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The growing demand of new materials with tailored physicochemical properties has propelled
hybrid materials to a position of prominence in materials science by virtue of their remarkable new
properties and multifunctional nature. Hybrid nanomaterials, formed by two or more components
connected at the nanometer scale, combine the intrinsic characteristics of its individual constituents to
additional properties due to synergistic effects between the components [1,2]. As a result, the properties
of hybrid nanomaterials can be tuned by changing their composition and morphology, leading to
materials with enhanced performance characteristics, such as high thermal stability, mechanical
strength, light emission, gas permeability, electron conductivity, and controlled wetting features [3,4].
Owing to their wide spectrum of accessible properties, hybrid materials are emerging platforms for
applications in extremely diverse fields such as optics, microelectronics, smart coatings, health and
diagnostics, photovoltaics, fuel cells, pollutant remediation, catalysis, and sensing [5–8]. This Special
Issue, with a collection of 13 original contributions and two literature overviews, showcases some
of the latest advances in this burgeoning and highly interdisciplinary research field, with the aim of
highlighting potential applications in diverse fields, present challenges, and research outlooks.

Several articles in this Special Issue focus on the synthesis of materials or devices designed for
pollution remediation. In the feature article by Liao et al. [9], hybrid surface coatings were prepared by
modifying TiO2 films with Au nanoclusters by gas-phase beam deposition. The gold distribution onto
the semiconductor support was highly homogeneous and provided efficient plasmonic photocatalytic
activity. Tests of stearic acid degradation performed both under UV and green LED light showed a
promoting effect due to the metal nanoclusters, especially under green light irradiation. The feature
paper by Panzarasa and coauthors [10] presents a different approach to pollutant remediation, making
use of natural renewable sources. Sepia melanin was used as an active component in hybrid adsorbent
materials, owing to its ability to efficiently bind several organic compounds. The resulting hybrid
material proved efficient, stable, easily recoverable and showed good reusability. Also in the work by
Ren and coauthors [11], agro-alimentary waste is valorized as a starting material for hybrid material
preparation. Magnetite-carbon nanocomposites were prepared by a hydrothermal procedure adopting
pomelo peels as carbon source. The resulting hybrids were used as adsorbents to extract fungicide
residues from homogenized fruit samples. One of the main issues in the pollutant remediation
of surface waters and wastewaters by adsorption and/or degradation processes is represented by
the removal of finely dispersed adsorbents/photocatalysts upon treatment. In the work by Lu and
coauthors [12], a magnetic separation procedure is proposed to solve this problem: Hybrid magnetic
iron oxides were deposited onto MoS2 nanosheets in the presence of metallic iron. By combining direct
redox and Fenton processes, the hybrid provided simultaneous degradation of both toxic inorganic
(Cr(VI)) and organic compounds (4-chlorophenol). Moreover, the nanocomposites could be separated
magnetically from the treated effluent, showing good reusability.
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In the last decade, hybrids based on carbon nanomaterials, such as carbon nanotubes, have raised
a great deal of interest in several fields [13,14]. In the work by Das and coauthors [15], the in situ
formation of either crystalline metals or metal oxides onto multiwalled carbon nanotubes (MWNT)
was achieved by modifying the sol-gel conditions of the precipitation reaction, in the absence of any
oxidizing or reducing agent, using the electrochemical potential as a control parameter. The reaction
occurrence was made possible just by the surface energy and composition of the MWNT activated
surfaces, which act as nucleation sites for the growth of the crystals. By the same principles, in the
feature paper by Sansotera et al. [16], the successful functionalization of MWNT by perfluoropolyether
chains was controlled by the surface features of the carbon nanotubes. The resulting covalent bond
produced relevant modifications of the MWNT surface energy imparting superhydrophobic behavior;
branched chains, bearing CF3 groups, produced a higher functionalization degree with respect to linear
ones. The functionalization appeared to affect the pore size distribution of MWNT, mainly in the case
of branched chains, while the conduction properties were only weakly modified. The control of the
porosity and surface features of carbon materials is also the focus of the work by Lu and coauthors [17].
They proposed a controlled modification of mesoporous carbon by Mg and N in the presence of a
non-ionic surfactant, giving rise to a higher microporosity and to two types of basic sites. Thanks to
the enhanced morphological and surface features, the resulting materials showed increased CO2

adsorption, more than twice with respect to the pristine material.
Another field of applied science currently benefitting from hybrid materials is health care.

Potential biomedical applications are envisaged in the works by Truong et al. [18] and by
Predoi et al. [19]. Truong and coauthors [18] reported the synthesis of vertically aligned Cu-doped
Zn nanorods grown on a platform of Cu3Si nanoblocks. The prepared nanocomposites showed an
extended absorption edge and bioluminescence in the visible region, which paves the way to their
application as bio-probes and luminescent markers. The work of Predoi et al. [19] deals with the very
important topic of alternative antimicrobial agents for disinfection. Antibiotic resistance is becoming
an increasingly major concern worldwide and has prompted the research of alternative treatments or
medications. Predoi and coauthors [19] described the antimicrobial activity of essential oils deposited
onto hydroxyapatite: Hydroxyapatite coated by lavender essential oil showed higher antibacterial
activity with respect to other essential oil and, thanks to its biocompatibility, could be proposed to
combat infections following prosthetic implantation. Regenerative medicine is also the topic of the
review article by Batool et al. [20], more specifically, the new bioengineering approaches in terms
of periodontal tissues and bone regeneration. The review sheds light on the use of bioactive hybrid
scaffolds, such as functionalized membranes, for the controlled local delivery of anti-inflammatory
drugs and growth factors for the treatment of periodontal diseases.

The Special Issue showcases a broad range of application areas of hybrid devices, including
self-cleaning coatings [21], sensors [22], catalysis [23], optoelectronics [24], and photovoltaics [25].
The feature article by Vázquez-Velázquez et al. [21] presented covalently functionalized TiO2–SiO2

binary systems dispersed in an acrylic matrix, giving rise to hybrid films with excellent transparency
and superhydrophilic properties. The authors discussed the synergistic effects in the nanocomposite
on the grounds of the chemical interactions among the constituents and their morphology.

Wang and coauthors [22] reported a carefully designed hydrothermal synthesis giving rise to
beautiful flower-like nanocomposites based on SnO2 nanorods and nano-sheet graphitic carbon nitride.
The hybrid materials showed promising results as gas sensors for ethanol detection: The improved
sensor response of the hybrids with respect to literature data, is discussed on the grounds of the band
structure, resulting from the heterojunction between the two semiconductors, and of the increased
number of gas adsorption sites.

The synthetic approach plays a key role also in the work by Jodłowski and coauthors [23] where
the preparation of nanocomposites between zirconia and non-noble metal oxides, to be used as catalysts
for methane combustion, was promoted by sonochemistry. The ultrasound treatment produced an
optimal dispersion of the oxides onto the support leading to enhanced catalytic activity.
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The communication by Kim et al. [24] presents a transparent and conductive hybrid material for
use as transparent electrode in flexible electronics. Bidimensional silver nanowires deposited onto PET
layers and decorated with nanometric Ti layers were proposed as a flexible substitute to conventional
transparent conductive oxides, such as indium tin oxide (ITO). The titanium layer, deposited by
electron-beam evaporation, imparted improved ambient-stability under high-temperature and
high-humidity conditions and promoted a net increase in the electrical conductivity with respect
to the pristine materials, yielding an 88% transparency rate and an electrical performance that is better
than commercial transparent conductive electrodes.

The Special Issue is completed by a review article by Wu and coauthors [25] dealing with a
very high profile topic in the energy conversion community: Perovskite-based solar cells (PSCs).
Organic-inorganic perovskites have raised world-wide attention in recent years due to their unique
electronic, optical and transport properties. In the last few years the power conversion efficiency of
PSCs has increased explosively from 3.8% (2009) to about 22% (2017) [26]. However, the stability of
perovskite solar cell devices is still unsatisfactory, particularly in the presence of moisture and light
illumination. The role played by composition, structure and hybrid architectures were examined in
detail in the review and the material design was proposed as a tool to control the material stability and
conversion efficiency.

In summary, this Special Issue of Nanomaterials titled “Preparation and Application of Hybrid
Nanomaterials” compiles a series of original research articles and review papers providing new insight
on the preparation and on the wealth of applications of hybrid nanomaterials. We are confident that
this Special Issue will provide the reader with an overall view of the latest prospects in this fast
evolving and cross-disciplinary field.
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