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Abstract:

Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals.
It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility
and/or clinical  outcomes.  Major genes that  were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1),  NPT4
(SLC17A3),  NPT5  (SLC17A4),  MCT9,  ABCG2,  ABCC4,  KCNQ1,  PDZK1,  NIPAL1,  IL1β,  IL-8,  IL-12B,  IL-23R,  TNFA,
MCP-1/CCL2,  NLRP3,  PPARGC1B,  TLR4,  CD14,  CARD8,  P2X7R,  EGF,  A1CF,  HNF4G and TRIM46,  LRP2,  GKRP,  ADRB3,
ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A  and MYL2-
CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism.
Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis
of gout, as well as to develop targeted therapies for gout.

Keywords: Gout, Single nucleotide polymorphism, Genome-wide association study, Case-control study, Imume regulatory genes,
MSU.

1. INTRODUCTION

Gout is a chronic inflammatory arthritis resulting from high levels of serum urate (hyperuricemia) and monosodium
urate crystal deposition in joints and soft tissues. The prevalence of gout is about 1-4% in the general population, and
certain racial/ethnic groups may have a higher incidence such as 13.9% in Māori men in New Zealand [1]. Urate is
formed from dietary purines (about 20%) and catabolism of endogenously synthesized purines (about 80%). In humans,
two thirds of urate are excreted from kidneys and the rest via intestine. The balance of the production and the secretion
determines  the  level  of  serum  urate.  According  to  patient's  fractional  excretion  of  urate  clearance  (urate
clearance/creatinine clearance ratio, FEUA) and Urinary Urate Excretion (UUE), gout is classified into two distinct
types,  Renal  Overload  (ROL)  gout  and  Renal  Underexcretion  (RUE)  gout  [2].  ROL  gout  results  from  urate
overproduction  and/or  extra-renal  underexcretion,  both  of  which  are  characterized  by  increased  UUE.

Genetic  contribution  to  hyperuricemia  and  gout  appears  very  complex  [3,  4].  Some  rare  monogenic  metabolic
disorders are associated with gout. For example, Hypoxanthine-Guanine Phosphoribosyltransferase (HPRT) deficiency
[5, 6] and Phosphoribosyl Pyrophosphate Synthetase 1 (PRPS1) superactivity [7 - 9] result in uric acid overproduction,
which leads to gout. HPRT1, an important enzyme in the salvage pathway of purine nucleotide synthesis, catalyzes
 hypoxanthine to  Inosine  Monophosphate (IMP) and  guanine to Guanosine Monophosphate (GMP). PRPS1, a crucial
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enzyme  in  the  de  novo   synthesis  of   purine  nucleotide   pathway,  catalyzes   Adenosine  Triphosphate  (ATP)  and
ribose-5- phophate to Phosphoribosylpyrophosphate (PRPP). At present, more than 600 mutations in HPRT1 gene [10]
and 9 mutations in PRPS1 gene associated with PRPS1 superactivity [9, 11] have been reported.

Over  the  past  20  years,  extensive  studies  have  been  performed  in  searching  for  genetic  factors  contributing  to
hyperuricemia and gout. In this review, we systemically reviewed original papers of genetic association studies of gout
from November 2007 to March 2018 through PubMed, and summarized the genes with polymorphisms that have been
reported in associations with gout. These genes are mainly involved in urate transport, inflammation, innate immunity
and material metabolism. A complete list of gout-associated genes and genetic loci is summarized in Table 1.

Table 1. A complete list of gout-associated genes and genetic loci.

Variant Location Effect
allele OR P value

Population
Reference

Discovery Replication
rs121907892 (W258X) Exon G infinity 2×10-2 Japanese male Japanese male [35, 36]
rs121907896 (R90H) Exon G   Japanese male – [36]
rs11231825 (H142H) Exon T 1.631 3.26×10-2 Spanish – [37]

rs475688 Intron
C 1.84 1×10-4 Han Chinese and Solomon Islanders – [38]
T 1.26 4.3×10-2 New Zealand European Caucasian – [39]
  No association New Zealand Polynesian – [39]

rs505802 5’ intergenic
A 0.747 9.88 ×10-4 Han Chinese male – [40]
  No association German – [41]

rs2285340 Intron
A 1.4 4.61×10-11 Japanese male – [2]
  No association New Zealand Polynesian – [2]

rs734553 Intron G 0.66 5.6×10-7 German Han Chinese male [40, 41]

rs16890979 (V253I) Exon

T 0.59 7.9×10 -14 US Caucasian

New Zealand
Māori, Pacific

Island, Caucasian,
Spanish, Chinese

[57 - 59]

  No association  
Korean, Japanese
men, Han Chinese

male, Czech
[60 - 63]

rs1014290 Intron
C 1.4 1×10-4 Scottish Japanese male, Han

Chinese [64, 2, 61, 65, 35]

  No association Solomon Islanders – [65]

rs6449213 Intron
T 1.32 3×10 -2 Scottish German, US

Caucasian [64, 66, 57]

  No association Korean – [60]

rs3733591 (R265H) Exon

G 1.52 7.3×10-4 Japanese male Han Chinese [61, 65]

  No association
Solomon Islanders, New Zealander,
Chinese Han and Minnan population

in China
– [65, 67, 68, 69]

rs6855911 Intron
G 0.62 3.2×10-7 German German [66, 41]
  No association Minnan population in China – [69]

rs12510549 5’ intergenic
C 0.67 5.1×10-5 German New Zealand

Caucasian [66, 58]

  No association New Zealand Māori,pacific Island – [58]

rs11722228 Intron
T 1.619 2.4×10-6 Han Chinese male – [62]
  No association Malaysian male – [70]

rs3775948 Intron
G 1.61 5.5×10-27 Japanese male – [71]
G 0.738 3.09 ×10-3 Han Chinese male – [62]

rs13129697 Intron T 1.4 4.66 × 10-3 African American – [72]
rs7663032 Intron T 1.46 3.97 × 10-3 African American – [72]

rs5028843 Intron A 0.13 7.2 × 10-5 New Zealand Māori New Zealand,
Caucasian [58]

rs11942223 Intron C 0.06 3.7 × 10-7 New Zealand Māori New Zealand,
Caucasian [58]

rs13124007 promoter C 1.709 6×10-3 Chinese male – [74]
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Variant Location Effect
allele OR P value

Population
Reference

Discovery Replication

rs17300741 Intron

A 1.85 2×10-2 Spanish – [37]
G 1.63 4.9×10-2 Japanese – [76]

  No association New Zealander, German, Chinese
Han, Japanese male – [39, 41, 68, 40,

35]
rs3579352 Intron C 0.71 1.08×10-3 Chinese – [59]

rs1183201 Intron
T 0.67 3× 10-6 Caucasian Han Chinese male [80, 40]
  No association German – [41]

rs1165196 (I269T) Exon
C 0.6 5.5×10-3 Japanese male Caucasian, Spanish,

Japanese male [81, 80, 37, 35]

  No association  Chinese Han [68]
rs1179086 Intron T 0.69 1.2×10-2 Japanese male – [81]
rs3757131 Intron T 0.6 5.9×10-3 Japanese male – [81]

rs12664474 5’ UTR
G 1.36 1.2 × 10-3 Caucasian – [80]
  No association Polynesian – [80]

rs1165205 Intron
A 0.85 2·0×10 -3 White American – [57]
  No association Chinese Han and Minnan population – [68, 69]

rs9358890 Exon
G 1.19 1.8×10-2 Chinese – [59]
  No association Caucasian, Polynesian – [80]

rs2242206 (K258T) Exon G 1.28 1.2×10-2 Japanese male – [86]
rs2231137 (V12M) Exon T 0.55 2.55×10-6 Chinese Han male Chinese [91, 59, 92]

rs1481012 Intron G 2.5 1.55×10-43 Chinese – [59]
rs3114018 Intron A 1.71 2.6×10-2 Chinese Han Chinese [93, 92]
rs2728125  C 2.05 1.5×10-27 Japanese male – [71]

rs72552713 (Q126X) Exon T 4.25 3.04 × 10-8 Japanese male Chinese and
Japanese male [94, 91, 35, 95]

rs3114020 promoter
T 1.58 4.8×10-2 Chinese Han – [93]
C 2.03 1.17×10-20 Japanese male – [2]

rs2231142 (Q141K) Exon
T 1.74 3.3×10-15 White American

Japanese, Spanish,
German, Korean,

Chinese, American,
New Zealand

Pacific Island and
Caucasian

[57, 35, 37, 41,
60, 68, 69, 71, 72,
88, 91, 92, 94-98]

  No association New Zealand Māori , Chinese Han – [97, 93]

rs4148500 Intron A 1.3 3.8×10-3 New Zealand Māori and Pacific
Island – [104]

rs179785 Intron G 0.82 1.28 × 10-8 Han Chinese male – [107]

rs1967017 promoter
C 0.705 1.6×10-2 male Han Chinese New Zealander,

American [109, 110, 111]

  No association American – [112]

rs12129861 5’ Intergenic
A 0.727 1.5×10-2 male Han Chinese Japanese [109, 113]
  No association Japanese and Chinese male, German – [35, 40, 41, 114]

rs11733284 Intron A 1.34 1.13×10-8 Japanese male – [2]
rs1143623 Promoter G 1.1 2×10-2 European and Polynesian – [118]
rs2569190 Promoter A 1.08 3.6×10-2 European and Polynesian – [118]

rs4073 (–251T/A ) promoter T 1.229 3.1×10-2 Chinese male Chinese [121, 122]
rs3212227 (1188A/C ) 3’ UTR A 1.404 < 1×10-3 Chinese male – [121]

rs7517847 Intron G 0.826 4×10-2 Chinese Han male – [127]
rs10889677 3’ UTR A 1.137 5.9×10-2 Chinese Han male – [128]

rs1800630 (-863C/A ) promoter A 2.3 <1×10-3 male Taiwanese – [130]
rs1024611 (-2518A/G) promoter G 1.182 7×10-3 Chinese male – [131]

rs3806268 Exon G 1.83 <3×10-2 Chinese – [135]
rs45520937 Exon A 1.85 6.66×10 -9 Han Chinese – [137]

(Table 1) contd.....
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Variant Location Effect
allele OR P value

Population
Reference

Discovery Replication

rs2143956 Exon
T 1.48 3.58× 10 -5 Chinese male – [140]
T 1.122 1.2×10-2 European – [141]
T 0.8 1.1×10-2 NZ Polynesian – [141]

rs2043211 (C10X) Exon
T 1.12 7×10-3 European – [118]

  No association NZ Polynesian, Chinese male,
Korean male – [118, 144, 145]

rs1653624 Exon A 1.608 2×10-2 Chinese – [147]
rs7958316 Exon A 1.698 8×10-3 Chinese – [147]
rs17525809 Exon T 2.728 0.000 Chinese – [147]
rs2298999 Intron T 0.77 6.42×10-3 male Chinese Han – [153]
rs10821905 5’ UTR A 1.61 1.57×10-3 Chinese – [59]
rs2941484 3’ UTR T 1.28 1.08×10-3 Chinese – [59]
rs4971101 3’ UTR G 1.37 3.25×10-4 Chinese – [59]
rs2070803 3’ UTR A 1.22 3.1×10-2 Chinese – [59]

rs2544390 Intron
T 1.32 2.5×10-2 Japanese male Chinese, New

Zealander [35, 155, 156]

T 0.79 2×10-2 European – [156]
  No association Japanese male – [157]

rs780093 Intron T 1.17 4.7×10-4 American Han Chinese male [112, 160]

rs1260326 (L446P) Exon T 1.36 1.9×10-12 Japanese male Japanese male,
Chinese [71, 2, 62, 59]

rs6547692 Intron A 0.696 2.20×10-4 Han Chinese male – [62]

rs780094 Intron
A 1.518 4.00×10-4 Han Chinese male Chinese, Japanese

male [160, 40, 59, 35]

  No association German – [41]

rs4994 (W64R) Exon
C 1.5 1.30×10-2 Chinese male – [162]
  No association combined Polynesian – [163]

rs671 (E504K) Exon G 1.88 1.70×10 -18 Japanese male Japanese and Han
Chinese male

[164, 165, 62,
166]

rs1229984 (H48R) Exon A 1.16 3.70×10-2 Japanese male – [165]

rs4680 (V158M) Exon
A 0.77 1.50×10-2 Chinese – [155]
  No association Taiwanese aborigines – [170]

rs1137070 (D470D) Exon T 1.46 2.00× 10 -4 Taiwanese aborigines – [170]
rs2283725 Intron A 1.38 6.00× 10 -4 Taiwanese aborigines – [170]
rs5953210 5’ Intergenic G 1.34 1.00× 10 -3 Taiwanese aborigines – [170]

rs7688672 Intron
A 1.96 7.00×10-3 Taiwanese – [172]
  No association Chinese male – [173]

rs10033237 Intron
G 1.302 8×10-3 Chinese male – [173]
  No association Taiwanese – [172]

rs3756230 Intron C 0.64 1.3×10-2 Han Chinese – [176]
rs12498927 Intron A 1.377 2.7×10-2 Han Chinese – [176]

rs11726117 (M861T) Exon
C 1.44 3.78×10-6 Taiwan aborigines Taiwanese Han [178]
  No association male Japanese – [179]

rs231247 (R1084R) Exon G 1.46 2×10-6 Taiwan aborigines Taiwanese Han [178]

rs231253 3’ UTR
G 1.45 3.48×10-6 Taiwan aborigines – [178]
  No association Taiwanese Han – [178]

rs742132 Intron
A 1.3 1.5×10-2 Japanese male Japanese male [180, 181]
  No association German, Han Chinese – [41, 40]

rs12236871 5’ UTR G 0.81 1.48 ×10-10 Han Chinese male – [107]
rs9895661 Intron C 0.594 6.94×10-7 Han Chinese male – [62]
rs9905274 Intron T 0.79 6.45 × 10-13 Han Chinese male – [107]
rs11653176 Intron T 0.79 1.36 × 10-13 Han Chinese male – [107]

(Table 1) contd.....
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Variant Location Effect
allele OR P value

Population
Reference

Discovery Replication

rs4073582 Intron G 1.66 6.4×10 -9 Japanese male Japanese and Han
Chinese male [71, 2, 62]

rs7903456 Intron A 1.34 4.29×10-8 Japanese male – [2]
rs2188380 intergenic T 1.75 1.6×10 -23 Japanese male – [71]
rs4766566 Intron T 1.51 4.03 × 10 -20 Japanese male – [2]

2. MEMBRANE TRANSPORTERS - SOLUTE CARRIER FAMILY

2.1. URAT1

Urate transporter 1 (URAT1), also known as solute carrier family 22, member 12 (SLC22A12), is a transmembrane
protein on the proximal tubule apical surface. It mediates the re-absorption of uric acid from the proximal tubule [12].
In the studies on gout patients from Japan [12 - 27], Korea [28 - 30], Iraq [31], China [32], and Czech Republic [33, 34],
loss-of-function mutations of SLC22A12 (R90H, R92C, V138M, G164S, R203C, T217M, A226V, R228E, W258X,
Q297X,  E298D,  Q312L,  D313A,  Q382L,  R406C,  M430T,  L418R,  G444R,  R477H,  A51fsX64,  V547fsX602,
L415_G417del,  IVS2+1G>A,  c.935_997delinsTGG)  were  associated  with  hypouricemia.  Two  frequent  causative
mutations, rs121907892 (W258X) [35, 36] and rs121907896 (R90H) [36], appeared protective against gout, and were
associated  with  a  decreased  urate-transport  function  [12,  14].  A study  of  a  Spanish  cohort  showed that  T  allele  of
URAT1 rs11231825 (H142H) was associated with gout, in particular with patients who presented a reduced uric acid
excretion [37]. In addition, there are some other URAT1 SNPs examined, but achieved conflicting results from different
study populations, such as rs475688 [38, 39], rs505802 [40, 41] and rs2285340 [2].

2.2. GLUT9

Glucose transporter type 9 (GLUT9), also known as solute carrier family 2 member 9 (SLC2A9), has two distinct
isoforms  based  on  the  alternative  splicing  of  the  N-terminal,  GLUT9-L  and  GLUT9ΔN [42,  43].  Loss-of-function
mutations  of  SLC2A9  (W23X,  G72D,  L75R,  Ile118HisfsX27,  T125M,  R171C,  R198C,  G207X,  G216R,  N333S,
R380W,P412R,  dupExon1a-11,  delExon7,  c.1215+1  G>A)  could  result  in  renal  hypouricemia  [24,  34,  44  -  56].
Multiple genetic studies on GLUT9 gene have been conducted in gout. Rs734553 was associated with gout in German
[41]  and  Han  Chinese  male  [40]  populations.  Some  of  the  reported  gout-associated  polymorphisms  appeared
inconsistent in different study populations. For instance, rs16890979 (V253I) was associated with gout in a Genome-
Wide Association Study (GWAS) of US Caucasian [57], which was replicated in the studies of New Zealand Māori,
Pacific Island, Caucasian [58], Spanish [37] and Chinese [59] cohorts, but inconsistent in some Asia cohort studies
including Korean, Japanese male and Han Chinese male [60 - 62] populations and a Czech population [63]. In addition,
rs1014290 was associated with gout in British [64], Japanese and Chinese populations [2, 35, 61, 65], but the study in a
Solomon Islanders population indicated a negative result [65]; rs6449213 in British [64], German [66] and US [57]
populations,  but  not  in  Korean  population  [60];  rs3733591  (R265H)  in  Japanese  male  [61]  and  Han  Chinese  [65]
populations, but not in Solomon Islanders [65], New Zealand Māori, Pacific Island, Caucasian [67] and inconsistent in
Chinese populations [68, 69]; rs6855911 in German [41, 66], not in a Chinese cohort [69]; rs12510549 in German [66]
and  New  Zealand  Caucasian  populations  [58],  not  in  New  Zealand  Māori  and  Pacific  Island  populations  [58];
rs11722228 in a Han Chinese male cohort [62], not in a Malaysian male cohort [70]. The G allele of rs3775948 was
reported as a risk to gout in a Japanese male [71], but protective in a Han Chinese male cohort [62]. A study on African
American  population  showed  that  rs13129697  and  rs7663032  were  associated  with  gout  [72].  Rs5028843  and
rs11942223 were associated with gout in New Zealander populations [58]. Recently, a study showed that rs11942223
was not associated with tophi in people with gout in New Zealander populations [73].In addition, the SNP rs13124007
at the promoter region was associated with gout in a Chinese male cohort [74], and its C to G substitution led to a loss
of a binding site for interferon regulatory factor 1 (IRF-1) [74].

2.3. OAT4

Organic anion transporter 4 (OAT4), also named solute carrier family 22 member 11 (SLC22A11), is a low-affinity
uric acid transporter [75]. The G allele of rs17300741 was associated with RUE type gout in a Japanese cohort [76].
However, it was the A allele of this SNP in a Spanish cohort [37], and no association was observed in Chinese [40, 68],
German [41], New Zealander [39] populations, and another Japanese male cohort [35].

(Table 1) contd.....
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2.4. NPT1 (SLC17A1)

Sodium-dependent  phosphate  cotransporter  type  1  (NPT1)  also  named  solute  carrier  family  17  member  1
(SLC17A1) is a member of the SLC17 phosphate transporter family [77, 78]. It is located in the renal proximal tubule
involved in urate excretion [79]. Genetic associations with gout were observed in several NPT1 SNPs. Rs3579352 was
associated with gout in a Chinese cohort [59]; rs1183201 in both cohorts of Chinese [40] and New Zealander Caucasian
[80], but which appeared conflicting in a German cohort [41]; rs1165196 was associated with gout in Japanese male,
Caucasian, Spanish cohorts [35, 37, 80, 81], but not in a Chinese cohort [68]. The SNPs rs1165196, rs1179086 and
rs3757131 were associated with the development of gout in a Japanese male population [81]. Among them, rs1165196
(I269T) is a missense variant, and 269T allele was correlated with an increased NPT1-mediated urate export [79, 82].

2.5. NPT4 (SLC17A3)

Sodium phosphate transporter 4 (NPT4) or solute carrier family 17 member 3 (SLC17A3) is a voltage-dependent
efflux transport for urate, anionic compounds and drugs in renal proximal tubule cells [83]. The conflicting results were
observed in  studies  of  rs12664474 of  the  NPT4  gene  in  New Zealander,  in  which  it  was  associated  with  gout  in  a
Caucasian  cohort,  but  not  in  three  Polynesian  cohorts  [80].  In  addition,  rs1165205  was  linked  with  gout  in  US
Caucasians [57], but it was not replicated in two Chinese cohorts [68, 69].

2.6. NPT5 (SLC17A4)

Sodium/phosphate cotransporter homologue (NPT5) or solute carrier family 17 member 4 (SLC17A4) is an organic
anion exporter  located in the intestinal  duct  [84].  Similar  to  the studies  of  NPT4,  conflicting results  of  NPT5  were
observed  in  different  populations.  Rs9358890  was  associated  with  gout  in  Chinese  patients  [59],  but  not  in  New
Zealander [80].

2.7. MCT9 (SLC16A9)

Monocarboxylate transporter 9 (MCT9) or solute carrier family 16 member 9 (SLC16A9) facilitates transportation
of monocarboxylates such as lactate and pyruvate across plasma membrane [85]. Rs2242206 of SLC16A9 gene was
associated with ROL gout but not with overall gout in a Japanese male cohort [86].

3. ATP-BINDING CASSETTE TRANSPORTER FAMILY

3.1. ABCG2

The ATP-Binding Cassette subfamily G member 2 (ABCG2) protein, also known as breast cancer resistance protein
(BCRP), is a member of the ATP-binding cassette family which transports a wide range of substrates [87]. It is highly
expressed in the renal proximal tubular cells, the apical membrane of the intestinal epithelium and liver hepatocytes that
regulate excretion of uric acid [88 - 90]. Several SNPs of the ABCG2 gene were associated with gout. Among them,
rs2231137 (V12M), rs1481012 and rs3114018 were associated with gout in Chinese cohorts [59, 91 - 93]; rs2728125 in
a Japanese cohort [71]; and rs72552713 (Q126X) in both Japanese male and Chinese male cohorts [35, 91, 94, 95]. The
conflicting results  were observed in a study of rs3114020, in which the risk allele was C allele in a Japanese male
cohort [2], but T allele in a Han Chinese cohort [93].

The  SNP rs2231142 (Q141K) of  the  ABCG2  gene  was  extensively  investigated.  It  was  associated  with  gout  in
multiple studies of different ethnic populations [35, 37, 41, 57, 60, 68, 69, 71, 72, 88, 91, 92, 94 - 98], except in a New
Zealand Māori  [97] and a Han Chinese cohort  [93].  Compared to the wild-type of rs2231142 Q141, the K141 was
correlated  to  a  54%  reduction  of  urate  transport  rates  [88].  Furthermore,  this  SNP  was  reported  as  an  important
influence factor of drug response [99 - 102]. For example, the T allele of rs2231142 was associated with a reduced
response and a poor response to allopurinol [101, 102].

3.2. ABCC4

The ATP-binding cassette subfamily C member 4 (ABCC4) or Multidrug Resistance Protein 4 (MRP4) is an ATP-
dependent  unidirectional  efflux  transport  for  urate  [103].  A  study  in  New  Zealand  Māori  and  Pacific  populations
showed that rs4148500 was significantly associated with gout, as well as with reduced fractional excretion of uric acid
in men [104].
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4. OTHER MEMBRANE TRANSPORTERS

4.1. KCNQ1

KCNQ1, a potassium voltage-gated channel protein that forms a functional potassium selective pore [105] and plays
crucial roles in cardiac rhythm and extra-cardiac effects such as secretion of insulin [106]. Mutations in KCNQ1 gene
were associated with congenital Long QT Syndrome (LQTS) and some variants were associated with diabetes. The
GWAS in a Han Chinese male cohort showed that rs179785 of the KCNQ1 gene was associated with gout [107].

4.2. PDZK1

PDZ  Domain  containing  1(PDZK1)  is  a  scaffolding  protein  that  interacts  with  many  proteins  at  the  plasma
membrane, including urate transporter [108]. The SNPs rs1967017 and rs12129861 of the PDZK1 gene were associated
with gout in men of Han Chinese [109]. The former was replicated in a New Zealand study [110], but was conflict in
two US studies [111, 112]. The latter was concordant in one Japanese cohort [113], but discordant with other 4 studies
in Japanese male, Han Chinese male, and German cohorts [35, 40, 41, 114].

4.3. NIPAL1

The  Nipa-Like  Domain  containing  1  (NIPAL1),  also  known  as  NIPA3,  is  a  magnesium transporter  [115].  The
GWAS in Japanese male cohort showed that rs11733284 of NIPAL1 gene was associated with renal underexcretion
gout [2]. Although NIPAL1 was not a urate transporter, it might be involved in the indirect regulation of urate transport
kinetics [2].

5. INTERLEUKIN FAMILY AND OTHER INFLAMMATORY RESPONDING GENES

5.1. IL1β and CD14

Interleukin-1β  (IL1β)  is  an  inflammatory  cytokine.  It  plays  a  key  role  in  sustaining  inflammation  in  multiple
inflammatory diseases, such as gout and atherosclerosis [116]. CD14 is a lipopolysaccharide-binding protein, which
functions as an endotoxin receptor. It is critical for TLR2-mediated M1 macrophage activation [117]. IL1B rs1143623
and CD14 rs2569190 were associated with gout in a study of European and New Zealand Polynesian populations [118].
It was reported that bothrs1143623 and rs2569190 can affect transcriptional activities of their own promoter [119, 120].

5.2. IL-8

Interleukin-8  (IL-8),  a  member  of  the  CXC  chemokine  superfamily,  is  a  macrophage-secreted  chemokine  that
recruits neutrophils and causes angiogenesis. Rs4073 (-251T/A) was associated with gout in two Chinese cohorts [121,
122]. Functionally, compared with the T allele, the A allele of rs4073 was correlated with an enhanced transcriptional
promoter activity in response to TNF-ɑ or IL-1β [123].

5.3. IL-12B

IL-12, a heterodimer of p35 subunit (encoded by IL-12A gene) and p40 subunit (encoded by IL-12B gene), plays an
important  role  in  antibody-induced  joint  inflammation  [124].  A  study  of  a  Chinese  cohort  showed  that  rs3212227
(1188A/C) of the IL-12B gene was associated with gout [121]. Another study indicated that this SNP was correlated
with an enhanced IL-12 production [125].

5.4. IL-23R

IL-23R is the receptor of IL-23. The binding of IL-23 to its receptor is believed to play an important role in driving
gouty inflammation by production of inflammatory factors, such as IL-1 and TNF-ɑ [126]. Rs7517847 and rs10889677
of the IL-23R gene were associated with gout in studies of Chinese Han male cohorts [127, 128].

5.5. TNF-A, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CARD8 and P2X7R

Tumor Necrosis Factor-ɑ (TNF-ɑ) is a proinflammatory cytokine mediating inflammation and apoptosis [129]. A
promoter  region SNP of  the  TNF-A  gene rs1800630 (-863C/A) was associated with  gout  in  a  male  Chinese cohort
[130].

Monocyte  Chemoattractant  Protein  1  (MCP-1),  also  known as  CCL2 (CC chemokine  ligand  2)  is  an  important
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member of the C-C (Cysteine-Cysteine) chemokine family and plays a crucial role in the recruitment of monocytes,
memory T cells,  and basophils  into  inflamed tissues.  A functional  SNP in  CCL2  gene promoter  region,  rs1024611
(-2518A/G) was associated with gout in a study of a Chinese male cohort [131]. This SNP was reported to impact CCL2
expression in patients with Systemic Sclerosis (SSc) [132].

Nucleotide-binding  oligomerization  domain,  leucine-rich  repeat  and  pyrin  domain  containing  3  (NLRP3)  is  a
component  of  NLRP3  inflammasome  that  mediates  innate  inflammatory  responses,  and  is  involved  in  onset  and
progression of various diseases, including metabolic disorders, as well as auto-immune and auto-inflammatory diseases
[133, 134]. The NLRP3 rs3806268 was associated with primary gout in a Chinese cohort [135].

Peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1β (PPARGC1B) is a transcriptional coactivator
of  PPARγ  that  inhibits  proinflammatory  cytokine  production  [136].  Rs45520937  of  the  PPARGC1B  gene  was
associated with gout in a Chinese cohort [137], and the A allele of this SNP was found to significantly augment the
expression of NLRP3 and IL-1β [137].

Toll-like receptor 4 (TLR4) plays a crucial role in MSU-mediated inflammatory disease [138, 139]. A suggestive
association of the TLR4 rs2149356 was first reported in a study of a Chinese cohort [140]. It was then reexamined in
European and New Zealand Polynesian cohorts. However, the former indicated a gout-risk T allele of rs2149356 that
appeared protective in the latter [141].

Caspase activation and recruitment domain 8 (CARD8) is involved in innate immunity including the suppression of
IL-1β expression and NF-κB (nuclear factor κB) activation [142, 143]. The CARD8 rs2043211 (C10X) is a nonsense
variant that causes the expression of a truncated protein CARD8-S leading to loss of inhibitory function on NF-κB
transcriptional activity [142]. It was associated with gout in a European cohort [118], but which was not concordant
with the results from the studies in New Zealand Polynesian, Chinese male and Korean Men cohorts [118, 144, 145]. In
addition,  there  was  a  significant  multiplicative  interaction  between  CARD8  rs2043211  and  IL1B  rs1143623  that
appeared to amplify gout risk [118]

Purinergic receptor P2X ligand-gated ion channel 7 (P2X7R) is an ATP gated ion channel expressed in immune
cells,  and  participates  in  process  of  activating  inflammation  [116].  It  was  suggested  that  the  P2X7R/NLRP3/IL-1β
pathway is involved in many inflammatory diseases including gout [116, 146]. Rs1653624, rs7958316 and rs17525809
of the P2X7R gene were associated with gout in a Chinese cohort [147].

6. CELL PROLIFERATION, DIFFERENTIATION AND MIGRATION

6.1. EGF, A1CF, HNF4G and TRIM46

Epidermal Growth Factor (EGF), a ligand of EGF Receptor (EGFR), plays important roles in cell  proliferation,
differentiation  and  migration  [148].  Apobec-1  Complementation  Factor  (A1CF),  a  member  of  the  heterogeneous
nuclear ribonucleoproteins (hnRNP) family that function in cell migration and survival [149]. Hepatocyte nuclear factor
4 gamma (HNF4G) is an orphan member of the nuclear receptor subfamily [150]. In bladder cancer cells, miR-34a-
HNF4G axis is an important pathway regulating cell viability, proliferation, and invasion [151]. The protein tripartite
motif 46 (TRIM46) is a member of the tripartite motif-containing protein family, which involved in many biological
processes, including transcriptional regulation, cell differentiation, apoptosis, and signaling pathways [152]. A study in
a  male  Chinese  population  linked  rs2298999  of  EGF  gene  with  gout  [153].  Another  Chinese  study  showed  that
rs10821905 of A1CF gene, rs2941484 of HNF4G gene, and rs4971101 and rs2070803 of TRIM46 gene were associated
with susceptibility to gout [59].

7. METABOLISM AND ENZYMES

7.1. LRP2

Low-density Lipoprotein Receptor-Related Protein 2 (LRP2),  also known as megalin,  is  a member of the Low-
Density Lipoprotein Receptor (LDLR) family that functions in lipid metabolism and signal transduction [154]. The
LRP2  rs2544390 was examined for association with gout in Japanese male, Chinese, New Zealander and European
cohorts. The results were conflicting, in which Chinese [155] and New Zealander [156] showed a positive association,
European a negative [156], and Japanese a contradictory in two independent cohorts [35, 157].
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7.2. GKRP

Glucokinase Regulatory Protein (GKRP) or Glucokinase Regulator (GCKR) is a hepatocyte-specific inhibitor of the
glucose-metabolizing enzyme glucokinase (GCK), and plays important roles in hepatic glucose and lipid metabolism
[158,  159].  Studies  in  American,  Chinese  and  Japanese  cohorts  showed  that  rs780093,  rs1260326,  rs6547692  and
rs780094 of GCKR gene were associated with gout in general, or male population [2, 35, 40, 59, 62, 71, 112, 160]. The
result of rs780094 was contrary to that in a German cohort [41].

7.3. ADRB3

Beta-3-Adrenergic Receptor (ADRB3) is involved in the regulation of fat metabolism and thermogenesis [161]. The
results of association studies of ADRB3 with gout were conflicting between male Chinese and combined populations of
Polynesian and European patients,  the former reported Arg64 allele  of  rs4994 as a  risk to gout  [162],  but  latter  no
association [163].

7.4. ADH1B and ALDH2

Alcohol Dehydrogenase 1B (ADH1B) and Aldehyde Dehydrogenase 2 (ALDH2) are key enzymes in the alcohol
metabolism. ADH1B catalyzes alcohol into acetaldehyde, and subsequently ALDH2 oxidizes acetaldehyde into acetate.
Rs671 (E504K) of ALDH2 gene was associated with gout in Japanese male and Chinese male populations [62, 164 -
166].  In addition,  a  missense SNP of ADH1B  gene rs1229984 (H48R) was also associated with gout in a Japanese
population [165].

7.5. COMT and MAOA

Catechol-O-Methyltransferase (COMT) is  an important  enzyme involves  in  the metabolism of  dopamine [167].
Monoamine  Oxidases  A  (MAOA)  is  involved  in  the  deamination  of  dopamine,  which  plays  a  crucial  role  in  the
regulation  of  renal  functions,  including  glomerular  filtration,  renin  production,  sodium  transport  [168],  and  urate
excretion [169]. After the combined action of MAOA and COMT, dopamine is converted to DOPAC, 3-MT and HVA,
which can pass through renal tubular proximal epithelial cells. A Chinese study showed that rs4680 (V158M) of COMT
gene was associated with gout [155], but the association was negative in a Taiwanese aborigines population [170]. In
contrast, the latter identified that three other SNPs including rs1137070 (D470D), rs2283725, rs5953210 of MAOA gene
were associated with gout [170].

7.6. PRKG2

Protein Kinase, cGMP-dependent 2 (PRKG2) is an important regulator of intestinal secretion and bone growth, and
was found to be an inflammation exciter in gout disease [171]. Genetic reports of the association between the PRKG2
gene and gout were inconsistent. In which gout was associated with rs7688672 of PRKG2 in a Taiwanese study [172]
and rs10033237 of PRKG2 in a study of male Chinese cohort [173], but two studies could not replicate the results from
each other  [172,  173],  and in a  Japanese study,  no PRKG2-gout  association was found by examining four variants
(rs11736177, rs10033237, rs7688672, and rs6837293) of PRKG2 [174].

8.  GENES  INVOLVED  IN  FUNCTIONS  OF  CYTOSKELETON,  MYOSIN  AND  TRANSCRIPTION  AND
OTHERS

8.1. WDR1

WD-Repeat  protein  1  (WDR1),  also  called  Actin-Interacting  Protein  1  (AIP1),  plays  a  crucial  role  in  dynamic
reorganization of the actin cytoskeleton [175]. The G allele of rs3756230 and the A allele of rs12498927 of WDR1 were
reported to be gout risk in a study of a Han Chinese cohort [176]. However, the sample size of this study was relatively
small (143 gout cases and 310 controls), and there has not been any replication study.

8.2. ALPK1

Alpha-Kinase 1 (ALPK1) is a component of raft-carrying apical vesicles that functions in the phosphorylation of
myosin I in the apical trafficking of raft-associated sucrose-isomaltase [177]. Rs11726117and rs231247 of the ALPK1
gene  were  associated  with  gout  in  a  study  including  a  Taiwan  aborigines  cohort  and  a  Han  Chinese  cohort  [178].
Another SNP rs231253 was only associated with gout in the Taiwan aborigines cohort [178]. However, rs11726117 was
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not associated with gout in a Japanese male cohort [179].

8.3. CARMIL (LRRC16A)

Capping protein ARP2/3 and Myosin-I Linker (CARMIL), or Leucine-Rich Repeat-Containing 16A (LRRC16A)
plays an important role in cell-shape changes and motility. Two studies of Japanese male cohorts showed that rs742132
of the LRRC16A gene was associated with gout [180, 181], but the results appeared to be conflict in Han Chinese and
Germany cohorts [40, 41].

8.4. RFX3

Regulatory factor X 3 (RFX3) is a transcription factor involved in the formation of thalamocortical tract [182], beta-
cell  [183]  and  the  expression  of  glucokinase  [182].  Rs12236871 of  RFX3  gene  was  associated  with  gout  in  a  Han
Chinese male cohort [107].

8.5. BCAS3

Breast  Cancer  Amplified  Sequence  3  (BCAS3)  is  a  cytoskeletal  protein  involved  in  human embryogenesis  and
tumor angiogenesis [184]. Three BCAS3 SNPs, rs9895661, rs9905274, rs11653176, were associated with gout in Han
Chinese male populations [62, 107].

8.6. CNIH-2

Cornichon-2 (CNIH-2) is a α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-associated

protein  that  regulates  the  function  of  AMPA  receptors  through  the  transmembrane  AMPA  receptor  regulatory
protein  (TARP)  isoform  composition  within  the  receptor  complex  [185,  186].  Rs4073582  of  CNIH-2  gene  was
associated with gout in three independent cohorts including two Japanese male and a Han Chinese male [2, 62, 71].

8.7. FAM35A

FAM35A is a protein whose function is totally unknown. Rs7903456 of FAM35A gene was associated with renal
underexcretion gout [2]. The cytosolic immunoreactivity of FAM35A is mainly in the distal tubule showed that the
distal nephron is involved in urate handling in humans [2].

8.8. MYL2-CUX2

Myosin  light  chain-2  (MYL2)  is  a  member  of  EF-hand  calcium  binding  protein  superfamily  [187].  A  GWAS
showed that MYL2 was associated with high-density lipoprotein cholesterol metabolism [188]. Cut-like homeobox 2
(CUX2) is  an accessory factor in the repair  of DNA damage [189].  An intergenic SNP rs2188380 located between
MYL2  and  CUX2  gene,  and  rs4766566  of  CUX2  gene  were  associated  with  gout  in  two  reports  of  Japanese  male
population [2, 71].

CONCLUSION AND FUTURE DIRECTIONS

In summary, genetic studies have identified a number of genes with polymorphisms conferring susceptibility to or
protection from gout. Among them, specific polymorphisms of membrane transporters, especially solute carrier family,
and inflammatory responding genes appeared to be the major ones, and some of them also were linked to functional
changes of the corresponding genes. On the other hand, some of the reported associations were inconsistent in different
studies.  The  discordance  may  result  from  several  aspects.  First,  the  distribution  of  alleles  and  genotypes  of  some
polymorphic loci vary greatly among different ethnic populations; second, the sample size of some studies is too small
to reach acceptable statistic power, which may induce bias; third, lack of consideration of disease subtypes (such as
ROL and RUE gout) and gender of gout patients in some studies may lead to mask the true association of the studied
alleles. In addition, although overall studies have found multiple gout-related genetic loci, functional studies of many of
these loci have not been conducted. Therefore, exploring functional significances of the identified polymorphisms is
also one of the directions of the study on gout in the future.
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