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DNAmethylation regulates gene transcription and is involved
in various physiological processes in mammals, including devel-
opment and hematopoiesis. It is catalyzed by DNA methyl-
transferases including Dnmt1, Dnmt3a, and Dnmt3b. For
Dnmt3b, its effects on transcription can result from its ownDNA
methylase activity, the recruitment of other Dnmts to mediate
methylation, or transcription repression in a methylation-
independent manner. Low-frequency mutations in human
DNMT3B are found in hematologic malignancies including
cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse
large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppres-
sor in oncogene-driven lymphoid and myeloid malignancies in
mice.However, it is poorly understood how the differentDnmt3b
activities contribute to these outcomes. We modulated Dnmt3b
activity in vivo by generating Dnmt3b+/− mice expressing one
wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice
where one or both alleles express catalytically inactive Dnmt3bCI.
We show that 43% of Dnmt3b+/− mice developed T-cell lym-
phomas, chronic lymphocytic leukemia, and myeloproliferation
over 18months, thus resembling phenotypes previously observed
in Dnmt3a+/− mice, possibly through regulation of shared target
genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived
postnatal development and were affected by B-cell rather than T-
cell malignancies with decreased penetrance. Genome-wide
hypomethylation, increased expression of oncogenes such as
Jdp2, STAT1, and Trip13, and p53 downregulation were major
events contributing to Dnmt3b+/− lymphoma development. We
conclude that Dnmt3b catalytic activity is critical to prevent
B-cell transformation in vivo, whereas accessory and
methylation-independent repressive functions are important to
prevent T-cell transformation.

DNA methylation is an epigenetic modification that con-
tributes to a regulation of gene transcription in mammalian
cells. Its association with H3K9me3 and H3K27me3 histone
modifications in gene promoters results in gene repression
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(1, 2). Methylation can also enhance transcription by promoting
more efficient binding of transcription factors to their recog-
nition sites (3, 4) and by restricting the activation of alternative
promoters within gene bodies (3). DNAmethylation is involved
in regulation of normal development, differentiation, X chro-
mosome inactivation, and genomic imprinting. It also partici-
pates in hematopoiesis, and its deregulation contributes to the
pathogenesis of immune disorders, hematologic malignancies,
and cancer (5–8).

Four catalytically active enzymes (Dnmt1, Dnmt3a,
Dnmt3b, and Dnmt3c) and one catalytically inactive cofactor
(Dnmt3L) belong to the family of DNA methyltransferases
(Dnmts) in mice. All Dnmts contribute to genome-wide
methylation with Dnmt1 considered to be the main mainte-
nance enzyme while Dnmt3a and Dnmt3b primarily involved
in de novo activities (9–11). Dnmt3L lacks catalytic activity
(CA) but is critical for de novo methylation by linking Dnmt3a
and Dnmt3b to chromatin through unmethylated H3 lysine 4
(12). Dnmt3c suppresses transposon activity specifically in
male germ cells (13). Dnmts also repress transcription inde-
pendently of methylation, e.g., through association with his-
tone deacetylases (14–16). Another activity associated with
Dnmt3L and Dnmt3b is accessory function (AF) that consists
of the ability to recruit other Dnmts to genomic loci to catalyze
methylation (12, 17, 18).

Dnmt3b participates in de novo and maintenance methyl-
ation, repression of germ line genes, X chromosome inactiva-
tion, and its knockout in mice is embryonically lethal (9, 10). In
addition to methylation of various genomic elements, Dnmt3b
also binds to the bodies of actively transcribed genes through the
interaction of its PWWP domain with histone H3 trimethylated
at lysine 36 and plays a role in their preferential methylation in
embryonic stem cells (19). Human DNMT3B is causatively
linked to the immunodeficiency-centromeric instability-facial
anomalies (ICF) syndrome—a rare recessive autosomal disorder
characterized by mild facial anomalies, cognitive impairment,
recurrent infections, and lack of memory B-cells in peripheral
blood (20–22). DNMT3B likely plays a role in pathogenesis of
various hematologic malignancies as genetic alterations were
identified in cutaneous T-cell lymphomas (CTCLs) and B-cell
lymphomas (BCLs) (23, 24). Various other modes can affect
activity of DNMT3B in cells. For instance, along with
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DNMT3A, DNMT3B belongs to the top 1% of underexpressed
genes in human chronic lymphocytic leukemia (CLL) (25–27).
Dnmt3b activity is also modulated by complexing with other
proteins. For instance, a protein TCL1 that is overexpressed in a
number of human T-cell malignancies, including mature leu-
kemias, T-cell prolymphocytic leukemia, and B-cell malig-
nancies, such as Burkitt’s lymphoma and CLL (28, 29), binds to
Dnmt3a and Dnmt3b and inhibits their activities (30) raising a
possibility that Dnm3b activity is functionally decreased in a
large number of hematologic malignancies. Studies in mice
showed that Dnmt3b is a tumor suppressor (TS) in an
oncogene-induced hematologic malignancies including T- and
B-cell lymphomas induced byMYC and acutemyeloid leukemia
induced by MLL-AF9 (26, 31–34). Others reported oncogenic
functions for Dnmt3b in MYC-induced T-cell acute lympho-
blastic leukemia (T-ALL) likely due to its role in tumor main-
tenance (35).

Here we utilized genetic approaches to understand whether
modulation of Dnmt3b activities in vivo by either decreasing
gene dose using germline inactivation of one allele (Dnmt3b+/
−) or decreasing or elimination of its CA through the use of
recently generated catalytically inactive Dnmt3bCI allele
(Dnmt3b+/CI and Dnmt3bCI/CI). Similarly to our previous study
of Dnmt3a+/− mice, our data identify Dnmt3b as a hap-
loinsufficient tumor suppressor in T-cell lymphomas (TCL)
and CLL (36). We further found that several hypomethylated
and overexpressed oncogenes including Jdp2, Trip13, and
Stat1 may contribute to TCL along with downregulation of
p53. A development of TCL was suppressed in Dnmt3b+/CI

and Dnmt3bCI/CI suggesting that CA is less important for their
development. Rather, a reduction in AF may be responsible for
TCL development. This is further supported by methylation
data from MYC-induced T-cell lymphomas with modulated
Dnmt3b activities in which AF seemed to substantially sup-
press loss of methylation. In contrast, the observed develop-
ment of CLL and BCLs in these mice suggest the importance
in prevention of B-cell transformation. Furthermore, we found
that CA is largely dispensable for postnatal development with
mice surviving but developing ICF-like syndrome. In sum-
mary, our data show that Dnmt3b is a multifunctional protein
involved in control of genes important to prevent ICF and
tumorigenesis.

Results

Dnmt3b+/− mice develop T-cell lymphomas

To evaluate the long-term consequences of Dnmt3b hap-
loinsufficiency in mice, we generated and observed cohorts of
Dnmt3b+/+ and Dnmt3b+/− mice for 18 months. While control
Dnmt3b+/+ and subset of Dnmt3b+/− mice remained healthy,
with no signs of deregulated hematopoiesis, 44% of Dnmt3b+/−

mice developed various hematologic malignancies including
TCL, (20%) characterized by enlarged spleens and lymph nodes
(Fig. 1, A and B, S1 and not shown). Histological analysis of
spleens showed a near-complete effacement of the red pulp by
massively expandedwhite pulp (Fig. 1C). Small-tomedium-sized
cells were present in both spleen and lymphnodes, and expressed
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markers of mature T-cells–CD3, CD5, TCRβ, and CD8 were
negative for the expression of CD4, TCRγδ, NK-1.1, and CD16
(Fig. 1, C and D and not shown). In one case, we also observed a
development of CD4+CD8+ immature TCL suggesting that
decreasedDnmt3b levelsmay promote transformation of T-cells
at earlier stages of the development (Figs. 1D and S1).

Dnmt3b+/− lymphomas were likely monoclonal because
most T-cells in the tumor uniformly expressed the same TCR
receptor, e.g., TCR-vβ 5.1 to 5.2 in tumor 1 or TCR-vβ 7 in
tumor 2 (Fig. 1E). Cells showed full tumorigenic potential as
transplantation of Dnmt3a+/- lymphoma cells induced pe-
ripheral T-cell lymphoma (PTCL) within 2 months in suble-
thally irradiated wild-type FVB recipient mice and while the
same effect could be also observed upon subsequent trans-
plantation of cells from tumors developed in recipient mice
(Fig. 1, F and G). Tumors retained expression of Dnmt3b from
wild-type allele suggesting that decreased levels of Dnmt3b,
but not a complete inactivation, are sufficient to drive the
disease development (Figs. 1H and S2). While Dnmt1 protein
was downregulated, Dnmt3a level was increased in Dnmt3b+/-

TCL possibly reflecting functional compensation for decreased
Dnmt1/3b levels (Fig. 1H).

Altogether, these data demonstrate that the long-term
Dnmt3b heterozygosity results in development of mostly
mature CD8-positive TCLs similar to human PTCL–not
otherwise specified (PTCL-NOS).

A subset of Dnmt3b+/− mice develop chronic lymphocytic
leukemia

The second most common disease observed in Dnmt3b+/−

cohort was a CLL-like disease observed in three mice and
characterized by splenomegaly and CD5+B220+CD19+ B-1a
cells expansion of more than 20% in the blood, spleen, and
bone marrow (Figs. 1A, 2, A–C, S1 and data not shown).
Three mice showed signs of monoclonal B-cell lymphocytosis
(MBL)—a less progressed form of CLL—in which the per-
centage of B-1a cells (CD5+B220+CD19+) in the blood is
between 2% and 20%, with simultaneous expansion in the
spleen and bone marrow (Fig. 2C and data not shown).
Importantly, splenic cells from mice with either MBL or CLL
were able to induce disease in recipient mice (Fig. 2, D and E),
demonstrating that both populations contain true leukemic
cells. Therefore, we refer to both conditions as CLL-like dis-
ease. In addition to PTCL and CLL, we also observed the
development of a myeloproliferative disease (MPD) in one of
the Dnmt3b+/− mice (Figs. 1A, S1 and data not shown). These
mice showed expansion of Gr-1+CD11b+ myeloid cells in the
blood, spleen, and bone marrow (data not shown). Thus, our
data identify Dnmt3b as a haploinsufficient tumor suppressor
gene in the prevention of TCLs and CLL that also may play a
role in prevention of myeloid malignancies in mice.

Dnmt3bCI/CI mice survive postnatal development but develop
ICF-like syndrome

Gene knockout of one allele in Dnmt3b+/− mice decreases
all functions of Dnmt3b protein including CA, AF, and



Figure 1. Majority of Dnmt3b+/− mice develop T-cell lymphomas. A, Disease spectrum observed in Dnmt3b+/− mice (n = 35) determined by FACS. Values
present percentage of mice diagnosed with indicated disease. B, Representative image of healthy spleen of Dnmt3b+/+ (+/+) mice and spleen and lymph
node of terminally ill Dnmt3b+/− (+/−) mice that developed TCL. C, Histological staining of spleen and lymph node of age-matched Dnmt3b+/+ control (+/+)
and terminally ill Dnmt3b+/− mouse (+/− TCL) (magnification 40x). D, Representative FACS diagrams of CD4 and CD8 expression in cells isolated from the
spleen of healthy Dnmt3b+/+ mice (+/+) and terminally sick Dnmt3b+/− mice that developed CD8+ (+/− TCL1) and CD4+CD8+ (+/− TCL2) lymphomas.
Quadrant statistics are indicated in red here and in all figures. E, Representative FACS diagrams showing clonal TCR-vβ expression in Dnmt3b+/− lymphomas
(+/− tumor 1 and 2). F, Representative FACS diagrams of CD4 and CD8 expression in cells isolated from tumors that developed in terminally sick Dnmt3b+/−

mice (primary tumor) and sublethally irradiated FVB-recipient mice injected with primary lymphoma (primary recipient). G, Time to tumor development for
primary mice (primary TCL), primary (first) and secondary (second) sublethally irradiated FVB-recipient mice serially transplanted with primary TCL isolated
from the lymph nodes of terminally sick Dnmt3b+/− mice. Data are presented as average time to tumor development. Two TCL lines are shown. H,
Immunoblot analysis of Dnmt1, Dnmt3a, and Dnmt3b protein levels in healthy lymph node (C), Dnmt3b+/− (+/−) and Dnmt3bΔ/Δ (Δ/Δ) lymphomas. Hsc70
served as a loading control.

EDITORS’ PICK: Dnmt3b’s haploinsufficiency drives lymphomagenesis
methylation-independent repressive functions, thus precluding
us to appreciate individual activities in in vivo. To determine
the extent to which Dnmt3b CA plays a role in hematopoiesis
and in its TS functions, we next utilized allele expressing
catalytically inactive Dnmt3b (Dnmt3bCI) from endogenous
locus. Dnmt3BWT and Dnmt3bCI protein levels are similar in
mouse embryo and adult tissues demonstrating that an amino
acid substitutions did not adversely affect regulation of
Dnmt3b expression or protein stability as we reported previ-
ously (17).

Unlike Dnmt3b-/- mice, Dnmt3bCI/CI mice survived
embryogenesis, but the importance of Dnmt3b CA in adult
mice remains unclear (17). As a prelude to assessing its role in
hematopoiesis, we first analyzed postnatal development in
J. Biol. Chem. (2021) 296 100285 3
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cohorts of Dnmt3b+/CI and Dnmt3bCI/CI mice. Dnmt3b+/CI

mice were indistinguishable from their wild-type littermates
and lived long lives. Dnmt3bCI/CI mice were relatively normal,
but their body weight was �20% lower than wild-type litter-
mates at weaning, and this difference persisted throughout
their postnatal lives (Fig. 3, A and B). Despite decreased size,
both Dnmt3bCI/CI males and females had normal life span and
were fertile with litter size similar to controls (Fig. 3C).
However, inguinal fat was significantly reduced with smaller
white adipose tissue (WAT) deposits in Dnmt3bCI/CI mice
compared with controls (Fig. 3, D and E). Additionally,
inguinal WAT showed presence of multilocular, brown-like
adipocytes suggesting that Dnmt3b‘s CA plays a role in
4 J. Biol. Chem. (2021) 296 100285
regulation of their development (Fig. 3, F and G). Previously, a
development of brown adipocytes was linked to hypo-
methylation of genes responsible for mitochondrial respiratory
chain and fatty acid oxidation (37). Because insulin-like growth
factor 1 (Igf1) is implicated in a regulation of fat deposition and
body size (38), we next analyzed its expression in liver—a
major organ for its production - of Dnmt3bCI/CI mice and
found a small but significant reduction in transcript levels
(Fig. 3H). Cerebral hyperplasia was also observed in Dnmt3bCI/
CI mice, but the molecular mechanism behind this remains
unclear (Fig. S3A). Dnmt3bCI/CI also had craniofacial defects
including shortened nose, which is typical of ICF syndrome
observed in humans and linked to DNMT3B mutations
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cells (CD19 + B220+), myeloid cells (CD11b+CD5-), and mature T-cells (CD4+CD3+ and CD8+CD3+) in the spleen of Dnmt3b+/+ (+/+; n = 6), Dnmt3b+/CI (+/CI;
n = 2), and Dnmt3bCI/CI (CI/CI; n = 6) mice as analyzed by FACS. Data are presented as mean ± SEM, *p < 0.05 by two-tailed Student’s t-test.
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(Fig. S3, B and C). Consistently with the syndrome, hemato-
poiesis was less efficient with mildly decreased production of
CD11b+ myeloid, CD3+ T-cells, and especially CD19+ B220+
B-cells observed in the spleens of Dnmt3bCI/CI mice (Figs. 3, I
and J and S4).

Altogether, our data show that Dnmt3b’s CA is dispensable
for postnatal development and fertility, but its absence results
in a decreased body weight at least partially due to a fat
deposition decrease likely associated with reduced Igf1 pro-
duction in Dnmt3bCI/CI mice. Loss of Dnmt3b’s CA induces
phenotypes consistent with ICF syndrome in humans, in
particular craniofacial defects and less efficient adult
hematopoiesis.
Dnmt3b’s CA is important for its tumor suppressor function in
spontaneous lymphomagenesis

To determine if Dnmt3b’s CA is important for its TS
function in mouse spontaneous lymphomagenesis, we
compared survival in cohorts of Dnmt3b+/+, Dnmt3b+/CI, and
Dnmt3bCI/CI mice. Similar to Dnmt3b+/−, Dnmt3b+/CI mice
developed a spectrum of hematologic malignancies including
J. Biol. Chem. (2021) 296 100285 5
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TCL, CLL, and myeloproliferation (Figs. 4A and S5).
Compared with Dnmt3b+/− mice with 44%, a combined disease
penetrance in Dnmt3b+/CI mice was reduced to 35% (23/
6 J. Biol. Chem. (2021) 296 100285
67mice) with 65% of mice remaining healthy during the
observational period of 18 months. Importantly, the disease
spectrum was substantially changed with MBL and CLL being
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the most frequent diseases observed in these mice 20% (13/67
mice) and 6% (4/67 mice), respectively (Figs. 4A and S5). MBL
and CLL were characterized by enlarged spleen and expansion
of CD5+CD19 + B220+ cells in the spleen and blood (Fig. 4,
B–D and not shown) similar to Dnmt3b+/− mice. These cells
induced disease in recipient mice upon serial transplantation
into sublethally irradiated mice demonstrating their true
leukemic nature (Fig. 4E). In addition, we also observed a
development of immature BCL characterized by expansion of
CD19+CD5-IgM-IgD-cells in the spleen (Fig. 4F).

TCL development was less frequent relative to Dnmt3b+/−

mice with only 4% (3/67) of mice developing CD8+ TCL
(Figs. 4A, S5 and S6). As observed in Dnmt3b+/− TCL,
Dnmt3b+/CI TCL tumors were serially transplantable into
sublethally irradiated recipient mice demonstrating full
tumorigenic transformation (not shown).

In total, 2/67 mice developed myeloproliferation charac-
terized by expansion of CD11B-cells in the bone marrow
(Fig. S7).

While the disease spectrum was similar in Dnmt3bCI/CI

mice, the penetrance of leukemia/lymphoma development was
decreased with 31% of observed mice developing MBL/CLL
and PTCL (Fig. 4A). In summary, these data suggest that CA
contributes substantially to Dnmt3b’s TS function, in partic-
ular in B-cell malignancies.

Methylomes of Dnmt3b+/− and Dnmt3aΔ/Δ lymphomas have
both overlapping and unique features

The development of TCL and CLL in Dnmt3b+/− mice re-
sembles phenotypes observed in Dnmt3a+/− and Dnmt3aΔ/Δ

mice raising a possibility that similar molecular events drive
lymphomagenesis in these settings (26, 36, 39). To assess this,
we next analyzed methylomes of Dnmt3b+/− and Dnmt3aΔ/Δ

TCL and publicly available normal thymus (ENCODE, Joe
Ecker, Salk lab, ENCSR001MFH (40) by whole-genome
bisulfite sequencing (WGBS). Initial analysis revealed that
6,300,000 CpG dinucleotides were covered at least 5x in all
tested samples (Figs. S8 and S9). Out of these, 267,542 (4.2%)
differentially methylated cytosines (DMCs; ≥30% change in
methylation as analyzed by Metilene) showed ≥30% methyl-
ation reduction and 10,379 (0.16%) DMCs had ≥30% methyl-
ation increase in Dnmt3b+/− PTCL cells when compared with
normal thymus (Figs. 5, A and B and S9). In Dnmt3aΔ/Δ PTCL,
we identified 441,135 (7%) DMCs hypomethylated and 18,572
(0.29%) DMCs hypermethylated when compared with a
normal control (Figs. 5B and S9). Interestingly, 166,047
(�62%) hypomethylated DMCs were overlapping between
Dnmt3b+/− PTCL and Dnmt3aΔ/Δ PTCL (Fig. 5B). Hypo-
methylation in both tumor groups was apparent for many
genomic features including long and core promoters, exons,
introns, CpG islands, and repeat elements (Figs. S10 and S11).
Further analysis revealed 4433 hypomethylated and 548
hypermethylated differentially methylated regions (DMRs; ≥3
consecutive DMCs in the distance ≤50 bp with methylation
change in the same direction ≥30%, p (MWU) <0.05 as
analyzed by Metilene) in Dnmt3b+/− PTCL (Fig. 5C). Of these,
2314 hypomethylated and 168 hypermethylated DMRs were
identified also in Dnmt3aΔ/Δ PTCL, and the overlap was
observed across the genome (Fig. 5, C–E). Based on methyl-
ation patterns, Dnmt3b+/− and Dnmt3aΔ/Δ PTCL clustered
closer and apart from normal thymus control (Fig. S12). This
similarity is likely driven by decreased Dnmt3b and Dnmt3a
levels. It does not seem to be just a consequence of T-cell
transformation due to overlaps in hypomethylated DMRs be-
ing detected between Dnmt3b+/− and Dnmt3aΔ/Δ PTCL,
especially in introns and repeats, even after hypomethylated
DMRs present in wild-type MYC-induced TCLs expressing
Dnmt3a and Dnmt3b were filtered out (Figs. S13 and S14).
Such results suggest that Dnmt3b and Dnmt3a may cooperate
in regulating target loci methylation. Data obtained from
WGBS were further validated by combined bisulfite restriction
analysis (COBRA), which showed DMRs substantially hypo-
methylated in promoters of Il2Rβ, Coro2a, and Pvt1 genes in
Dnmt3a+/− TCL (Fig. 5F). Interestingly, these loci were even
more hypomethylated in Dnmt3bΔ/Δ; Dnmt3a+/−, and
Dnmt3aΔ/Δ lymphomas we derived in our previous studies
(26, 31, 39) further suggesting interplay between Dnmt3b and
Dnmt3a in their methylation functions (Fig. 5F). Thus, our
analysis of methylomes identifies both specific and overlapping
events associated with decreased Dnmt3b and Dnmt3a levels
in mouse lymphomas.

Putative overlapping targets of Dnmt3b and Dnmt3a are
associated with H3K4me1 and H3K27ac marks

Our analysis revealed 2314 DMRs hypomethylated in both
Dnmt3b+/− PTCL and Dnmt3aΔ/Δ PTCL raising a possibility
that methylation of these regions depends on activity of both
Dnmt3b and Dnmt3a (Fig. 5C). We term these DMRs as 3a/b-
overlapping, such as Ulk4 and Dhrs3 loci (Fig. 6A). In total,
2119 DMRs were specifically hypomethylated only in
Dnmt3b+/− PTCL (3b-specific) (Fig. 5C), for instance, Trf locus
and Hist2h3b promoter (Fig. 6B). In total, 5287 hypomethy-
lated DMRs were detected specifically only in Dnmt3aΔ/Δ

PTCL (3a-specific), e.g., Ahdc1 and 1110020A21Rik loci
(Figs. 5C and 6C). To analyze association between histone
modifications and these three types of DMRs, we next utilized
available ChIP-seq data of normal Dnmt3b+/+ thymocytes
(ENCODE-ENCSR325LOF) (40). We found that 3a-specific
and 3a/3b-overlapping DMRs are marked with H3K4me1,
H3K27ac, and H3K36me3 on a genome-wide level in normal
thymus (Fig. 6D). This signature was present in various
genomic regions including enhancers, promoters, introns,
exons, and repetitive elements (Fig. S15). In contrast, we did
not observe any specific chromatin signature genome-wide or
in individual genomic elements in 3b-specific DMRs in normal
thymus (Figs. 6D and S15). To determine the effects of DNA
methylation, we next analyzed association between promoter
hypomethylation and gene expression in Dnmt3b+/− PTCL and
found that 13/126 3b-specific hypomethylated promoters
(10%) had increased expression relative to thymic control
(termed G1 group; FC ≥ 2, p < 0.05; Fig. 6E and Supporting
Information 1). Genes unchanged in expression upon
J. Biol. Chem. (2021) 296 100285 7
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with long promoters, core promoters, exons, introns, repeats, and enhancers identified only in Dnmt3b+/− (3b-specific) lymphoma, only in Dnmt3aΔ/Δ (3a-
specific) lymphoma, and in both (overlapping) relative to healthy thymus. F, COBRA of putative Dnmt3b target gene promoters in Dnmt3b+/− (3b +/- TCL),
Dnmt3bΔ/Δ (3bΔ/Δ TCL), Dnmt3a+/− (3a +/- TCL), and Dnmt3a+/−;Dnmt3b+/− (3a/b +/- TCL) lymphomas. Dnmt3b+/+ (3b+/+ CD8) and Dnmt3b+/− (3b +/- CD8)
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EDITORS’ PICK: Dnmt3b’s haploinsufficiency drives lymphomagenesis
promoter demethylation belonged to two distinct groups
characterized by either high (G2 group; FPKM>0.2; n = 77) or
low (G3 group; FPKM<0.2; n = 36) FPKM values in normal
thymus (Fig. 6E and Supporting Information 1). G1 genes were
expressed in thymus, had open chromatin around transcrip-
tion start site (TSS) and enrichment in both activating
H3K4me3 and H3K27me3 repressive histone marks (Fig. 6, E
and F and Supporting Information 1). G2 genes were already
expressed in control thymus, had open chromatin and only
activating histone marks around TSS (Fig. 6, E and F and
Supporting Information 1). G3 genes were not expressed in
thymus, had closed chromatin and enrichment in repressive
H3K27me3 mark around TSS (Fig. 6, E and F and Supporting
8 J. Biol. Chem. (2021) 296 100285
Information 1). Thus, DNA methylation appears to provide
additional layer of regulation for genes with histone mark
signature H3K4me3+H3K27me3+ that is characteristic for
bivalent promoters, whereas it seems to be less important for
genes with repressive H3K27me3+ mark only or for the
actively transcribed genes.

Tumor suppressor p53 and putative oncogenes are
deregulated in Dnmt3b+/− lymphomas

To understand further molecular effects of monoallelic
Dnmt3b loss on TCL development and the extent to which it
resembles Dnmt3a-deficient lymphomas, we next analyzed gene
expression in Dnmt3b+/− and Dnmt3aΔ/Δ TCLs by RNA-seq.
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healthy thymus (+/+). B, Visualization of single-CG methylation of representative DMRs hypomethylated exclusively in Dnmt3b+/− (3b+/−) and not
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EDITORS’ PICK: Dnmt3b’s haploinsufficiency drives lymphomagenesis
In total, 2076 upregulated and 1018 downregulated genes
(FC ≥ 2, p < 0.05) were identified in Dnmt3b+/− TCL
relative to normal control (Fig. 7A and Supporting
Information 2). Out of these, 939 upregulated and 510
downregulated events were shared between both types of
lymphomas with remaining changes specific to Dnmt3b and
additional specific ones found in Dnmt3aΔ/Δ TCL (Fig. 7A
and Supporting Information 2). Thus, �40% deregulated
genes are shared between both groups suggesting that these
lymphomas may have common drivers of disease develop-
ment (Fig. 7A and Supporting Information 2). Based on
their expression profiles, Dnmt3b+/− and Dnmt3aΔ/Δ TCL
clustered together and apart from normal CD8+ T-cells
(Fig. S16).
J. Biol. Chem. (2021) 296 100285 9
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lymphomas when compared with control CD8+ T-cells (C; n = 2). G, Trip13 expression by RNA-seq in control CD8+ T-cells (CD8; n = 2) and Dnmt3b+/− (3b+/−;
n = 3) lymphomas. H, Stat1 expression by RNA-seq in control CD8+ T-cells (CD8; n = 2) and Dnmt3b+/− (3b+/−; n = 3) lymphomas. I, Percentage of
methylation at individual CpGs of Stat1 promoter locus in Dnmt3b+/− (3b+/−) and Dnmt3aΔ/Δ (3aΔ/Δ) lymphomas and in healthy thymus (+/+).

EDITORS’ PICK: Dnmt3b’s haploinsufficiency drives lymphomagenesis
Ingenuity pathway analysis (IPA) using 3a/b shared gene
expression changes (Fig. 7A and Supporting Information 2)
revealed upregulated interferon signaling, estrogen-mediated S-
phase entry, cyclins and cell cycle regulation and suppression of
G2/MDNAdamage regulation, p53 signaling, and cell cycle G1/
S regulation (Fig. 7B). P53 pathway downregulation was also
10 J. Biol. Chem. (2021) 296 100285
identified by gene set enrichment analysis (GSEA) (Fig. 7C). The
importance of p53 in prevention of T-cell transformation in
mice (41) prompted us to examine the p53 protein during
lymphomagenesis in Dnmt3b+/− mice. P53 levels in thymi of
symptomless Dnmt3b+/− mice at different ages were unaffected
relative to control Dnmt3b+/+ (Fig. 7D). In contrast, p53 was



EDITORS’ PICK: Dnmt3b’s haploinsufficiency drives lymphomagenesis
downregulated in Dnmt3b+/− TCL consistently with down-
regulation detected by IPA and GSEA highlighting its likely
involvement in tumorigenesis (Fig. 7D). Trp53 transcript levels
were not downregulated in lymphomas (data not shown) sug-
gesting rather a proteolytic degradation. A major negative
regulator of p53—Mdm2—was not upregulated indicating no
involvement in its proteolytic degradation (Fig. S17).

We have recently linked a negative regulator of Trp53—Jun
dimerization protein 2 (Jdp2) as a contributor to p53 down-
regulation in Dnmt3aΔ/Δ PTCLs (39, 42). Interestingly, analysis
of RNAseq data identified upregulation of Jdp2 suggesting that
its increased expression may contribute to p53 downregulation
also in Dnmt3b+/− PTCL (Fig. 7E). Because Dnmt3b hap-
loinsufficiency resulted in TCL with substantially deregulated
methylomes, we next hypothesized that gene hypomethylation
accompanied by increased expression may also contribute to
lymphomagenesis (Fig. 7F and Supporting Information 3). We
identified 22 genes that become overexpressed upon promoter
hypomethylation in Dnmt3b+/− PTCL. Out of these, nine
genes were also hypomethylated and overexpressed in
Dnmt3aΔ/Δ PTCLs suggesting that these are shared targets of
Dnmt3b and Dnmt3a. This signature contained several genes
with possible oncogenic activities in TCL including Trip13 and
Stat1 (43, 44). Both were strongly upregulated and hypo-
methylated in all Dnmt3b+/− TCL (Fig. 7, G–I and S18).

Stat1 activation was also detected by Panther and Reactome
pathway analysis using hypomethylated and overexpressed
genes through deregulation of IL9 and IL21 signaling
(Fig. S19). Given the well-established role of Stat1 as an
oncogene in T-cells, our data strongly suggest that this upre-
gulation contributes to lymphomagenesis (44).

Altogether, these data suggest that downregulation of p53
and upregulation of Jdp2 and Stat1 are likely relevant in
initiation/progression of lymphomagenesis.
Dnmt3b’s CA and AF contribute to generation of TCLs
methylomes

Because TCL development observed in Dnmt3b+/− mice was
suppressed inDnmt3bCI/CI, we were unable to analyzemolecular
effects of Dnmt3b’s CA on the tumormethylome.We, therefore,
sought to use amodel allowing us to compare TCLsmethylomes
obtained from full Dnmt3b inactivation to those without
Dnmt3b’s CA. Therefore, we used EμSRa-tTA;Teto-MYCmodel
in which MYC transgene overexpression results in a develop-
ment of immature TCLs (45). We have previously shown that a
conditional loss of Dnmt3b in EμSRa-tTA;Teto-MYC;Teto-
Cre;Rosa26LOXPEGFP;Dnmt3bfl/fl mice (termedMYC;Dnmt3bΔ/
Δ) resulted in accelerated TCL (31). Here we generated EμSRa-
tTA;Teto-MYC;Dnmt3b+/+ (termed MYC;Dnmt3b+/+) and
EμSRa-tTA;Teto-MYC;Dnmt3bCI/CI (termedMYC;Dnmt3bCI/CI)
mice and harvested CD4+CD8+ TCLs that developed in these
mice (Fig. S20). Next, we used WGBS to determine methylation
patterns in MYC;Dnmt3b+/+, MYC;Dnmt3bCI/CI, and
MYC;Dnmt3bΔ/Δ lymphomas (31) (two samples per genetic
group). WGBS data were next compared with methylation data
derived from Dnmt3b+/− PTCL (Fig. 5) and normal thymus
(ENCSR001MFH) (40) (Figs. S8 and S21). This comparison
yielded methylation readouts of 5,499,675 CpGs covered ≥5x in
all samples. All lymphomas showed reduction in methylation
relative to thymocytes with the highest percentage of hypo-
methylated DMCs (≥30% change in methylation as analyzed by
Metilene based on average of two samples) present in
MYC;Dnmt3bΔ/Δ lymphomas (21.1%) and the lowest in
Dnmt3b+/− PTCL (9.6%) (Fig. 8, A and B). Gains in methylation
were also seen affecting approximately 0.4% of CpGs in all lym-
phomas (Fig. 8A). DMR analysis (DMRdefined as ≥3 consecutive
DMCs in the distance ≤50 bp with methylation change in the
same direction ≥30%, p (MWU) <0.05 as analyzed by Metilene
based on average of two samples) revealed thatMYC;Dnmt3bΔ/Δ

TCLs had the highest number of hypomethylated and the lowest
number of hypermethylated DMRs relative to normal thymo-
cytes (�27,000, and�1,100, respectively; Fig. 8C). Total number
of hypomethylated DMRs was similar betweenMYC;Dnmt3b+/+

and MYC;Dnmt3bCI/CI lymphomas (�23,000) suggesting that
Dnmt3bCI protein restored at least some Dnmt3b functions lost
inMYC;Dnmt3bΔ/Δ lymphomas (Fig. 8C). The lowest number of
hypomethylated DMRs was observed in Dnmt3b+/− PTCL
(Fig. 8C). A number of hypermethylated DMRs was similar—�
2000—across all tumor groups.

To begin to uncover putative targets of Dnmt3b’s CA or AF,
we first filtered out �3500 mostly hypomethylated DMRs that
were observed in all MTCLs presumably as a result of trans-
formation and thus not linked to Dnmt3b (data not shown). As
many as 9702 hypomethylated DMRs were present only in
MYC;Dnmt3bΔ/Δ but not in MYC;Dnmt3bCI/CI or
MYC;Dnmt3b+/+ suggesting that these DMRs may represent
putative targets of Dnmt3b’s AF (Fig. 8D). Thus, Dnmt3bCI may
have contributed to retaining of methylation of�80% of regions
(9702/12,189) that are hypomethylated in MYC;Dnmt3bΔ/Δ

TCL. In contrast, 2487 DMRs may represent putative targets of
Dnmt3b’s CA because they were detected in both
MYC;Dnmt3bΔ/Δ and MYC;Dnmt3bCI/CI MTCLs (Fig. 8D).
Further analysis revealed 1335 hypermethylated DMRs out of
which 332 were present in MYC;Dnmt3b+/+, MYC;Dnmt3bΔ/Δ,
and MYC;Dnmt3bCI/CI TCL and therefore likely not dependent
on Dnmt3b activities (Fig. 8D and data not shown), while 479
might be putative targets of Dnmt3b’s AF because they were
detected inMYC;Dnmt3bCI/CI but not inMYC;Dnmt3bΔ/Δ TCL.
In addition, 524DMRsmight be putative targets ofDnmt3b’s CA
because they are hypermethylated in MYC;Dnmt3b+/+ lym-
phomas but not in MYC;Dnmt3bΔ/Δ or MYC;Dnmt3bCI/CI

MTCLs that lack CA (Fig. 8D).
A small subset of a putative targets of Dnmt3b’s AF and CA in

MTCL lymphomas (both hypo- and hypermethylated) was also
observed inDnmt3b+/− PTCL suggesting that these locimight be
in particular sensitive to decreased levels of Dnmt3b (Fig. 8E).

Dnmt3b’s targets in TCLs were distributed relatively equally
across various genomic elements including promoters, gene
bodies, enhancers, and repeats, but AF appears to be more
involved in preventing hypomethylation in gene bodies (Figs. 8F
and S22). In contrast, a relative contribution of CA to hyper-
methylated DMRs seems to be increased in promoters possibly
indicating a direct role in de novomethylation (Figs. 8F and S22).
J. Biol. Chem. (2021) 296 100285 11
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Altogether, our data indicate that Dnmt3b’s AF plays a
major role in lymphomagenesis substantially suppressing loss
of methylation observed in tumors without Dnmt3b perhaps
because it may be involved in maintenance methylation.
Furthermore, both CA and AF may be important in a gener-
ation of hypermethylated DMRs possibly indicating a role in de
novo methylation. However, such conclusions have to be
further confirmed in more functional studies in the future.

Discussion

Here we show that decreasing Dnmt3b’s activities in vivo in
Dnmt3b+/−, Dnmt3b+/CI, and Dnmt3bCI/CI mice results in
12 J. Biol. Chem. (2021) 296 100285
development of various hematologic malignancies, mostly
TCL and CLL, highlighting its tumor suppressor function in
spontaneous lymphomagenesis.

Several interesting results were obtained from phenotypic
observations in mice. For instance, mice expressing Dnmt3bCI

developed hematologic malignancies with decreased incidence
relative to Dnmt3b+/− mice. This could be due to a different
magnitude of DNA methylomes deregulation in Dnmt3b+/CI

and Dnmt3bCI/CI lymphomas, which is likely less pronounced
than inDnmt3b+/− lymphomas. This hypothesis stems from the
fact that Dnmt3bCI protein retains AF consisting of the ability to
recruit other DNMTs, which provide their CA for cytosine
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methylation thereby stabilizing methylome. Such AF rescued
95% of DNA methylation during mouse embryogenesis in
Dnmt3bCI/CI relative to Dnmt3b-/- embryos at E11.5 (17).
Alternatively, accumulation of other pathogenic events such as
deregulated gene expression or genetic alterations is favored in
Dnmt3b+/− mice. Regardless of the reason for a decreased dis-
ease penetrance in Dnmt3b+/CI and Dnmt3bCI/CI mice, our data
clearly demonstrate that even monoallelic inactivation of
Dnmt3b’s CA activity promotes malignant hematopoiesis
highlighting its crucial role—and in a broader sense the role of
reduced cytosine methylation—in the prevention of hemato-
poietic cell transformation.

Another interesting finding is that Dnmt3bCI/CI mice had
decreased tumor incidence relative to Dnmt3b+/CI (from 35%
to 31%) and changed disease spectrum, which is surprising as
full CA inactivation would be predicted to promote, rather
than suppress, tumorigenesis. However, this could be caused
by hematopoietic cell reduction resulting in a smaller cellular
pool available for transformation or changes in microenvi-
ronment due to the presence of homozygous germline
Dnmt3b inactivation of CA in Dnmt3bCI/CI mice. Interestingly,
data obtained here on mice with different Dnmt3b activities
are similar to those observed in mice with varying degrees of
Dnmt3a inactivation. A conditional inactivation of Dnmt3a in
hematopoietic cells results in 100% disease penetrance pre-
dominantly CLL with few cases of PTCL (26, 39). Similarly,
Dnmt3a+/- mice harboring a conventional knockout allele of
Dnmt3a in FVB mouse strain develop either MBL/CLL or
PTCL or MPD with 67% penetrance over 16 months (39).
Dnmt3a+/− mice on BL6 background developed various
myeloid conditions including myeloproliferative disease and
myeloid leukemia with 56% penetrance over the course of
2 years (46). Taken all these data together, a decrease in
Dnmt3b favors development of T-cell malignancies, while the
CA seems less important due to the disease being less
frequently observed in Dnmt3b+/CI and Dnmt3bCI/CI compared
with Dnmt3b+/−mice. In contrast, loss of only Dnmt3b’s CA
but not AF in Dnmt3b+/CI mice favors development of B-cell
malignancies in particular CLL. Similarities in phenotypic
consequences of long-term heterozygosity in mice suggest that
Dnmt3a and Dnmt3b may coordinately control genes
contributing to transformation. We identified several molec-
ular events that are similar between Dnmt3b+/− and
Dnmt3aΔ/Δ TCL. One important molecular event observed in
Dnmt3b+/− TCL is downregulation of tumor suppressor p53
on protein level, which we also detected in Dnmt3aΔ/Δ TCL
previously (39). Decreased p53 contributes to T-cell trans-
formation as Trp53-/- mice are highly susceptible to sponta-
neous development of thymic lymphomas (41). Like in
Dnmt3aΔ/Δ TCL, we also found that Jdp2–a component of the
AP-1 transcription factor complex that represses
transactivation-mediated by the Jun family of proteins—is
upregulated in a majority of Dnmt3b+/− TCL. Jdp2 is an
oncogene that collaborates with the loss of p27kip1 cyclin-
dependent inhibitor to induce lymphomas (47) and also
negatively regulates Trp53 promoting T-cell leukemia devel-
opment in mice (42). Jdp2 upregulation in Dnmt3aΔ/Δ PTCLs
was associated with decreased p53 and causatively contributed
to disease progression (39). Similarly, Jdp2 is upregulated in
majority of Dnmt3b+/− lymphomas while p53 is downregulated
suggesting that similar to Dnmt3aΔ/Δ PTCLs, both events may
be linked or contribute independently to lymphomagenesis.
Additional putative oncogenic event shared between
Dnmt3b+/- and Dnmt3aΔ/Δ PTCL was promoter hypo-
methylation accompanied by gene upregulation. Genes with
oncogenic functions, such as Stat1 and Trip13, were upregu-
lated possibly contributing to disease initiation/progression
(43, 44, 48). Thus, downregulation of p53 along with activation
of oncogenes likely represents important events promoting
lymphomagenesis in both Dnmt3a+/- and Dnmt3aΔ/Δ mice.

Analysis of Dnmt3b+/− and Dnmt3aΔ/Δ TCL methylation
and its association with histone marks also revealed that both
Dnmt3a-specific and Dnmt3a/b-overlapping hypomethylated
DMRs are associated with H3K4me1, H3K27ac, and
H3K36me3 in normal thymus on a genome-wide level. In
contrast, no specific chromatin modification signature on
genome-wide level in Dnmt3b specific DMRs in normal
thymus was found.

These data are in line with our previous study suggesting
that in embryos, the accessory activity of Dnmt3b is promoted
by the presence of activating marks such as H3K36me3 (17).
The fact that we observe such association in thymus for
Dnmt3a/b-overlapping but not Dnmt3b-specific DMRs sug-
gests that Dnmt3a may be the enzyme providing CA, while
Dnmt3b supplies AF function for the methylation of these loci.
At the same time, CA of Dnmt3b was associated with the
presence of repressive H3K27me3 in embryos, but not on
genome-wide level in thymus. However, a group of 13 genes
(G1 group), whose promoters were marked by both activating
H3K4me3 and H3K27me3 repressive histone marks in normal
thymocytes, was the only group of genes responding to pro-
moter methylation loss by gene upregulation specifically in
Dnmt3b+/− tumors. By the presence of H3K4me3 and
H3K27me3 marks, G1 group resembles genes with bivalent
promoters. Given previous reports that promoters that are
marked with H3K27me3 in embryonic stem cells are more
likely to gain DNA methylation during differentiation, and that
DNA methylation promotes acquisition of H3K27me3 on
bivalent promoters (2, 49), our data suggest that Dnmt3b-
dependent DNA methylation contributes to regulation of
expression at least in a subset of genes containing bivalent
promoters.

Additional interesting findings came from a generation and
methylome analysis of MYC-induced TCLs that either had full
Dnmt3b inactivation MYC;Dnmt3bΔ/Δ or just inactivation of
its CA while retaining other functions including accessory
(MYC;Dnmt3bCI/CI). This analysis revealed that contribution
of Dnmt3b’s AF to maintenance methylation may be higher
than the CA itself because 80% of hypomethylated DMRs seen
in MYC;Dnmt3bΔ/Δ were not seen in MYC;Dnmt3bCI/CI. In
contrast, both CA and AF appear to be relatively equally
contributing to the generation of hypermethylated DMRs in
particular in promoters possibly highlighting their equivalent
role in de novo methylation. However, these conclusions were
J. Biol. Chem. (2021) 296 100285 13
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derived from differential analysis of mouse tumors in which
numerous activities are deregulated providing a lot of variables
that may affect data interpretation. Therefore, a caution has to
be exercised in our data interpretation before more rigorous
functional approaches confirm such conclusions. Nonetheless,
our data point to involvement of Dnmt3b’s CA and AF in basic
methylation functions in mouse lymphomagenesis.

Another interesting aspect of this study is finding that
Dnmt3b’s CA is largely dispensable for postnatal development
yet playing a role in fat metabolism and preventing develop-
ment of ICF-like syndrome. Several features of Dnmt3bCI/CI

mice are consistent with human ICF syndrome including facial
anomaly, reduced body weight, and hematopoietic defects,
especially impaired lymphocyte development. We identified
additional feature associated with ICF syndrome—cerebral
hyperplasia. This is not associated with higher sensitivity to
malignant development as we have not detected brain tumors
in any of the analyzed mice. Rather, this result points to a
typical clinical observation of psychological and cognitive
developmental delay in observed in ICF patients (50).

Attempts to establish ICF model were previously done by
generation of mice expressing analogues of human
DNMT3B single-point mutations derived from ICF patients
such as A609T mutant, which disrupts the interactions with
Dnmt3a and Dnmt3b1, and D823G, altering protein local-
ization (51). While homozygous mutant mice were born
and had ICF-like features, they were not viable with most
mice dying within 24 h.

Dnmt3bCI/CI mice, like humans, survive postnatal develop-
ment and resemble individuals with ICF, thus may serve as
good models for understanding the etiology of ICF syndrome
and identification of target genes regulated by DNA methyl-
ation during development.

Methods

Mouse studies

To generate conventional Dnmt3b knockout allele, we used
the approach described previously (31, 36, 39) utilizing
Dnmt3b2loxP mice obtained from E. Li (Novartis Institutes for
Biomedical Research, Cambridge, Massachusetts, USA). Mice
were kept in FVB/N genetic background and were generated
using standard genetic crosses. Mice harboring conventional
knock-in mutations (P656 V and C657D) in Dnmt3b coding
sequence (Dnmt3bCI) were generated as described before (17).
EμSRα-tTA;Teto-MYC mice were obtained from D.W. Felsher
(Stanford University). Mice harboring conditional knockout of
Dnmt3b (EμSRα-tTA;Teto-MYC;TetoCre; Rosa26-
LOXPEGFP;Dnmt3bfl/fl - termed MYC;Dnmt3bΔ/Δ) were gener-
ated as described before (31). For MYC-induced T-cell
lymphomagenesis studies, EμSRα-tTA;Teto-MYC;Dnmt3b+/+

(termed MYC;Dnmt3b+/+) and EμSRα-tTA;Teto-
MYC;Dnmt3bCI/CI (termed MYC;Dnmt3bCI/CI) mice were har-
vested when terminally sick. Cells from lymphomas were
analyzed by FACS, used for DNA isolation and WGBS. All
experimental animal procedures were approved by the Institu-
tional Animal Care and Use Committee (IACUC) at the
14 J. Biol. Chem. (2021) 296 100285
University of Florida under protocol number 201609589 and
complied with all relevant ethical regulations for animal testing
and research. All mice were housed in a pathogen-free barrier
facility at the UF.

Histology

Formalin-fixed paraffin-embeded sections (4 μm) of the
spleen, lymph node, and inguinal WAT were stained with
hematoxylin (Sigma, H9627) for 40 s and with eosin (Sigma-
Aldrich, HT110116) for 30 s. The tissue sections were
mounted with Permount mounting medium (Fisher Scientific,
SP15–100). All procedures were conducted by Molecular Pa-
thology Core, University of Florida. Images were generated
with a Zeiss Axio Imager 2 microscope (Carl Zeiss, Inc,
Thornwood, NY). For adipose tissue analysis, adipocytes were
counted for four nonoverlapping fields of view for three
Dnmt3b+/+ and Dnmt3bCI/CI mice. Cells with single large lipid
droplet were considered white adipocytes and cells with
multiple small droplets—brown.

Skeletal staining

For cranium staining, mice heads were skinned and
macerated in 2% KOH for 3 days. Eviscerated skulls were
stained with 0.005% Alizarin Red (Sigma-Aldrich, A5533) so-
lution for 4 days and washed with 1% KOH for 1 day to remove
excess staining. Skeletons were transferred to glycerol and
photographed using Zeiss Stemi 305 CAM Digital Stereo
Zoom Microscope (Carl Zeiss, Inc, Thornwood, NY).

Flow cytometry

Freshly isolated single-cell suspensions were prepared from
the spleens, lymph nodes, bone marrow, and tumor masses.
Red blood cells were lysed using ammonium–chloride–po-
tassium (ACK) lysis buffer. Cells were stained with BioLegend
antibodies for 30 min in 100 μl volume. Total B-cells (CD19+
B220+), myeloid cells (CD11b+CD5-), mature CD4+ T-cells
(CD4+CD3+), and mature CD8+ T-cells (CD8+CD3+) were
analyzed in spleen. Tumor burden in Dnmt3b+/−, Dnmt3b+/CI,
MYC;Dnmt3b+/+, MYC;Dnmt3bΔ/Δ, and MYC;Dnmt3bCI/CI

mice was evaluated using CD4+ and CD8+ antibodies for
PTCL and MTCL or CD19+, CD5+, IgM, and IgD antibodies
for CLL and CD11b+ for myeloproliferation. Data were ac-
quired on the LSRFortessa flow cytometers (BD Biosciences,
San Diego, CA, USA) and analyzed with FACSDiva software
(BD Biosciences, San Diego, CA, USA).

The analysis of clonality in tumors was performed by using
mouse Vβ TCR screening kit (BD PharMingen). Aliquots of cell
suspensions isolated from the spleens of terminally sick mice
were stained with a panel of mAbs recognizing TCR vβ chain,
including vβ 2, 3, 4, 5.1 and 5.2, 6, 7, 8.1 and 8.2, 8.3, 9, 10b, 11,
12, 13, 14, and 17a TCR per manufacturer’s instruction. Tu-
mors were considered monoclonal if they stained for one TCR.

Combined bisulfite restriction analysis

COBRA was carried out as described previously (52). Briefly,
bisulfite conversion of genomic DNA was carried out using the
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Epitect Bisulfite Kit (Qiagen). PCR products were digested
with restriction enzymes BstUI, TaqI, or TaiI (NEB). Digested
products were then loaded on an 8% PAGE gel, separated by
electrophoresis, and stained by SYBR Gold (Invitrogen).
Mouse bisulfite specific primers are shown in Supporting
Information 5.

WGBS and bioinformatic analysis

The WGBS libraries were prepared and sequenced on an
Illumina NovaSeq6000 sequencer using 150 bp long paired-end
reads (Novogen, USA). Publicly availableWGBS data for mouse
thymus control were obtained from ENCODE (Joe Ecker, Salk
lab, ENCSR001MFH) (40). Quality check, trimming, filtering,
and alignment of reads to the Mus musculus UCSC mm10
reference genome were performed at the ICBR Bioinformatics
Core (UF, Florida). The aligned BAM files were uploaded to the
Galaxy web platform (53). Methylation calling was performed
with Methyldackel (v 0.3.0.1) using the mm10-CG index
(https://github.com/dpryan79/MethylDackel.git). Only CpG
sites with a minimum sequencing depth 5x were included in
analysis. Methylation scores were visualized with the Integrated
Genome Browser (IGB) (54). Scatter plots of methylation score
were generated in Rstudio v1.1.4.6 using package gplots.
Genome-wide Pearson correlation analysis of CpG sites was
performed using deepTools package multiBigWigsummary and
plotCorrelation (55). Differentialy methylated cytosines
(DMCs) and differentially methylated regions (DMRs) were
determined by Metilene (56). DMCs are defined as CpGs with
methylation change of ≥30%. DMRs were defined based on
average of minimum three consecutive DMCs withmethylation
change in the same direction ≥30% (p(MWU)< 0.05). Maximal
base pair cutoff for a distance between consecutive DMCs in
DMR was set to 50 bp. Annotation of methylated CpGs and
DMRs to long promoters, core promoters, exons, introns, CGIs,
enhancers, and repeats was performed using bedtools intersect.
The DMR was retained if the overlap between these elements
and DMR was at least 50% of the length of the DMR. Chro-
mosomal coordinates of TSS, gene bodies, exons, introns, CGIs,
and repeats were acquired from the USCS Table browser. Co-
ordinates of enhancers identified in CD4+CD8+ cells and
thymus cells were obtained from Enhancer atlas (57). Long
promoter was defined as 1500 bp upstream to 500 bp down-
stream of the TSS. Core promoter was defined as 300 bp up-
stream to 150 bp downstream of the TSS.

ChIP-seq data analysis

Publicly available data on chromatin modifications in mouse
thymus from 8-week-old mice were obtained from ENCODE
(Bing Ren, UCSD lab and John Stamatoyannopoulos, UW;
ENCSR325LOF) (40). Heat map of DNAse I sensitivity assay
and profiles of peak signals were generated using the com-
puteMatrix, plotProfile, and plotHeatmap scripts from the
deepTools3 package (55). Plots showing histone enrichment
profiles across DMRs scaled to 200 bp were computed using
10 bp long nonoverlaping bins. Flanking unscaled −100
and +100 bp regions are shown. Plots presenting histone
modification profiles and DNAseI sensitivity assay for genes
with hypomethylated promoters that become upregulated in
Dnmt3b+/− and/or Dnmt3aΔ/Δ lymphomas show unscaled re-
gion from −2000 bp to +2000 bp around TSS.

RNA-seq

Library generation and sequencingwereperformedonNovaSeq
6000 platform using paired-end 150 bp runs (Novogene, USA).
Previously publishedRNA-seq data formice lymphomas driven by
conditional loss of Dnmt3a (EμSRα-tTA;Teto-Cre;Dnmt3afl/fl;Ro-
sa26LOXP

EGFP/EGFP

) (36, 39) or expression of humanMYConcogene
(16) (EμSRα-tTA;Teto-MYC) and control CD8+ T-cells (36) were
added to analysis. Trimmed sequencing data were first aligned to
Mus musculus UCSC mm10 reference genome using STAR
aligner. RNA-seq data with minimum mapped quality 50 were
quantified using the RNA-seq quantitation pipeline in SeqMonk
software (http://www.bioinformatics.babraham.ac.uk/projects/
seqmonk/). DeSeq2 was used to calculate differential expression.
For differentially expressed genes, only geneswith a fold change ≥2
and a p value <0.05 were considered to be significant. Reactome
and Panther pathway analysis was conducted using WebGestalt
(58). Ingenuity pathway analysis (Qiagen) (59) was used to analyze
activated and decreased signaling pathways. Hierarchical clus-
tering was performed in Cluster 3.0 (60), and heat maps were
visualized in Java TreeView 3.0.

Gene set enrichment analysis

All FPKM values for Dnmt3b+/−;Dnmt3aΔ/Δ lymphomas and
control CD8+ T-cells were converted to GCT expression data
set. CLS files were generated using CLSFileCreator (v4) (http://
software.broadinstitute.org/cancer/software/genepattern/
modules/docs/ClsFileCreator/4). All hallmarks gene set was
downloaded from Broad Institute’s Molecular Signatures Data-
base. GSEA (v3.0) (61, 62) was used to test the relationship be-
tween RNA-seq expression data and the All hallmarks gene set.
Gene sets enriched in less than 15 genes andmore than 500 genes
were excluded from the analysis. Gene sets with a false discovery
rate (FDR) value <0.25 and p <0.05 after performing 1000
permutations were considered to be significantly enriched.

Western blotting

Western blots were performed as previously described (31),
using the following antibodies: Dnmt1 (sc271729, Santa Cruz;
dilution 1:1000), Dnmt3a (sc-20703, Santa Cruz; dilution
1:1000), Dnmt3b (PA1-884, Thermo Fisher; dilution 1:1000),
p53 (sc6243, Santa Cruz; dilution 1:1000), Hsc70 (sc-7298,
Santa Cruz; dilution 1:10,000). Uncropped and unprocessed
scans of blots are available in Source Data file.

Real-time qRT-PCR

Total mRNA was isolated as described previously (31) from
Dnmt3b+/+ and Dnmt3bCI/CI liver. RNA was reverse tran-
scribed with the SuperScript III Reverese transcriptase
(Thermo Fisher) using oligo(dT) primers. Real-time qRT-PCR
was performed with the iQ SYBR Green Supermix (Bio-Rad)
on a CFX96 Touch Real-Time PCR Detection System (Bio-
J. Biol. Chem. (2021) 296 100285 15
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Rad). Fast PCR cycling conditions were used (95 �C for 3 min,
40 cycles (95 �C for 10 s, 58–63.5 �C for 30 s)), followed by a
dissociation curve analysis. All qPCR measurements were
performed in duplicate reactions and normalized to the
expression of housekeeping gene (β-actin). In parallel, no-RT
controls were amplified to rule out the presence of contami-
nating genomic DNA. Primer sequences for qPCR are pro-
vided in Supporting Information 5.

Statistical analysis

Statistical significance of means ± SEM was evaluated using
the two-tailed Student’s t-test. For all statistical analyses, p
values <0.05 were considered significant. The significance
between observed and expected genotype representation of
Dnmt3b+/CI and Dnmt3bCI/CI mice was calculated using Chi-
squared test. Differential histone enrichment was analyzed by
Student’s t-test or Welch’s unequal variances t-test.

Data Availability

All relevant data are available from the corresponding
author upon reasonable request. The WGBS and RNA-seq
data were deposited at the NCBI Gene Expression Omnibus
database [GSE154270, GSE154451, GSE78146] (63).
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