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Abstract

The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epige-
netic modifications such as DNA methylation and histone modifications are involved in chromatin
regulation and play fundamental roles in genome function. While the one-dimensional epige-
nomic landscape in many cell types has been revealed by chromatin immunoprecipitation and
sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin
organization and genome function remain elusive. Live-cell probes to visualize chromatin and its
modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chro-
matin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific
endogenous genomic loci have been detected by adapting genome-editing tools. To track chro-
matin modifications in living cells, various types of probes have been developed. Protein domains
that bind weakly to specific modifications, such as chromodomains for histone methylation, can
be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It
has also been demonstrated that antigen-binding fragments and single-chain variable fragments
frommodification-specific antibodies can serve as binding probes without disturbing cell division,
development and differentiation. These modification-binding modules are used in modification
sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular
conformational changes triggered by modifications. Other probes can be created using a bivalent
binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell
chromatin modification imaging using these probes will address dynamic chromatin regulation
and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
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Introduction

In eukaryotic nuclei, DNA wraps around histone proteins to form a
nucleosome, a basic structural unit of chromatin (Fig. 1). Each nucle-
osome core contains a histone octamer formed by two copies of four
core histone proteins (H2A, H2B, H3 and H4) and stably binds to
DNA. The nucleosome structure as such can be an obstacle to inhibit
gene regulatory factors from accessing DNA. However, the nucleo-
some structure is dynamically altered by its effector molecules, which

leads to conformational changes in chromatin so that the nucleosome
array can function as an allosteric scaffold for genome function.

A mechanism that regulates chromatin organization and dynam-
ics involves the post-translational modification of histones, such
as phosphorylation, acetylation, methylation and ubiquitination.
The best-characterized histone modifications are acetylation and
methylation of lysine residues on the N-terminal tails of his-
tones H3 and H4. Lysine acetylation is correlated with active
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Fig. 1. Nucleosome and the modifications. DNA wraps around core histone
proteins (H2A, H2B, H3 and H4) to form a nucleosome. Epigenetic modifica-
tions including DNA methylation and histone posttranslational modifications
(indicated by red lollipops) play fundamental roles in chromatin organization.

transcription, whereas lysine methylation is associated with either
transcription activation or repression, depending on the site and
the degree of methylation from one to three [1,2]. The posi-
tive charge of the lysine residue is neutralized by acetylation,
which can loosen the DNA–histone contact, but the charge is
not affected by methylation. The modifications are recognized
by effector molecules, which play key roles in genome func-
tion, such as transcription, DNA replication and DNA damage
repair.

There has been a great effort to elucidate how histone modifi-
cations regulate gene expression and how specific modifications are
regulated during development and differentiation. As many modify-
ing enzymes can be responsible for modifications at different sites on
histones and non-histone proteins, and a modification can be added
by multiple enzymes, it is not straightforward to interpret a result by
loss-of-function experiments of an enzyme as a function of the spe-
cific modification. Therefore, it has been challenging to reveal the
biological function of a specific modification.

In higher eukaryotes, DNA modifications play an important role
in gene regulation [3]. The most common DNA modification in the
mammalian genome is cytosine methylation in a symmetrical CpG
(5′-C-phosphate-G-3′) context. DNA CpG methylation is generally
associated with transcriptional repression and is involved in numer-
ous biological processes, including transposon repression, genomic
imprinting and X chromosome inactivation. Recent studies have
shown that the methylation undergoes more dynamic changes than
previously thought, especially during early development [4].

Chromatin modifications are involved in the spatiotemporal
organization of the genome at different levels, including the phys-
ical and biochemical properties that affect the flexibility and com-
paction of nucleosome arrays, higher-order chromatin structures
and subnuclear localization (Fig. 2). The organizations at differ-
ent levels are related to each other and regulate gene expression
and genome integrity. Insights into the organization and dynam-
ics of chromatin have been obtained by epigenome analysis and
microscopy. The recent advance of new optics like superresolu-
tion systems and computer-assisted image analysis has made it
possible to reveal fine and dynamic structures in the fluorescence
microscopy approach. In addition, the development of live-cell
probes has also been essential to track chromatin and its modi-
fications in living cells [5,6]. In this review, we introduce vari-
ous probes for visualizing chromatin and its modifications under
a fluorescence microscope and discuss the principles, advantages

Fig. 2. Interplay between epigenetic factors regulating chromatin organiza-
tion. Chromatin modification is involved in the spatiotemporal organization
of the genome at different levels and regulates genome-related events.

and limitations of the probes in different categories. We also
mention the application of the various probes for biology and
medicine.

Visualizing chromatin in living cells

Bulk labeling of chromatin
Chromatin can be visualized in bulk by using DNA-staining dyes
and by expressing histones tagged with a fluorescent protein (FP).
By bulk labeling, the distribution of chromatin can be observed,
and densely stained regions essentially represent condensed hete-
rochromatin. A popular DNA staining dye, Hoechst 33342, binds
preferentially to AT-rich sequences, and so, it highlights AT-rich
heterochromatin better than histone–FP. Hoechst 33342 is cell-
permeable and convenient to use in many cell types without genetic
manipulation [7]. A drawback of using Hoechst dye is its short
excitation wavelength (ultraviolet to 405 nm) so that phototoxic-
ity from repeated excitation could cause apoptosis [8]. Hoechst-
tagged long-wavelength excitable dyes have been developed [9,10],
although the use of these dyes still needs caution to avoid any
toxicity [11].

To label nucleosomes, histone H2B–FP has been widely used to
detect nuclei and chromosomes in living cells [12]. Once stable lines
are generated, chromatin can be tracked over cell generations and
during development and differentiation [13,14]. Histone H2B–FP
has also been used for analyzing nucleosome stability and chro-
matin movements [e.g. ref 15–17]. Single-molecule analysis based on
stochastic labeling of nucleosomes by illuminating small amounts of
fluorophores on histones has been a strategy to analyze local nucleo-
some fluctuations in relation to biological processes [16]. It has been
shown that chromatin is globally stabilized by loose connections
through active transcription machinery [17].

Besides the incorporation of histone-FP, nucleosomes can also be
labeled with nucleosome-binding molecules. A number of cellular
and virus proteins are known to bind to the acidic patch of H2A–
H2B in a nucleosome [18]. N-terminal region of latency-associated
nuclear antigen (LANA) from Kaposi’s sarcoma-associated her-
pesvirus is one of those proteins [19]. Although a short peptide
is subjected for degradation, conjugating with polyethylene glycol
(PEG) stabilizes LANA in living cells. Thus, fluorescently labeled
PEG–LANA can be used for bulk labeling, although its injection into
cells is needed [20]. A genetically encoded FP-tagged nanobody that
binds to the acidic patch, or chromatibody, has also been developed
as a replacement for histone–FPs [21].
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Labeling specific genomic loci
To visualize specific genomic loci in living cells, several systems
have been developed. As a fluorescent focus requires detectable
brightness over background signals, the fluorescent reporter needs
to be concentrated at the locus. Fluorescent reporter–operator sys-
tems are based on the insertion of an array of bacterial operator
sequences (e.g. LacO, TetO and LambdaO) to which a corre-
sponding FP-tagged repressor protein (e.g. LacI, TetR and Lamb-
daR) binds [22–24]. The insertion of artificial tandem operator
repeats, however, could induce the accumulation of DNA methy-
lation [25], and inserting multicopy binding sequences to a spe-
cific locus is often challenging. To avoid inserting repeat sequences
and blocking transcription and replication, the system using ParB
and its binding sequence, called ANCHOR, has been developed
[26,27]. As the ANCHOR system employs the oligomerization
nature of the binding protein, the insertion sequences can be small,
less than 1 kb, non-repetitive and non-disruptive of chromatin
structure.

Instead of inserting exogenous DNA sequences and express-
ing corresponding binding proteins, endogenous genomic loci can
now be visualized using artificial DNA binding proteins derived
from genome editing systems, including zinc finger (ZF) pro-
teins [28], transcription activator-like effectors (TALEs) [29,30]
and clustered regularly interspaced short palindromic repeat and
nuclease-dead Cas9 (CRISPR/dCas9) [31,32]. These probes allow
for the visualization of not only repetitive sequence targets
like pericentromeric and telomeric regions but also unique loci
[31,33]. Chemically synthesized molecules (e.g. peptide nucleic
acids and pyrrole-imidazole polyamides) that specifically bind to
pericentromeric and telomeric repeats have also been developed
[34–37]. These probes are flexible, can be conjugated with var-
ious chemical dyes and do not require genome modifications,
which might make them suitable for high-throughput analysis and
diagnostics.

Probes to visualize chromatin modifications
To detect the distribution of chromatin modifications and their
dynamics in living cells, several types of probes have been developed
(Fig. 3).

Probes using modification-binding domains of reader proteins
Histone modifications are recognized by their reader proteins
through specific binding domains, such as chromodomains (CDs)
and plant homeodomains (PHDs) for methylated lysine residues and
bromodomains for acetylated lysine residues [38–44]. Therefore,
such binding domains in principle can be used as live-cell probes
by fusing them with FP to detect the modifications. However, the
binding affinities of these binding domains to their target modifica-
tions are rather low (at the micromolar order for the dissociation
constant), and so engineering bivalent binding proteins is often nec-
essary. For example, heterochromatin protein 1 (HP1) forms a dimer
through its chromoshadow domains (CSDs) and directly binds to
H3K9me3 through its CD to function in gene silencing [38,45]. The
full-length HP1 and fragments containing a CD and a CSD have
been used to visualize heterochromatin domains in living nuclei [46–
49]. To visualize the dynamics of bromodomain proteins in living
zebrafish embryos, GFP (Green Fluorescent Protein)-tagged bro-
modomains from human BRD4 were used [50]. Synthetic probes
consisting of tandem modification-binding domains have enabled

the identification of proteins associated with specific modifications,
such as H3K27me3 (with CBX7 and Drosophila Polycomb CD),
H3K9me3 (with CBX1 CD) and H3K4me3 (with TAF7 PHD)
[51]. In the method called ChromID, biotin ligase-fused synthetic
modification-binding domains were expressed in living cells, and
proteins around the target modifications were biotinylated for affin-
ity purification followed by mass spectrometry. By fusing these
synthetic domains with FP, the localization of the target modifica-
tions was visualized in living cells [51], providing a possibility for
tracking the modifications.

Connecting two different binding domains with weak affinities
has also been used to develop unique probes. By fusing PolycombCD
that binds to H3K27me3 and TAF3 PHD that binds to H3K4me3
at the N-terminus and C-terminus of an FP, bivalent nucleosomes
that have both modifications were visualized [52]. A probe that
detects ubiquitinated H2A and H2B has been developed by linking
a ubiquitin-binding domain to LANA [53].

For visualizing DNA methylation, an FP-tagged methyl-CpG-
binding domain (MBD) of the MBD1 protein is widely used
[54,55]. Transgenic animals expressing the DNA methylation probe
were also generated to study DNA methylation dynamics dur-
ing early development [56,57]. A hybrid probe using a DNA-
enhanced fluorescence dye and MBD has also been developed for
background-free detection of DNA methylation in living cells [58].
This probe contains MBD and a protein tag (PYP-tag), which is
labeled with an oxazole yellow-conjugated ligand. Oxazole yel-
low is less fluorescent when not bound to DNA and its DNA
binding affinity is low, but when the probe binds to methyl-
CpG through its MBD, the oxazole yellow moiety binds to nearby
DNA and becomes fluorescent. Therefore, this probe can highlight
methyl-CpG without a diffuse background due to unbound probe
molecules [58].

Modifications at specific genome loci have also been detected
using a combination of a sequence-specific DNA binding module
(ZF, TALE or CRISPR/dCas9) and a modification binder (MBD or
HP1 CD) tagged with the N-terminus and C-terminus of Venus,
respectively [59]. Only when the target chromatin is modified does
a reconstituted Venus form and fluoresce.

Antibody-derived probes
In fixed cells, histone modifications are usually detected with specific
antibodies. In living cells, using the antibody to visualize modifica-
tions is challenging because (1) it is not straightforward to deliver
IgG molecules into cells, (2) the loaded immunoglobulin G (IgG) is
too big to pass through nuclear pores and (3) the binding affinity (at
the picomolar to nanomolar order for the dissociation constant) may
be too strong and block the access of endogenous binding proteins
to the target modification. In contrast to the whole IgG, fluores-
cently labeled antigen-binding fragments (Fabs) have been shown to
be suitable for detecting endogenous histone modifications in living
cells and embryos [50,60–62]. Unlike IgGs, Fabs are small enough
to pass through the nuclear pore, and their affinity is on the sub-
micromolar to micromolar order (for the dissociation constant), i.e.
10- to 1000-fold lower than full-length IgG. The residence time of
Fab on target modifications in living cells is usually a few seconds so
that endogenous proteins can bind to the modification when needed.
For this reason, Fab-loaded cells progress through the cell cycle and
Fab-loaded embryos develop normally. Genetically encoded probes
derived from antibody coding sequences have also been developed.
The antibody single-chain variable fragment (scFv) tagged with an
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Fig. 3. Live-cell chromatin modification probes and sensors. Live-cell probes and sensors are categorized by the recognition and reporter systems. Target
modifications and references are shown.

FP or modification-specific intracellular antibody (Mintbody) can be
used for long-term time-lapse and in vivo imaging by establishing
stable cell lines and transgenic animals (Fig. 4) [63,64]. As the bind-
ing affinity and residence time of Mintbodies are similar to those of
Fabs, endogenous proteins can still bind to the target modifications.
The low toxicity of Mintbody has been demonstrated by the viability
and fertility of transgenic animals and plants that express Mintbody
being viable and fertile [63,65–67]. Although genetically encoded
Mintbodies are more convenient to use than Fabs, so far only a lim-
ited number of probes (for H3K9ac, H3K27me3 and H4K20me1)
are available. This is because the successful cytoplasmic expres-
sion of antibody scFv depends on its proper folding and stability
[63–65,68].

FRET-based probes
In living cells, the probes described above are present at least in two
fractions, bound and unbound to the target modifications. The loca-
tion of modifications is thus evaluated by the enrichment of probes
over the diffuse background fluorescence. If the affinity of the probe
is relatively low or the target modification is less abundant, the sig-
nal at the modification sites can be ambiguous because the unbound
molecules that diffuse freely in the nucleus are present at high lev-
els. Increasing the probe affinity can reduce the background from
free molecules, but this may block the binding of endogenous pro-
teins. It is therefore ideal if the probe becomes fluorescent only
when binding to the target. A FP complementation strategy can be
used for this purpose to reconstitute FPs at the site of modifications
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Fig. 4. Live-cell imaging of H3K9ac and H4K20me1 usingMintbodies. H3K9ac-
mintbody (EGFP version; magenta) and H4K20me1-mintbody (mCherry ver-
sion; green) were expressed in MC12 mouse carcinoma cells that har-
bor one or two inactive X chromosomes (Xi, indicated by yellow arrow-
heads). The distribution of Mintbodies is representative of the concentration
of the target modifications, such as H3K9ac-mitbody on euchromatin and
H4K20me1-mintbody on Xi. In addition to the chromatin-bound molecules,
chromatin-free Mintbody molecules are present in both the nucleus and
cytoplasm. Upon the addition of an HDAC inhibitor, trichostatin A (TSA),
H3K9ac-mintbody is more accumulated in the nuclei with its decrease in the
cytoplasm (13h) because the chromatin-free molecules that diffuse into the
cytoplasm are decreased by the increase of the target acetylation on chro-
matin. In contrast, the enrichment of H4K20me1 on Xi was decreased and the
Xi foci appeared blurred, possibly due to Xi decondensation and/or decreased
level of methylation, induced by increased levels of acetylation. Scale bar,
10µm.

[59,69,70], but the reconstituted FPs are stable once complemented
and so this irreversibility makes the kinetic measurement difficult. A
reversible fluorescence reporter, such as a Flashbody, appears to be
more suitable [71], although the construction of such a reporter may
not be straightforward. Ratiometric measurements based on fluores-
cence/Förster resonance energy transfer (FRET) can partly address
the background issue. Unlike the binding probes that highlight the
endogenous modification, the change of modification on FRET sen-
sors can be used to monitor the response to the balance between
modifying and de-modifying enzymes.

A FRET sensor usually consists of a modification site and a
modification-binding domain in between a donor and an acceptor FP

[72]. The very first epigenetic FRET sensors were designed for his-
tone methylation with HP1 or Polycomb CD and phosphorylation
with 14-3-3τ in combination with histone and an H3 N-terminal
peptide [73,74]. As these probes do not have histone fold regions,
they are unlikely to be incorporated into nucleosomes. Chromatin-
bound FRET sensors harboring a full-length histone protein have
therefore been developed to monitor acetylation, methylation and
phosphorylation in a more natural setting. A series of Histac FRET
sensors detect changes in the levels of H3K9ac, H3K14ac, H4K12ac
and H4K5/8ac [75–78]. These sensors, consisting of an H3 or H4
histone, a bromodomain and a pair of FPs, have been shown to be
useful for screening and evaluating chemical drugs that target histone
acetyltransferases, histone deacetylases (HDACs) and acetyl-reader
bromodomain and extraterminal domain (BET) family proteins,
which are associated with the onset of aggressive cancers. A FRET
sensor using H3K9ac-specific scFv as the binding module to acety-
lation has also been shown to sensitively detect the effect of HDAC
inhibitors [79]. The dynamic changes of histone H3K9 trimethyla-
tion and H3S10 phosphorylation were monitored by FRET sensors
using HP1 CD and yeast Rad53 FHA2 phosphothreonin-binding
domain, respectively, as the modification binding modules [80]. By
using the CFP-YFP and LLSmOrange-FusionRed FRET pairs, both
H3K9me3 and H3S10ph levels were detected simultaneously.

Luciferase-based probes for in vivo imaging
For in vivo imaging, a split-Renilla luciferase (Rluc) complementa-
tion system has been applied for histone methylation [81]. In this
system, the N-terminal fragment of Rluc fused with Suv39h1 CD
and the C-terminal fragment of Rluc fused with H3 N-terminal
amino acids (1–13) were co-expressed in cells. When the ninth lysine
residue is methylated, Rluc activity is expected to be reconstituted
because the N- and C-fragments can get close due to the binding of
Suv39h1 CD. By injecting cells that express the reporters into mice,
the luciferase activity can be monitored in vivo. A degron block-
ade methylation sensor was also developed for luciferase-mediated
methylation sensing [82]. In this case, a full-length firefly luciferase
is fused with the H3 N-terminal amino acids, a linker, Suv39h1
CD and a degron protease recognition sequence. When the ninth
lysine residue is methylated, Suv39h1 CD binds to the methylation
and induces a conformational change to block degron recognition.
Without methylation, the sensor is subjected to degradation. The
luciferase activity can also be monitored in mouse models.

Applications and conclusions

By using these modification-specific live-cell probes, the distribution
and changes of modifications on DNA, histones and other chromatin
proteins can be tracked in living cells. One of the applications of
live-cell chromatin modification imaging is to reveal the role and
function of modifications. There has been a long-standing ques-
tion on chromatin modifications—are they regulators or just passive
by-products of genome function? Especially in the field of tran-
scriptional regulation, it has been elusive whether active marks of
chromatin (e.g. acetylated histones) can activate transcription or are
added as a consequence of transcription [83,84]. To distinguish cause
from effect, spatiotemporal information from live-cell imaging can
provide critical evidence. Single-cell live-imaging using fluorescent
Fabs specific to histone H3K27 acetylation with the active tran-
scription mark (phosphorylated RNA polymerase II) revealed that
this histone modification precedes transcription activation [50,62].
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In another example, by using cells expressing two Mintbodies spe-
cific to H3K27me3 and H4K20me1, a concurrent accumulation of
the two modifications on inactivated X chromosomes was observed
[63]. Combined with epigenome analysis, a shared recruitment
mechanism and distinct function in the two modifications were
suggested.

Another major application of live-cell modification imaging is to
monitor the effect of drugs. As epigenome drugs are expected to be
a new class of agents against cancers and other diseases [85], a con-
venient and reliable assay to evaluate the action of drugs at cellular
and animal levels is demanding. The FRET-based ratiometric assay
may be particularly suitable for this purpose, and luciferase-based
probes have opened an avenue toward in vivo analysis [86].

We anticipate that the use of these probes described above will
be broadly applicable and shed light on the intricate connections
between chromatin modifications and genome functions, as well as
for screening effective epigenome drugs.
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