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ABSTRACT: Identifying noncoding RNAs (ncRNAs)-drug re-
sistance association computationally would have a marked effect
on understanding ncRNA molecular function and drug target
mechanisms and alleviating the screening cost of corresponding
biological wet experiments. Although graph neural network-based
methods have been developed and facilitated the detection of
ncRNAs related to drug resistance, it remains a challenge to
explore a highly trusty ncRNA-drug resistance association
prediction framework, due to inevitable noise edges originating
from the batch effect and experimental errors. Herein, we proposed
a framework, referred to as RDRGSE (RDR association prediction
by using graph skeleton extraction and attentional feature fusion),
for detecting ncRNA-drug resistance association. Specifically, starting with the construction of the original ncRNA-drug resistance
association as a bipartite graph, RDRGSE took advantage of a bi-view skeleton extraction strategy to obtain two types of skeleton
views, followed by a graph neural network-based estimator for iteratively optimizing skeleton views aimed at learning high-quality
ncRNA-drug resistance edge embedding and optimal graph skeleton structure, jointly. Then, RDRGSE adopted adaptive attentional
feature fusion to obtain final edge embedding and identified potential RDRAs under an end-to-end pattern. Comprehensive
experiments were conducted, and experimental results indicated the significant advantage of a skeleton structure for ncRNA-drug
resistance association discovery. Compared with state-of-the-art approaches, RDRGSE improved the prediction performance by
6.7% in terms of AUC and 6.1% in terms of AUPR. Also, ablation-like analysis and independent case studies corroborated RDRGSE
generalization ability and robustness. Overall, RDRGSE provides a powerful computational method for ncRNA-drug resistance
association prediction, which can also serve as a screening tool for drug resistance biomarkers.

■ INTRODUCTION
Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs,
miRNAs, and snoRNAs, as human transcripts, are differentially
expressed in various drug resistance events.1 Recent studies
have shown that ncRNAs are involved in many aspects of drug
resistance in tumor cells, including epithelial-to-mesenchymal
transition, DNA repair, drug efflux and metabolism, and cell
cycle progression, which elucidated ncRNAs’ potential
pharmacotherapy implications.2,3 The past decade has
witnessed the remarkable progress of pharmacological experi-
ments in ncRNA with drug resistance, revealing diverse
individuals’ drug responses when corresponding pathways are
perturbated.4−6 Due to their critical role during personalized
treatment, detecting ncRNA-drug resistance association
(RDRA) is crucial for revealing the ncRNA molecular
mechanisms and boosting the diagnosis and treatment of
drug resistance in cancers. Conventional pharmacological wet
experiments for uncovering RDRA are often costly and time-
consuming. Hence, it would be essential to construct efficient

and accurate models for identifying potential RDRA via
computational methods.

Over the past few years, advances in graph representation
learning-based methods,7,8 especially representation learning
for a heterogeneous bipartite graph (HBG) consisting of an
ncRNA/drug subgraph and an adjacent RDRA subgraph,
enabled the RDRA prediction under the computational
paradigm.9 A graph characterizes the topological resistance
relationship between an ncRNA and its target drug, natural and
expressive to the modeling of RDRA and discovery of novel
RDRAs. By graph representation learning, RDRA prediction
can be regarded as a link prediction issue by aggregating
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neighbor information to learn node/edge representation.
Increasingly rich RDRA information resources and data, on
the other hand, are available, making drug resistance analysis
with the use of copious data under the graph deep learning
paradigm possible.

Currently, applying a graph convolutional network (GCN)10

to the ncRNA-drug resistance association bipartite graph to
view RDRA prediction as a collaborative filtering issue in the
recommended system has become a common practice. For
example, GSLRDA11 makes RDRA prediction with the aid of
LightGCN,12 which aimed to simplify the design of GCN to
make it simpler and more suitable for RDRA prediction
following the recommendation system pattern. LRGCPND13

constructed a bipartite graph and then proposed a linear
residual graph convolution algorithm to conduct the
recommendation between ncRNAs and drug resistance under
the condition of not requiring additional data. Similar research
fields to RDRA prediction, such as miRNA-drug sensitivity
prediction, miRNA-drug resistance prediction, and circRNA-
drug sensitivity prediction, also adopted similar research
strategies. For instance, PDSM-LGCN14 continues to simplify
standard GCN and only maintains its neighborhood
information aggregation (fusion) module as a simple
aggregator to update the current node and then to make
miRNA-drug sensitivity prediction. Some models tried to
introduce more diversified ncRNA/drug feature information,
such as similarity metric or gene/ncRNA expression profile
data, to conduct link prediction tasks on the RDRA bipartite
graph. GCMDR15 is one of the representatives that integrate
multiple information into miRNA-drug resistance prediction.
GATECDA16 leveraged multiple databases (i.e., the sequences
of host genes of circRNAs and the structure of drugs) and
extracted the low-dimensional representation of nodes via a
graph attention auto-encoder to conduct circRNA-drug
sensitivity prediction. MNGACDA17 adopted a circRNA
similarity network, a drug similarity network, and a known
circRNA-drug sensitivity network to separately extract node
features and then concatenate them to make circRNA-drug
sensitivity prediction. Despite its rationality from a pure
computational perspective, it may be controversial and has not
stood up to the biological significance due to the assumption
that the drug sensitivity in the same ncRNA sets is similar.
Sometimes, a single nucleotide difference can completely
change the nature of an ncRNA. Admittedly, coarse-grained
feasibility enables drug resistance or sensitivity prediction to a
certain extent for researchers, but the false positive problems at
the same time cannot be neglected. Besides, these models all
view bipartite graphs as the ground truth edges to provide
adjacency information for the downstream link prediction
tasks.

However, one subtle, hidden trouble of graph deep learning-
based RDRA models is that they habitually treat known
observed RDRA associations as ground truth edges to
construct the graph. This practice is not robust as an RDRA
prediction model because of inevitable noises from the batch
effect and experimental errors. In addition, despite decent
aforehand denoising operation, the original graph structure
may still contain task-irrelevant information undesired for the
downstream link prediction task or even counteractive links
that may come from false-negative edges.18 In practical
application, some edges in the RDRA graph often need to
be discarded or weakened to capture the most valuable edges
and alleviate over-smoothing. In contrast, the model must

emphasize some functional edges depending on the down-
stream link prediction task.

In parallel, existing methods detecting the resistance
association between ncRNAs and drugs have emerged, and
they commonly depend on ncRNA/drug subgraph information
besides indispensable adjacent RDRA subgraph information,
which assumes that entities (ncRNA/drug) with similar targets
may interact following co-expression/co-regulation/co-tar-
geted patterns on top of the HBG.19 Despite its plausibility,
it is still debated, and model performance may fluctuate due to
either the ncRNA/drug subgraph sparsity/density or the
similarity metric indistinguishability. In this regard, whether
and how the ncRNA/drug subgraph of RDRA should be
adopted when we conduct RDRA identification is yet to be
fully explored. Moreover, from the perspective of regulatory
relationship integration, screening the most beneficial relation-
ships between ncRNAs only from isolated ncRNA subgraphs is
also improper. It follows then that synergetic exploration of the
effect between the ncRNA/drug subgraph and the adjacent
RDRA subgraph is imperative, intending to uncover precisely
the significative skeleton structures of the HGB in the context
of RDRA prediction. Therefore, it is vital to jointly verify and
learn the adjacent RDRA subgraph structure and ncRNA/drug
subgraph within the HGB toward the downstream link
prediction task (i.e., RDRA prediction).

In this paper, we proposed a framework, RDRGSE, which
extracted and evaluated two structure views by an estimator
based on GCN and attentional feature fusion (AFF) to learn
final edge embedding and significative skeleton structures
jointly lurked in the RDRA-HBG. Specifically, we first
constructed the ncRNA and drug subgraph separately by
projecting the known RDRAs as links into subgraph space.
Together with the known RDRA, RDRA-HBG is a
heterogeneous graph/network that includes an ncRNA sub-
graph to manifest the relationship among ncRNAs, a drug
subgraph to reflect drug−drug information, and an RDRA
subgraph to depict the association between ncRNAs and drug
resistance. Then, we designed a structure evaluation-based bi-
view skeleton structure learning strategy to optimize and filter
the original graph structure by the estimator to obtain a high-
quality skeleton structure. Furthermore, we integrated two
types of embeddings formed by bi-view to get final edge
embedding after taking full advantage of the AFF mechanism.
Thus, accurate aforehand uncovering of significative skeleton
structures, end-to-end training, and optimizing link represen-
tation under the auspices of AFF were organically integrated as
the RDRGSE framework. To evaluate the performance of
RDRGSE, extensive in silico experiments were performed.
RDRGSE achieved competitive performance under 5-fold
cross-validation (5-CV), outperforming existing state-of-the-art
methods. Case studies further confirmed the efficacy of
RDRGSE on RDRA prediction.

■ MATERIALS AND METHODS
Datasets and Preprocessing. The manually curated

ncRNA-drug resistance association datasets were collected
from publicly available NoncoRNA20 and ncDR21 as the
benchmark dataset used in our framework. Here, we only
chose those experimentally verified RDRA pairs. Concretely,
NoncoRNA (the Feb 2020 version) collected 5568 ncRNAs,
154 drugs, and experimentally supported ncRNA-drug
resistance associations in 134 cancers. For ncDR (the June
2016 version), it contains 5864 resistance associations between
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1039 ncRNAs (162 lncRNAs and 877 miRNAs) and 145 drugs
(compounds) collected by nearly 900 pieces of the published
literature. Finally, after performing the inclusion of identifier
unification, de-redundancy, and deletion of the irrelevant items
from the two databases (i.e., NoncoRNA and ncDR), we got
the benchmark dataset including 2693 pairs of known
resistance associations between 625 ncRNAs and 121 drugs.
Method Overview. Synchronously learning embeddings

for edges and extracting the skeleton structure for RDRA-HBG
is a crucial strategy for our framework. Based on this, the
rationale of our method is to iteratively estimate appropriate
bi-view guided by label information and simultaneously
optimize the RDRA-HBG graph structure as a skeleton
structure to provide the essential but sufficient information
fully capable of RDRA prediction. Furthermore, the final edge
embedding can be obtained by exerting the AFF algorithm,
and we thus can carry out the RDRA prediction via an end-to-
end pattern. The framework of RDRGSE is shown in Figure 1.
Specifically, RDRGSE contains three processes marked by the
purple, blue, and yellow dotted lines, respectively. First, there is
a bi-view construction consisting of VKNN and VDiffusion based
on k nearest neighbors (KNN) and graph diffusion algorithm.
Then, the purple process was designed to initially estimate two
types of skeleton views (Vskeleton

k and Vskeleton
D ), and the

corresponding edge embedding can be obtained by the
estimator (i.e., GNN with two layers). Second, an AFF
algorithm was applied for final edge embedding to assign a
learnable weight on both edge embedding from Vskeleton

k and
edge embedding from Vskeleton

D . Third, we scored candidate
RDRAs by a multilayer perceptron (MLP) with three layers
and calculated the classification loss, thus completing the first
training epoch. Next, the blue process was iteratively
implemented to train generalization errors, thus making the
classification loss convergent. Finally, we assessed the loss
difference between embedding from the graph skeleton and

final embedding to restart the new subgraph view construction
by the yellow process. The latest round of the purple process and
blue process was also launched.

With the three processes, in conclusion, we follow a different
graph skeleton extraction route with the aim of iteratively
estimating feature-based KNN and topology-based diffusion
view fusion effects among nodes while simultaneously training
the parameters of the graph neural network (GNN).
Intuitively, GNNs act both as an edge representation learner
and a skeleton estimator until RDRA prediction performance
reaches the predetermined level and thus the final graph
skeleton can be obtained. We propose to learn a generative
skeleton extraction framework from the constructed graph and
original graph, respectively. Meanwhile, edges contained in the
two types of graphs are sampled or modeled with differentiated
views whose parameters under the estimator are treated as the
optimization objective in three learning processes. We
iteratively sample the structures (edges) as view skeletons
while minimizing a link classification loss and get the final
skeleton structure by minimizing a gap between the optimized
skeleton and the ultimately convergent one. See the (i)−(iii)
subsections in the “Bi-View Graph Skeleton Structure
Extraction” section for details about the three processes.
Composition of the RDRA Heterogeneous Bipartite

Graph. Based on graph theory, we can treat the detection of
potential RDRAs as a link prediction task in a graph. Thus, an
HBG consisting of the ncRNA subgraph, drug resistance
subgraph, and known ncRNA-drug resistance subgraph is
established. Specifically, we integrated the three subgraphs into
a heterogeneous graph G. After aligning nodes of different
subgraphs according to the node map, the adjacency matrix
ARD of G is defined as follows:

Figure 1. Framework of RDRGSE. RDRGSE contains three processes marked by purple, blue, and yellow dotted lines, respectively.
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where N is the number of ncRNAs, and M is the number of
drug resistance. SR denotes the projection matrix of ncRNA
and SD denotes the corresponding drug resistance projection
matrix. A denotes the known RDRA matrix and AT denotes its
transposition.

Besides, suppose we remove the two subgraphs (i.e., SR and
SD) from ARD after aligning the node location according to a
symmetric matrix, in that case, the adjacency matrix without
subgraph AnRD of G is defined as follows:
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(2)

where N is the number of ncRNAs and M is the number of
drug resistance, for which they are used to occupy
corresponding positions to meet the symmetry of the
adjacency matrix. o denotes the element with zero value in
the original SR/SD. A denotes the known RDRA matrix and AT

denotes its transposition.
ncRNA/Drug Resistance Subgraph Construction. In

this study, we adopted the projection of a bipartite graph22,23

to construct the ncRNA subgraph and drug resistance
subgraph individually. We assume that R = {R1, R2,..., Rn} is
the set of ncRNA nodes and D = {D1, D2,..., Dm} is the set of
drug resistance nodes. Given an ncRNA-drug resistance
bipartite graph BRDR = (R, D, ω), where ω ⊆ R × D is the
ncRNA-drug resistance edge set. Thus, we can construct the
ncRNA subgraph GR, GR = (R, ώ), where all ncRNAs within R
and {Ri, Rj} ∈ ώ if and only if two ncRNAs associated with at
least one same drug resistance. The same procedure applies to
drug resistance subgraph construction.
Node Primary Feature Construction. Initial features for

ncRNA or drug resistance node, as the primary node
representation complementary to topological structure in-
formation, are crucial to extracting the skeleton structure from
the RDRA heterogeneous graph based on graph structure
learning (GSL). Considering the particularity of the RDRA
prediction issue to felicitously depict the specific characteristics
of the ncRNA/drug resistance node, we used the node2vec
algorithm24 to generate the initial node feature and as a pre-
embedding process to enhance node diversity and signal
smoothness. In doing so, X = [x1, x2,..., xN] ×N D for the
ncRNA node and Y = [y1, y2,..., yM] ×M D for the drug
resistance node can be obtained, where xi or yj means the D
dimensional feature vector of ncRNA node i or drug resistance
node j, respectively.
Bi-View Graph Skeleton Structure Extraction. Graph

skeleton structure extraction is inspired by GSL,18,25 which
conducts joint optimization between the graph structure of the
original graph and GNN26 parameters to improve downstream
tasks. According to the GSL pipeline, the core of bi-view graph
skeleton structure extraction can be followed in three stages:
(i) bi-view graph skeleton construction, (ii) graph skeleton
estimator, and (iii) attention graph skeleton fusion.

Graph Convolutional Network. We utilized the GCN27

with two convolution layers as the GNN backbone encoder.
Specifically, the given graph adjacency matrix A, the feature
matrix H with the trainable weight vector W, and the non-

linear activation function σ were used to define the neural
network f (·) as follows:

= = =+H f H A GH WGCN ( , ) ( )l l l l( 1) ( ) ( ) ( ) (3)

where G = D(− 1/2)A′D(− 1/2) with A′ = A + I and D is the
diagonal degree matrix of A′, and ReLU is adopted as σ.

I. Bi-View Graph Skeleton Construction. To learn an
optimizable and preliminary graph structure as the starting
point of the skeleton structure from the original RDRA
heterogeneous graph, we thus adopted a metric-based bi-view
strategy consisting of KNN and diffusion matrix view.

Here, to take full advantage of the local similarity in node
primary feature space, we utilized the primary node feature
(details can be found in the Node Primary Feature Construction
section) to calculate cosine similarity between each node pair,
then reserving top-k similar nodes for each node to thus form
the KNN view VK. Synchronously, to capture a global view of
the original RDRA heterogeneous graph, we employed
Personalized PageRank (PPR)28 with the closed-form solution
S = γ(I − (1 − γ)D−1/2AD−1/2) −1 (here, γ ∈ (0,1] is the
transition probability in a random walk, I denotes an identity
matrix, and D represents the degree matrix of A) to conduct
diffusion operation from one node to other nodes and finally
construct the dif fusion matrix view VD. Thus, a bi-view graph
skeleton can be obtained reflecting both local and global
perspectives of the original RDRA HBG.

ii. Graph Skeleton Estimator. We further optimized two
views, VK and VD, to obtain the final skeleton structure.
Concretely, for view VK, we first conduct a GCN layer to get
the representation Zk = σ(GCN(VK, X) ×N fe), where fe
denotes the dimension value of Zk and σ indicates the non-
linear activation. Next, we reappraised the probability of an
edge between each node pair within VK. For any node pair (i,
j), we thus can obtain the weight ωij

k between i and j by an
MLP layer as follows:

= ·[ ] +W z z bij
k

k i
k

j
k

k (4)

where ×Wk
f2 1e denotes the mapping vector and

×bk
f2 1e denotes the bias vector. Then, we normalized ωij

k

to get the probability ρij
k as follows:

=
exp( )

exp( )ij
k ij

k

s ij
k

k (5)

where sk denotes the estimation or inspection scope (here, we
adopted the k-hop neighbors for VK as S

k and the top h
neighbors according to PPR values for VD as its corresponding
S
D), while h and k are hyper-parameters; combined with the

original RDRA-HBG structure, the estimated skeleton is as
follows:

= + ·V Vk
k

k k
skeleton (6)

where μk∈ (0,1) denotes the combination coefficient.
Analogously, Vskeleton

D can also be obtained by following the
same process with a different set of parameters. Then, we can
get the following:

=Z A A X(MLP(GCN( , (GCN( , ))))k k k
ncRNA skeleton skeleton

(7)
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=Z A A X(MLP(GCN( , (GCN( , ))))D D D
ncRNA skeleton skeleton

(8)

where ZncRNA
k and ZncRNA

D denote the node representation
corresponding to Vskeleton

k and Vskeleton
D and Askeleton

k /Askeleton
D

denotes the corresponding adjacency matrix of Vskeleton
k /Vskeleton

D .
Similarly, Zdrug

k /Zdrug
D can be obtained using the same process.

Finally, we can obtain two types of edge representations via
Vskeleton

k and Vskeleton
D as follows:

= [ ] = [ ]Z Z Z Z Z ZandRD
k k k

RD
D D D

ncRNA drug ncRNA drug (9)

where ZRD
k(D) is the RDRA representation formed by Vskeleton

k(D)

and∥ denotes the concatenation.
iii. Attention Graph Skeleton Fusion. Given two skeletons,

Vskeleton
k and Vskeleton

D , we need to fuse them further to obtain the
optimal skeleton structure as the final RDRA-HBG to make
RDRA prediction. Here, we used two edge representations ZRD

k

and ZRD
D to calculate the weight for the final skeleton structure

through edge attention scores by the AFF algorithm:29

where denotes the attentional weights
and ⊗ denotes the element-wise multiplication. Finally, we
generated the final embedding Zf based on the above weights:

= · + ·Z Z Zk k D D
f skeleton skeleton (11)

Thus, we can get the predictions ŷi of RDRA based on Zf:

=y Z(MLP( ))i f (12)

Iteratively, to make loss(ŷi,yL) converge to the range of
objective performance → re-optimize Vskeleton

k and Vskeleton
D →

re-optimize ZRD
k /ZRD

D → AFF → Zf → ŷi → new loss(ŷi,yL) until
loss(ŷi,yL) meet desired model performance. Hence, we
generate the skeleton structure Vskeleton by ⊕ fusion operator
based on Vskeleton

k and Vskeleton
D :

=V V Vk D
skeleton skeleton skeleton (13)

where ⊕ denotes the view fusion operator. Then, we can get
skeleton embedding Zskeleton and the corresponding predictive
score ŷi′:

=Z A A XGCN( , (GCN( , )))skeleton skeleton skeleton (14)

=y Z(MLP( ))i skeleton (15)

Finally, if loss(ŷi′, yL) > loss(ŷi, yL), then go to (i). Overall,
the optimized graph structure (skeleton structure) can also be
synchronously learned while learning edge representation.

Loss Function. For RARDA prediction, we used the cross-
entropy loss function with regularization to obtain the optimal
classifications. The loss function is defined as follows:

= +cls reg (16)

w h e r e = { } y emin lnV V V e y i icls ,k D
i Lskeleton, skeleton skeleton

a n d

= Areg skeleton 1
, with λ being a hyper-parameter. The Θ

is the learnable parameter and Φ denotes the edge set of the
skeleton structure.

■ RESULTS
Experiment Design. Comprehensive experiments were

designed to evaluate the overall performance and validate our

framework’s structure efficacy. First, 5-CV was conducted to
assess the overall performance of RDRGSE. Then, prediction
performances were compared among RDRGSE and state-of-
the-art methods. To observe the effect of AFF, heatmap
visualization of edge embedding from two types of views and
final edge embedding after AFF were drawn and compared.
Subsequently, we presented the following ablation-like experi-
ments: with graph skeleton extraction versus without graph
skeleton extraction; with the ncRNA/drug subgraph versus
without the ncRNA/drug subgraph; and with AFF versus
without AFF; case studies about 5-fluorouracil, cisplatin, and
paclitaxel were made to evaluate the generalizability of
RDRGSE and the adaptability in practical RDRA screening
scenarios.

The prediction performance of RDRGSE was evaluated
mainly using the area under the receiver operating character-
istic curve (AUC) and the area under the precision-recall curve
(AUPR). Relevant evaluation metrics include Accuracy (Acc.),
Precision (Prec.), Recall, F1-Score, Precision@k, and Recall@k
and their definitions as follows.

= +
+ + +

Accuracy(Acc. )
TP TN

TP TN FP FN (17)

=
+

Precision(Prec. )
TP

TP FP (18)

=
+

Recall
TP

TP FN (19)

= × ×
+

F1 Score
2 Precision Recall

Precision Recall (20)

=
+

k
k

k k
Recall@

TP@
TP@ FN@ (21)

where TP, FP, TN, and FN, respectively, represent the number
of true positives, false positives, true negatives, and false
negatives. K denotes the first k results.

For RDRGSE, the parameter epoch was set to 500 for
optimization loss. The learning rate was set to 0.002, and the
dropout rate was set to 0.2.
Performance of RDRGSE and Comparison with State-

of-the-Art Methods. We conducted 5-CV to assess the
overall model performance. Following the previous methods’
setup, we took 2693 RDRAs as positive samples and randomly
selected the same number of unlabeled RDRAs as negative
ones. For each fold, randomly divided subsets containing
positive and equal-size negative samples were held out as
training data, and the rest were used as test data.

As shown in Figure 2A−C, RDRGSE shows satisfactory
performances and obtains a mean AUC of 0.9768 and a mean
AUPR of 0.9736 on the benchmark dataset, which validates the
strategies of RDRGSE for detecting potential RDRAs. It is
worth noting that although the AUC and AUPR in the 3rd fold
are slightly lower than the other fold, the average evaluation
metric keeps at a similar and stable level, suggesting that
RDRGSE offered both high sensitivity and high specificity
advantages under a balanced positive-to-negative sample ratio.

Then, we compared our model with existing state-of-the-art
methods, i.e., LRGCPND and GSLRDA. For practical RDRA
prediction scenarios, observing the resistance association
between the ncRNA as a whole and the drug is a special
attention perspective. LRGCPND and GSLRDA were
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designed for this and work well at this point. The main aim of
our study is to focus on the resistance associations between the
composite ncRNA entity and the drug entity by an optimized
ncRNA-drug bipartite graph structure using bi-view structure
evaluation. To fairly compare the performance of RDRGSE
with the state-of-the-art methods, we adopted the same dataset
and used the same evaluation metrics.

As shown in Figure 2D,E, our model has the best prediction
performance in AUC and AUPR evaluation metrics under the
same dataset. Compared with LRGCPND and GSLRDA, the
performance of RDRGSE outdoes them with a complete
advantage. Its evaluation metrics, both in AUC and AUPR,
were much better than the corresponding items of the two
baselines. Compared with them, RDRGSE improved the
prediction performance by 6.7% in terms of AUC and 6.1% in
terms of AUPR. For LRGCPND, despite its success in RDRA
identification, the model aggregated the features of neighbor-
ing nodes using a spectral rule and adopted a residual block to
fuse features. Original RDRA bipartite graphs are naturally
suboptimal in structural, topological connection for the

downstream link prediction task. The bi-view structure
optimization strategy in our proposed RDRGSE framework
learned a high-quality skeleton structure as the final graph
structure to aggregate and represent node features and gave
better predictions than the LRGCPND would do. Besides,
although GSLRDA was designed using graph contrast learning
and shows the next highest AUC and AUPR, it does not get
the same-level metrics as RDRGSE, which the inherent defect
in contrast learning may cause because of edge information
random deletion. For the two state-of-the-art methods, our
framework shows significant improvements. Together, the
consistent best prediction performances of RDRGSE also
support the robustness of our framework. Furthermore, to
comprehend the learning abilities of RDRGSE, we charted the
potential RDRAs by our framework. As shown in Figure 2F,
the predicted RDRAs in which some can be confirmed in the
corresponding biological literature studies. For instance, as
shown in the small window, the LIN28B-long isoform-
expressing cells exhibited increased drug resistance to
fluorouracil (5-FU, 5-fluorouracil) in a let-7-dependent
manner.30 MiRNA-155 promotes glioma progression and
temozolomide resistance by targeting the Six1 signal path-
way,31 while miR-26b reverses temozolomide resistance via
targeting Wee1 in glioma cells.32 These predicted RDRAs
enable preclinical biomarker detection and bio-experiment
preliminary screening under scientific drug discovery.

To validate the generalization performance, we have added
an external dataset (i.e., circRNA-drug sensitivity association)
to evaluate our model. Specifically, we extracted the known
circRNA-drug sensitivity association (CDS) from the
Genomics of Drug Sensitivity in Cancer (GDSC)33 and
circRic34 database to construct the external dataset, which
contained significant associations with a false discovery rate of
less than 0.05. As shown in Table 1, RDRGSE achieved an

AUC of 0.9249 and an AUPR of 0.9183. Both the benchmark
dataset and the independent dataset exhibit a consistent level
of predictive performance. This indicates that RDRGSE has
satisfactory generalization ability.

Furthermore, to comprehend the learning abilities of AFF
for RDRA prediction, we plotted the heatmap of three edge
embeddings from the KNN view (e1), diffusion view (e2), and
AFF (Figure 3A), respectively. To watch the learned changes
among them, as shown in Figure 3B, we randomly selected the
edge embedding dimension range from 129 to134 (corre-
sponding to 10 ncRNA-drug resistance associations) and
plotted the heatmap with embedding values from which we can
observe the differentiated embedding values within the same
range, and this suggests distinct learning ability by e1, e2, and
AFF. Meanwhile, as shown in Figure 3C,D, the attention-
weight heatmap matrix and its local matrix learned by AFF
were provided. By AFF, edge embeddings (e1 and e2) with

Figure 2. Performance of RDRGSE and comparison with state-of-the-
art methods. (A) Performance of RDRGSE on the benchmark dataset
under 5-CV including Accuracy, Precision, Recall, and F1-Score; (B)
AUC metric of RDRGSE on the benchmark dataset under 5-CV; (C)
AUPR metric of RDRGSE on the benchmark dataset under 5-CV;
(D) performance comparison of RDRGSE with state-of-the-art
methods on AUC metric; (E) performance comparison of RDRGSE
with state-of-the-art methods on AUPR metric; and (F) net
visualization for potential RDRAs predicted by RDRGSE.

Table 1. Performance of RDRGSE on the CDS Dataset
under 5-CV

fold accuracy precision recall F1-score AUC AUPR

1 0.8664 0.8526 0.8847 0.8684 0.9383 0.9326
2 0.8337 0.8225 0.8438 0.8330 0.9126 0.8964
3 0.8525 0.8377 0.8761 0.8565 0.9265 0.9238
4 0.8603 0.8282 0.9173 0.8704 0.9308 0.9260
5 0.8445 0.8396 0.8488 0.8441 0.9162 0.9128
mean 0.8515 0.8361 0.8741 0.8545 0.9249 0.9183
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different coefficients or proportions are fused to form the final
edge embedding. AFF incorporates the differentiated semantic
and scale feature reflected in e1 and e2, obtaining the final
optimized embedding.
Impact of Optimization for the Skeleton Structure on

Model Performance. Following the GSL paradigm, that is,
using a skeleton structure to replace the original graph
structure, we explored the influence of the two model
structures: original graph structure without skeleton structure
extraction (RDRGSE‑noSK) and graph structure with skeleton
structure extraction (RDRGSE). To hold the consistent node
characteristics for two graph structure types, we first initialized
node features for each node (ncRNA or drug), respectively,
and then compared to evaluate the impact of operation with or
without the skeleton structure pruning under 5-CV. Besides,
because we have already utilized the similarity to extract the
first view, we reset the feature for each node. Here, we can take
node2vec as node pre-representation. Node2vec has a proper

representation effect and works well in unsupervised graph
embedding.35

Figure 4A displays the performance comparisons between
the original and manicured graph structure in six metrics. We
observed that using the original graph structure to conduct
RDRA prediction performs poorly. Notably, RDRGSE‑noSK has
an AUC of 0.76 and an AUPR of 0.75. For RDRGSE,
considering the impact of other framework components, after
conducting the same component operations, the model
prediction results show that pruning of graphs dramatically
changes the model performance. As expected, it increased the
prediction performance by 21% on AUC and 20% on AUPR.
The improvement validates the advantage of the skeleton
structure pruning strategy.
Impact of the Projection Subgraph on Model

Performance. In order to investigate the necessity existing
of the projection subgraph (ncRNA/drug subgraph), we
designed the ablation-like scheme. We construct a bipartite

Figure 3. Heatmap visualization for three types of edge embeddings and weight matrix with AFF. (A) Heatmap of edge embedding from KNN
(e1), diffusion (e2), and AFF view; (B) heatmap of the edge embedding dimension range from 129 to 134; and (C) attention-weight heatmap
matrix and its local matrix (D) learned by AFF.
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graph with and without a projection subgraph for the
manicured graph structure. To evaluate the impact of the
projection subgraph, we held and fixed other model
components with or without the projection subgraph. Here,
the rationale of the ablation-like scheme is to examine the
influence of perturbations with/without the ncRNA and drug
subgraph on model performance after optimizing the graph
structure.

As shown in Figure 4B, without the ncRNA and drug
subgraph, the model performs as well as the scheme with a
subgraph. By contrast, we can observe that two performance
lines are superimposed on a radar map where each other is
completely covered. The AUC and AUPR of the scheme
without the subgraph keep at the same level as the scheme with
the subgraph and continue to be outperformed by the existing
state-of-the-art methods. For Accuracy (Acc.), Precision
(Prec.), and F1, their value even rises slightly. We can find
that it is the ncRNA/drug subgraph that has a lesser influence
on our model level of performance, suggesting a weak
dependency of model performance on the subgraph.

Experiment results indicated that the contribution from the
ncRNA and drug subgraph is limited for detecting potential
RDRAs. Even after adding the ncRNA/drug subgraph on the
RDRA bipartite graph, the prediction performance increased
slightly, and only the fourth decimal place improved for AUC
and AUPR. Such a slight improvement could be negligible. It
suggests that the model is insensitive to subgraph information
even if subgraphs are changed or removed, thus substantiating
the limited roles of projection subgraphs in recognizing
possible ncRNA-drug resistance links. Together, the experi-
ments showed that for the ncRNA and drug projection

subgraph, removing them will not seriously hinder the
performance of prediction. It has also been proved that most
of the model prediction performances can be supported and
contributed directly through the skeleton structure of the
RDRA graph. Thus, the ncRNA and drug projection subgraph
is optional in our ncRNA-drug resistance bipartite graph.
Admittedly, integrating them into our bipartite graph can
enhance the RDRA prediction within certain limits, but they
are unnecessary in our issue.
Impact of AFF on Model Performance. For AFF that

can efficaciously integrate link feature representation, it is
crucial to evaluate its effect on model performance. We built
the model ablation scheme without AFF. Then, we trained and
tested our model on the scheme under 5-CV. As shown in
Figure 4C, the scheme has suboptimal performance when
fixing other model components. As expected, AUC and AUPR
decreased with the removal of AFF. The lower performance
(0.5438 on AUC and 0.6047 on AUPR) remains at a scanty
and practically unsatisfactory level. It suggests that the model is
sensitive to AFF when changed or removed. Our method
performs poorly in model performance without AFF.
Case Studies. Case studies on 5-fluorouracil, cisplatin, and

paclitaxel were conducted to identify the potential ncRNAs
associated with the drug resistances, respectively. For fairness
of comparison, we applied RDRGSE to an independent RDRA
dataset in which we ensured that the node information of
collected 5-fluorouracil/cisplatin/paclitaxel drug resistance
data was included in our training dataset without correspond-
ing edge information. The top 30 predicted 5-fluorouracil
resistance-related ncRNAs, the top 20 predicted cisplatin
resistance-related ncRNAs, and the top 10 predicted paclitaxel

Figure 4. Performance comparison of three types of ablation-like analysis. (A) Performance without skeleton extraction. (B) Performance without
the ncRNA and drug subgraph. (C) Performance without AFF.
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resistance-related ncRNAs were used to assess the applicability
of RDRGSE. For the three types of drugs, to show the
prediction results, as shown in Figure 5A, the resistance scores
of predicted ncRNAs are marked by the red block for
probability scoring >0.5 and the blue block for probability
scoring <0.5. To present the prediction performance on 5-
fluorouracil, cisplatin, and paclitaxel, we adopted the Recall@k
metric to assess top k ncRNAs related to three types of drug
resistances predicted by RDRGSE when strict probability
scoring >0.70. As shown in Table 2, RDRGSE exhibits

objective and reasonable performance for three types of drug
resistances in the condition of top30, top20, and top10,
respectively. Furthermore, these ncRNAs are confirmed by the
NoncoRNA and ncDR database, and we also presented a score
heatmap (Figure 5B) of three types of drugs to illustrate their
prediction confidence. Together, the case studies further
substantiate the superior performance of RDRGSE in
predicting new RDRAs.

As shown in Tables 3−5, we also listed the top 10/20/30
predicted ncRNAs for three types of drugs and then checked
whether these ncRNAs can be confirmed in the biology
literature. If they can be confirmed in the corresponding

biology literature, it means that they also were verified in
biology wet experiments. Meanwhile, it also can indicate the
consistency between our model and biology wet experiments.
Typically, for ncRNA-drug resistance association (RDRA)
databases (such as NoncoRNA and ncDR), these databases
usually collected experimentally supported RDRA data from
the biology literature. If some potential ncRNAs without
PMID that our model predicted can be found in relevant
independent databases, we can still think of it as evidence.
Thus, “Evidence” means these ncRNAs can be found and
confirmed in relevant independent databases such that we can
demonstrate the ability to discover new associations by our
model to some extent.

Figure 5. Probability scoring of 5-fluorouracil/cisplatin/paclitaxel drug resistance (A) and the corresponding score heatmap (B).

Table 2. Performance under Recall@k for Top k ncRNAs
Related to Three Types of Drug Resistances Predicted by
RDRGSE When Probability Scoring >0.70

k drug recall@k

top30 5-fluorouracil 0.93
top20 cisplatin 0.55
top10 paclitaxel 0.60

Table 3. Top 10 ncRNAs Related to Paclitaxel Resistance
Predicted by RDRGSEa

rank ncRNAs evidence

1 miR-4716 NoncoRNA & ncDR
2 miR-1914* NoncoRNA & ncDR
3 miR-4783 NoncoRNA & ncDR
4 miR-302a NoncoRNA & ncDR
5 miR-503 NoncoRNA & ncDR
6 miR-762 NoncoRNA & ncDR
7 lnc-VLDLR NoncoRNA & ncDR
8 miR-1256 NoncoRNA & ncDR
9 miR-216a NoncoRNA & ncDR
10 let-7a NoncoRNA & ncDR

a* indicates part of the miRNA name.
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■ DISCUSSION
The RDRGSE introduced a learning strategy at the edge
perspective to optimize the insufficiency of the original graph
structure by the higher level of skeleton structure extraction.
Learning a downstream link task-oriented skeleton structure
can effectively detect the associations between ncRNAs and
drug resistances in link prediction contexts. To efficaciously
extract the significative drug resistance associations available
from the original RDRA bipartite graph, we proposed
RDRGSE to obtain the supervised representation of links on
the RDRA graph.

Based on the performance evaluation and experiments
conducted, the advantages of RDRGSE are summarized as
follows. First, it introduced a bi-view optimization strategy for
a sufficient structure to capture the most valuable links
between ncRNAs and drug resistances. This treatment is
distinct from the commonly used edge sampling approaches.
The outstanding performance suggests the potential of
applying the strategy to RDRA identification. Second, an
AFF mechanism was leveraged to adaptively fuse the bi-view
link representation into the final link representation. As a
significant exploration, projection subgraphs of ncRNAs and
drug resistances are optional in our task scenario, which
dialectically mines their necessity according to various issue
contexts.

Although known original graph data have been directly
utilized to model and conduct biomedical entity association
prediction tasks for a long time,36−38 it is a debate to mine the
confident interplay relation composed from a bipartite graph-
based heterogeneous network.

For our RDRA prediction scene, similarly, imperceptible
pseudo-edges formed by the batch effect of biological wet
experiments have been ignored habitually. The undesirable
impact of these edges is often not verified entirely when
directly treating them as accurate RDRA-HBG edges. This
ubiquitous structural redundancy or deviation and correspond-
ing consequences are not only very tricky in predictive
performance promotion but, in all likelihood, degrading the
model’s representation power. Therefore, a reliable and
accurate skeleton structure is vital to learn high-quality edge
embedding. This has been verified and efficaciously improved
in our experiments, suggesting that RDRGSE can jointly learn
edge embedding and graph skeleton structure and work better
in RDRA prediction. Besides, recently, various single ncRNA-
drug resistance association prediction methods, such as
miRNA-drug resistance/sensitivity association prediction15,16

and circRNA-drug resistance/sensitivity association predic-
tion,14,17 have been provided. Our framework can migrate to
these issues well. Essentially speaking, their modeling pattern
and optimization objective are consistent with each other.

Although this study targeted RDRA prediction, the method
involved design tactics (i.e., taking full advantage of joint
learning between edge embedding and graph skeleton
structure) and can also be easily extended to other biomedical
entity association prediction scenarios due to the consistency
of the link prediction task principle.

■ CONCLUSIONS
In this paper, we proposed RDRGSE, a computational method
for potential RDRA identification, where high-quality edge
embedding and graph skeleton structure extraction can
complement each other well. Its prediction performance was

Table 4. Top 20 ncRNAs Related to Cisplatin Resistance
Predicted by RDRGSEa

rank ncRNAs evidence

1 miR-187* NoncoRNA & ncDR
2 miR-4516 NoncoRNA & ncDR
3 miR-4665 NoncoRNA & ncDR
4 miR-3619 NoncoRNA & ncDR
5 miR-4484 NoncoRNA & ncDR
6 miR-3647 NoncoRNA & ncDR
7 miR-4465 NoncoRNA & ncDR
8 miR-4466 NoncoRNA & ncDR
9 miR-1260 NoncoRNA & ncDR
10 miR-30a* NoncoRNA & ncDR
11 miR-369 NoncoRNA & ncDR
12 miR-601 NoncoRNA & ncDR
13 HULC NoncoRNA & ncDR
14 miR-505 NoncoRNA & ncDR
15 miR-187 NoncoRNA & ncDR
16 miR-485 NoncoRNA & ncDR
17 miR-224 NoncoRNA & ncDR
18 miR-17-5P unconfirmed
19 miR-486 unconfirmed
20 miR-27b unconfirmed

a* indicates part of the miRNA name.

Table 5. Top 30 ncRNAs Related to 5-Fluorouracil
Resistance Predicted by RDRGSEa

rank ncRNAs evidence

1 miR-874 NoncoRNA & ncDR
2 miR-4532 NoncoRNA & ncDR
3 miR-4288 NoncoRNA & ncDR
4 miR-369 NoncoRNA & ncDR
5 miR-7-1* NoncoRNA & ncDR
6 miR-1229-5p NoncoRNA & ncDR
7 SLC25A25-AS1 NoncoRNA & ncDR
8 miR-633 NoncoRNA & ncDR
9 miR-1825 NoncoRNA & ncDR
10 miR-338 NoncoRNA & ncDR
11 miR-522 NoncoRNA & ncDR
12 miR-6087 NoncoRNA & ncDR
13 miR-106-25 NoncoRNA & ncDR
14 miR-1183 NoncoRNA & ncDR
15 miR-382 NoncoRNA & ncDR
16 miR-125b-5p NoncoRNA & ncDR
17 miR-455 NoncoRNA & ncDR
18 miR-519 NoncoRNA & ncDR
19 let-7b NoncoRNA & ncDR
20 miR-378a NoncoRNA & ncDR
21 miR-17-5p NoncoRNA & ncDR
22 miR-30d NoncoRNA & ncDR
23 miR-335 NoncoRNA & ncDR
24 XIST NoncoRNA & ncDR
25 miR-223 NoncoRNA & ncDR
26 miR-1233 NoncoRNA & ncDR
27 miR-543 NoncoRNA & ncDR
28 miR-125b NoncoRNA & ncDR
29 miR-146a unconfirmed
30 GAS5 unconfirmed

a* indicates part of the miRNA name.
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evaluated by various comparative experiments extensively.
Compared with the existing methods, RDRGSE shows
outstanding performance on RDRA prediction. Moreover,
competitive AUC and AUPR of RDRGSE support the
advantages of RDRGSE as a screening tool in practice.
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