholog and of singletons, ohnolog 1, ohnolog 2, and ‘ohnolog 

pairs’ were determined using R132. See Supplementary Note 13.2 for additional information 

including definition of ‘ohnolog pair’ expression and criteria for detecting neo- and 

subfunctionalization detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spotted gar bridges vertebrate genomes
a) Spotted gar is a ray-finned fish that diverged from teleost fish, including the major 

biomedical models zebrafish, platyfish, medaka, and stickleback, before the teleost genome 

duplication (TGD). Gar connects teleosts to lobe-finned vertebrates, such as coelacanth and 

tetrapods, including human, by clarifying evolution after two earlier rounds of vertebrate 

genome duplication (VGD1, VGD2) that occurred before the divergence of ray-finned and 

lobe-finned fish 450 million years ago (MYA). b) Bayesian phylogeny inferred from an 

alignment of 97,794 amino acid site positions from 243 proteins with one-to-one orthology 
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ratio from 25 jawed (gnathostome) vertebrates using PhyloBayes under the CAT+GTR+Γ4 

model and rooted on cartilaginous fish. Node support is shown as posterior probability and 

bootstrap support from maximum likelihood analysis (Supplementary Fig. 6). The tree 

shows the monophyly and slow evolution of Holostei (gar plus bowfin) compared to their 

sister lineage, the teleosts (Teleostei). See also Supplementary File 1 and Source Dataset 1.
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Figure 2. Spotted gar preserves ancestral genome structure
a) The spotted gar karyotype consists of macro- and microchromosomes (see Supplementary 

Fig. 7 for chromosome annotations). b) Circos plot109 showing conserved synteny of gar 

(colored, left) vs. human (black, right) chromosomes. c) Gar vs. chicken shows strong 

conservation of genomes for 450 million years and one-to-one synteny conservation for 

many entire chromosomes, particularly microchromosomes (e.g., Loc13 and Gga14; Loc23 

and Gga11, etc.). d) Assembled chromosome lengths (in megabases, Mb) for gar and 

chicken chromosomes with one-to-one conserved synteny are highly correlated (R2 = 0.97). 
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e) Gar vs. medaka shows the overall one-to-two double-conserved synteny relationship of 

gar to a post-TGD teleost genome (e.g., gar Loc24 and Ola16/Ola11). Gar chromosomes are 

displayed in a different order in d compared to b/c; asterisks indicate chromosomes inverted 

with respect to the arbitrarily oriented reference genomes. f) Gar-chicken-medaka 

comparisons illuminate karyotype evolution leading to modern teleosts. The bony vertebrate 

ancestor genome contained both macro- and microchromosomes, some of which remain 

largely conserved in chicken and gar, e.g., macrochromosome Loc2/GgaZ and 

microchromosomes Loc20/Gga15 and Loc21/Gga17. All three chromosomes possess double 

conserved synteny with medaka chromosomes Ola9 and Ola12, which is explained by 

chromosome fusion in the lineage leading to teleosts after divergence from gar, followed by 

TGD duplication of the fusion chromosome and subsequent intrachromosomal 

rearrangements and rediploidization. Multiple examples of such pre-TGD chromosome 

fusions explain the absence of microchromosomes in teleosts. See Supplementary Note 8.2 

and Source Dataset 2 for details.
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Figure 3. Gar helps connect vertebrate protein-coding and miRNA genes
a) Scpp gene arrangement in human, coelacanth, gar, and zebrafish including P/Q-rich (red) 

and acidic Scpp genes (blue) and Sparc-like genes (yellow) (Supplementary Note 10, ref.68). 

Orthologies (gray vertical bars) among lobe-finned vertebrates (e.g., human, coelacanth) and 

teleosts (e.g., zebrafish) had previously been limited to Odam and Spp1. Gar connects 

lineages through orthologs of genes previously known only from either teleosts (scpp1, 

scpp3 genes, scpp5, scpp7, scpp9) or lobe-finned vertebrates (enam, ambn, dmp1, dsppl1, 

ibsp, mepe). Further putative orthologies supported by only short stretches of sequence 

similarity (‘?’) connect gar enam, ambn, and lpq14 with zebrafish fa93e10, scpp6, and 

scpp8, respectively; gar lpq1 and Scpppq4 in coelacanth; and gar lpq5 with Amtn in lobe-

finned vertebrates. Arrows in human and zebrafish indicate intra-chromosomal 
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rearrangements separating originally clustered genes into distant chromosomal locations 

(distance in megabases, Mb). Conserved synteny analysis of the gar scpp gene cluster on 

LG2 suggests that the scpp gene regions on zebrafish chromosomes 10 and 5 are derived 

from the TGD (Supplementary Note 10, Supplementary Fig. 26). b) The gar ‘conserved 

synteny bridge’ (Supplementary Note 11.2) infers that the miRNA cluster of mir731 and 

mir462 on gar LG4 and zebrafish chromosome 8 and a miRNA-free region on zebrafish 

chromosome 2 are TGD ohnologous to the mammalian Mir425-191 cluster. c) Gar newly 

connects through synteny zebrafish TGD ohnologs mir135c-1 and mir135c-2 with 

mammalian Mir135B. See Source Dataset 3 for genomic locations in a-c.
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Figure 4. Gar provides connectivity of vertebrate regulatory elements
a) The ‘gar bridge principle’ of vertebrate CNE connectivity from human through gar to 

teleosts. Hidden orthology is revealed for elements that do not directly align between human 

and teleosts but become evident when first aligning tetrapod genomes to gar, and then 

aligning gar and teleost genomes. b) Connectivity analysis of 13-way whole-genome 

alignments reveals the evolutionary gain (green) and loss (red) of 153 human limb 

enhancers. Direct human-teleost orthology could only be established for 81 elements as 
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opposed to 95 when taking gar as bridge (a). See Supplementary Notes 12.2,12.3, 

Supplementary Tab. 22, and Supplementary Fig. 37 for details.
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Figure 5. Identification and functional analysis of the gar and teleost early phase HoxD enhancer 
CNS65
a) Schematic of the mouse HoxD telomeric gene desert, which contains enhancers CNS39 

and CNS65 that drive early phase HoxD expression in limbs (upper part). Using mouse as 

baseline, Vista alignments of the HoxD gene desert show sequence conservation with human 

and chicken for CNS65, but not with teleosts (zebrafish, pufferfish) (lower part, left). An 

alignment including gar, however, reveals a significant peak of conservation in the gar 

sequence (middle). Using the identified gar CNS65 as baseline revealed CNS65 orthologs in 

zebrafish and pufferfish (right). b) Gar (left) and zebrafish (right) CNS65 orthologs drive 
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robust and reproducible GFP expression in zebrafish pectoral fins at 36 hours post 

fertilization (hpf) (upper panel). Pectoral fin activity of gar CNS65 begins at 31 hpf, drives 

activity throughout the fin, and becomes deactivated around 48 hpf (lower panel). Dotted 

lines: distal portion of the pectoral fins. c) Gar CNS65 drives expression throughout the 

early mouse fore-and hindlimbs (arrows) at stage e10.5 (left). At later stages (e12.5), gar 

CNS65 activity is restricted to the proximal portion of the limb and absent in developing 

digits (middle). Zebrafish CNS65 drives reporter expression in developing mouse limbs at 

e10.5, but only in forelimbs (right). Number of LacZ-positive embryos showing limb signal 

is indicated at the bottom right; fl, forelimb, hl, hindlimb (c). Scale bars: 50 μm (b); 500 μm 

(c). See also Supplementary Note 12.4.
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Figure 6. Gar illuminates gene expression evolution post-TGD
Origin (a) and distribution (b) of gar and teleost singletons or TGD ohnologs 

(Supplementary Note 13.1, Supplementary Tab. 23). c) Neofunctionalized ohnologs 

(slc1a3): novel expression in liver; d) Subfunctionalized ohnologs (gpr22): one is expressed 

in brain like in gar, the other in heart like in gar; r: correlation of expression profiles of each 

ohnolog vs. gar pattern. Supplementary Note 13.2 lists neo- and subfunctionalization 

criteria. e-h) Expression conservation for ohnologs or singletons in zebrafish (Zf; e, g) and 

medaka (Md; f, h) (Supplementary Note 13.2). e, f) Mean correlations (r values) between 
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expression patterns of gar genes and teleost ortholog(s). Correlations of average expression 

levels of ohnolog-pairs to gar were greater than ohnologs alone and than singletons, showing 

sharing of ancestral subfunctions between the ohnolog-pair (multiple Wilcoxon Mann-

Whitney tests with Bonferroni correction; alpha value 0.05 for significance). g, h) Mean 

Log10 ratios between expression levels of gar genes and teleost ortholog(s). Individual 

ohnologs compared to gar were expressed at significantly lower levels than singletons, but 

ohnolog-pair/gar ratios were not statistically different from singleton/gar ratios, suggesting 

that expression levels of ohnolog-pairs approach pre-duplication genes (multiple two-sided 

Student t-test with Bonferroni correction; alpha value 0.05 for significance). Error bars: 

standard error of the mean (s.e.m.). ‘OhnoPair’: average expression of ohnolog-pair 

(Supplementary Note 13.2). Br, brain; Gil, gill; Hrt, heart; Mus, muscle; Liv, liver, Kid, 

kidney; Bo, bone; Int, intestine; Ov, ovary; Te, testis; Emb, embryo. Source Dataset 4 

contains data for Fig. 6c-h.
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