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Abstract: Several recent experimental studies have investigated the effects of caffeine and chlorogenic
acid (CGA), representative ingredients of coffee, on nonalcoholic fatty liver disease (NAFLD)/nonalcoholic
steatohepatitis (NASH). However, the results are conflicting, and their effects are yet to be clarified. In the
present study, we examined the effects of caffeine and CGA on choline-deficient, L-amino acid-defined,
high-fat diet (CDAHFD)-fed mice, relatively new model mice of NASH. Seven-week-old male C57BL/6J
mice were divided into the following groups: Control diet (control), CDAHFD (CDAHFD), CDAHFD
supplemented with 0.05% (w/w) caffeine (caffeine), and CDAHFD supplemented with 0.1% (w/w) CGA
(CGA). After seven weeks, the mice were killed and serum biochemical, histopathological, and molecular
analyses were performed. Serum alanine aminotransferase (ALT) levels were significantly higher in the
caffeine and CGA groups than in the CDAHFD group. On image analysis, the prevalence of Oil red
O-positive areas (reflecting steatosis) was significantly higher in the caffeine group than in the CDAHFD
group, and that of CD45R-positive areas (reflecting lymphocytic infiltration) in the hepatic lobule was
significantly higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic expression
of interleukin (IL)-6 mRNA was higher in the caffeine and CGA groups than in the CDAHFD group,
and the difference was statistically significant for the caffeine group. In conclusion, in the present study,
caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis
in NASH lesions in mice.

Keywords: nonalcoholic steatohepatitis; coffee; caffeine; chlorogenic acid; choline-deficient, L-amino
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is defined as accumulation of excessive fat in the
hepatocytes of patients without a history of large amount of alcohol drinking. NAFLD includes a
spectrum of liver diseases that ranges from simple steatosis (nonalcoholic fatty liver) to nonalcoholic
steatohepatitis (NASH), which can progress to liver cirrhosis and hepatocellular carcinoma (HCC) [1–3].
NAFLD/NASH is rapidly increasing worldwide, in line with the increased prevalence of obesity
because of lifestyle changes in recent years with the consumption of energy-rich diets. The prevalence
of NAFLD in the general population of the world was estimated to be 25%, and the prevalence of
NASH in the world was estimated to be 3–5% [4–7], demonstrating the importance of developing
effective methods for their prevention and treatment.

Coffee is a brewed drink prepared from roasted coffee beans and is one of the most frequently
consumed drinks in the world. Chemically, coffee contains many physiologically active compounds [8,9].
Coffee consumption is associated with reduced risk of several diseases including type 2 diabetes,
Parkinson’s disease, and HCC [10–12]. Previous clinical and experimental studies also suggested
inhibitory effects of coffee on NAFLD/NASH [13–15]; however, the effective ingredients and mechanisms
have not been determined.

Caffeine and chlorogenic acid (CGA) are representative ingredients of coffee, and the contents
of caffeine and CGA in 200–240 mL of coffee are estimated to be 72–130 mg and 70–350 mg,
respectively [16]. Caffeine is a xanthine alkaloid that is considered to have energy expending, antioxidant,
and anti-inflammatory activities [17–20]. CGA is a polyphenol that is known to have antioxidant,
hepatoprotective, anti-inflammatory, and anti-obesity effects [21]. Several recent experimental studies
have investigated the effects of caffeine and CGA on NAFLD/NASH under the assumption that they
might underlie the effects of coffee on NAFLD/NASH [19,22–30]. Although most of those previous studies
showed the inhibitory effects of caffeine and CGA on NAFLD/NASH [19,22–25,27–29], several studies
have also reported exacerbating effects [26,30]. Thus, the effects of these ingredients should be clarified.

Here, we examined the effects of caffeine and CGA on the hepatic lesions of choline-deficient,
L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, a relatively new animal model of NASH that
was developed to improve methionine- and choline-deficient (MCD) and high-fat (HF) diet models.
We applied the CDAHFD model in this study because Matsumoto et al. [31] reported that C57BL/6J
mice that were fed the diet maintained or gained weight and developed NASH with fibrosis in only
six weeks.

2. Materials and Methods

2.1. Mice and Experimental Protocol

Twenty-four 6-week-old male C57BL/6J mice were purchased from CLEA Japan (Tokyo, Japan).
Mice were acclimated to the environment for one week, and then randomly divided into the following
groups (n = 6, each): Control, CDAHFD, caffeine, and CGA. Mice in the control group were fed a
control diet (CRF-1) (Oriental Yeast, Tokyo, Japan); the CDAHFD group was fed CDAHFD (A06071302)
(Research Diets, New Brunswick, NJ, USA); the caffeine group was fed CDAHFD supplemented with
0.05% (w/w) caffeine; and the CGA group was fed CDAHFD supplemented with 0.1% (w/w) CGA,
ad libitum. Caffeine and CGA were purchased from the FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). These compounds were mixed in the CDAHFD at the above-mentioned concentrations.
The feeds were stored at 4 ◦C. The feeds were exchanged three times/week, and food intake was
recorded. Food consumption and calorie intake per day were calculated each time during replacement
of diet. The experiment was performed at the Animal Center of Teikyo University School of Medicine
(Tokyo, Japan). The conditions were as follows: 25 ◦C, 45% humidity, and a 12-h light/12-h dark cycle.
Seven weeks later, the mice were killed by decapitation under deep anesthesia. A blood sample from
each mouse was collected at decapitation, and the serum was separated via centrifugation. The liver
of each mouse was extirpated and weighed, and samples for histological analysis, RNA purification,
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and snap-freezing were collected. The epididymal adipose tissue (EAT) was also excised and weighed
to use as an indicator of the amount of visceral fat.

This study was performed in conformity to the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. The experimental protocol was approved by the Ethics Committee
of Teikyo University (on 25 February 2016; Permit No. 15-047). All animals received humane care,
and all efforts were made to alleviate suffering.

2.2. Assessment of Serum Biochemical Parameters

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG),
total cholesterol (T-Cho), glucose, insulin, and adiponectin levels were measured as described in our
previous studies [32,33].

2.3. Histopathological Analysis

The central parts of the left lateral lobe and medial lobe of the liver were fixed in 10% neutral buffered
formalin and routinely processed for light microscopy. Hematoxylin and eosin (H&E) staining and Sirius
red staining were performed to evaluate hepatic histopathology including fibrosis. Oil red O staining was
also performed using frozen liver tissue sections to evaluate hepatic steatosis. The histopathology was
evaluated semi-quantitatively using the validated scoring system by Kleiner et al. [34]. Detailed scoring
criteria for steatosis, lobular and portal inflammation, hepatocellular ballooning, and perisinusoidal
fibrosis are described in our previous papers [32,33]. The method of calculation of NAFLD activity score
(NAS) and staging of fibrosis are also described in our previous papers [32,33].

The histological slides were observed by three hepatic pathologists (E.D., T.F., and Y.T.). Generally,
each pathologist’s evaluation showed good concordance. When there were minor differences in
evaluation, the three pathologists had a discussion and made the final decision.

2.4. Immunohistochemistry

Immunohistochemical staining for CD45R and α-smooth muscle actin (α-SMA) was performed to
detect infiltrating lymphocytes and activated hepatic stellate cells (HSCs), respectively. Paraffin sections
of liver specimens were immunostained with anti-mouse/human CD45R monoclonal antibody (catalog
No. 103202; clone: RA3-6B2; dilution: 1:100; BioLegend, San Diego, CA, USA) using the Histofine
Simple Stain Mouse MAX-PO (Rat) kit (Nichirei Biosciences, Tokyo, Japan), and with anti-α-SMA
monoclonal antibody (catalog No. M0851; clone: 1A4; dilution: 1:100; Agilent Technologies, Santa Clara,
CA, USA) using the Histofine Mousestain kit (Nichirei Biosciences), respectively, following instructions
of the manufacturers. The method of antigen retrieval was heating the sections for 20–40 min in citrate
buffer (pH 6.0) in a water bath.

2.5. Image Analysis of Histological Slides

We performed image analysis to objectively assess the degree of steatosis and fibrosis, and the
number of lymphocytes and activated HSCs. Photomicrographs of four randomly selected intralobular
fields were obtained for each Sirius red, α-SMA, and CD45R staining slide (magnification: 400× for Sirius
red staining, 400× for α-SMA staining, and 200× for CD45R staining). Photomicrographs of two randomly
selected 100× fields were obtained for each Oil red O staining slide. Several photomicrographs were taken
for each mouse to minimize the bias by selection of the microscopic field; all these photomicrographs
were used for image analysis as described in our previous studies [32,33]. The prevalence of Oil red O-,
Sirius red-, CD45R-, and α-SMA-positive areas in these photomicrographs was analyzed using the image
analysis software WinROOF (Mitani Corporation, Fukui, Japan).
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2.6. Hepatic Levels of TG and T-Cho

We measured TG and T-Cho levels in the liver biochemically using frozen tissues. The detailed
methods are described in our previous paper [33].

2.7. 4-Hydroxynonenal (4-HNE) Levels in the Liver

The hepatic 4-HNE levels were measured to evaluate the oxidative injury to lipids in the liver as
described in our previous study [33].

2.8. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Analysis

To examine the molecular mechanisms by which caffeine and CGA influence the NASH
lesion in mice, we measured mRNA expression of cytokine and receptor genes in the liver by
real-time RT-PCR. The expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, peroxisome
proliferator-activated receptor (PPAR)γ, and transforming growth factor (TGF)-β1 genes was measured
and the TATA-box binding protein (TBP) gene was used as the internal control. The detailed methods
and primer sequences of the genes, other than IL-10, are described in our previous papers [32,33].
The primers for the IL-10 gene were as follows: forward, 5′-GCGCTGTCATCGATTTCTCC-3′; reverse,
5′-CATGGCCTTGTAGACACCTTGG-3′.

Additionally, we performed real-time RT-PCR to evaluate the mRNA expression of genes involved
in lipidic and glucidic metabolism in the liver. The expression of CD36, PPARα, microsome triglyceride
transfer protein (MTP), carnitine palmitoyltransferase (CPT) 1A, sterol regulatory element-binding protein
(SREBP)-1c, fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), phosphoenolpyruvate carboxykinase
(PEPCK), and pyruvate carboxylase (PC) genes was measured and the TBP gene was used as the internal
control. The methods are the same as additional real-time RT-PCR in our previous study [33], and the
primers for each gene are shown in Table 1.

Table 1. Primers used in additional real-time RT-PCR.

Genes Forward Primers (5′→3′) Reverse Primers (5′→3′)

CD36 GCCAAGCTATTGCGACATGA CAATGGTTGTCTGGATTCTGG
PPARα AATGCAATTCGCTTTGGAAG GGCCTTGACCTTGTTCATGT
MTP CATCTCCACAGTGCAGTTCTCACA GGAGTTCACATCCGGCCACTA

CPT 1A GATCTACAATTCCCCTCTGCTCT TAGAGCCAGACCTTGAAGTAACG
SREBP-1c TGGACTACTAGTGTTGGCCTGCTT ATCCAGGTCAGCTTGTTTGCGATG

FASN TGGGTTCTAGCCAGCAGAGT ACCACCAGAGACCGTTATGC
ACC GGAGATGTACGCTGACCGAGAA ACCCGACGCATGGTTTTCA

PEPCK GGTGTTTACTGGGAAGGCATC CAATAAGGGGCACTGGCTG
PC GAGCTTATCCCGAACATCCC TCCATACCATTCTCTTTGGCC

TBP CTGGAATTGTACCGCAGCTT ATGATGACTGCAGCAAATCG

ACC, acetyl-CoA carboxylase; CPT, carnitine palmitoyltransferase; FASN, fatty acid synthase; MTP, microsome
triglyceride transfer protein; PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; PPAR,
peroxisome proliferator-activated receptor; SREBP, sterol regulatory element-binding protein; TBP, TATA-box
binding protein.

2.9. Statistical Analysis

For continuous variables, data are presented as means ± standard deviation (SD). One-way
analysis of variance (ANOVA) followed by Dunnett’s post-hoc test was performed to evaluate the
significance of the differences. For semi-quantitative data in histological evaluation, data are presented
in terms of the median (min. to max.). The Kruskal-Wallis test followed by Steel’s post-hoc test was
performed to determine statistical significance. Statistical significance was set at a p-value < 0.05.
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3. Results

3.1. General Findings

No mice died during the experiment. Table 2 shows data of food consumption, calorie intake,
and body and organ weight of the mice. Food consumption was significantly lower (p < 0.001, p = 0.006,
and p < 0.001, respectively), whereas calorie intake was significantly higher (p = 0.001, p < 0.001,
and p = 0.001, respectively), in the CDAHFD, caffeine, and CGA groups than in the control group. Food
consumption and calorie intake were significantly higher in the caffeine group than in the CDAHFD
group (both p < 0.001). Body weight was significantly lower in the CDAHFD, caffeine, and CGA
groups than in the control group (p < 0.001 for all) but was not significantly influenced by caffeine or
CGA. Liver weight was significantly higher in the CDAHFD, caffeine, and CGA groups than in the
control group (p = 0.003, p = 0.007, and p < 0.001, respectively). The liver/body weight ratios were
significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001 for
all). However, caffeine or CGA did not significantly influence these parameters. The EAT weight was
significantly lower in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001
for all), and the EAT/body weight ratios were significantly lower in the CDAHFD, caffeine, and CGA
groups than in the control group (p = 0.001, p < 0.001, and p = 0.006, respectively). However, caffeine
or CGA did not significantly influence these parameters.

Table 2. Food consumption, calorie intake, and body and organ weight.

Parameters
Experimental Groups

Control CDAHFD Caffeine CGA

Food consumption (g/day) 3.0 ± 0.2 2.3 ± 0.3 a 2.7 ± 0.4 a,b 2.3 ± 0.3 a

Calorie intake (kcal/day) 10.5 ± 0.5 12.1 ± 1.6 a 14.0 ± 2.0 a,b 12.1 ± 1.3 a

Body weight (g) 25.3 ± 1.4 20.4 ± 0.8 a 20.7 ± 1.2 a 20.6 ± 0.5 a

Liver weight (g) 1.0 ± 0.0 1.3 ± 0.2 a 1.3 ± 0.2 a 1.4 ± 0.0 a

Liver to body weight ratio (%) 3.9 ± 0.3 6.5 ± 0.9 a 6.6 ± 0.2 a 6.9 ± 0.2 a

EAT weight (g) 0.5 ± 0.1 0.3 ± 0.0 a 0.3 ± 0.1 a 0.3 ± 0.0 a

EAT to body weight ratio (%) 2.0 ± 0.2 1.4 ± 0.3 a 1.3 ± 0.3 a 1.5 ± 0.1 a

Data are presented as means ± SD. a Significantly different from the control group (p < 0.05). b Significantly different
from the CDAHFD group (p < 0.05). EAT, epididymal adipose tissue.

3.2. Biochemical Data of the Serum

Table 3 shows the serum data of each group. Serum AST and ALT levels were significantly higher
in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001 for all) and tended to be
higher (AST) and significantly higher (ALT; p = 0.048 and 0.024, respectively) in the caffeine and CGA
groups than in the CDAHFD group. Serum T-Cho (p < 0.001 for all) and TG (p = 0.004, 0.001, and 0.014,
respectively) levels were significantly lower in the CDAHFD, caffeine, and CGA groups than in the
control group. Serum insulin levels were significantly lower in the CDAHFD and CGA groups than
in the control group (p = 0.012 and 0.008, respectively). Serum adiponectin levels were significantly
lower in the CDAHFD, caffeine, and CGA groups than in the control group (p = 0.006, 0.008, and 0.005,
respectively). Neither caffeine nor CGA significantly influenced these parameters. However, serum
insulin levels tended to be higher in the caffeine group than in the CDAHFD group. Serum glucose
levels were significantly higher in the caffeine group than in the control group (p = 0.022).
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Table 3. Biochemical data of serum.

Parameters
Experimental Groups

Control CDAHFD Caffeine CGA

AST (IU/L) 175.3 ± 88.7 326.8 ± 25.1 a 339.6 ± 27.6 a 340.0 ± 61.4 a

ALT (IU/L) 27.7 ± 4.3 272.3 ± 42.3 a 342.4 ± 39.6 a,b 349.7 ± 84.8 a,b

T-Cho (mg/dL) 102.0 ± 3.2 47.3 ± 13.3 a 42.3 ± 6.3 a 55.2 ± 3.6 a

TG (mg/dL) 75.7 ± 23.7 42.7 ± 16.9 a 35.6 ± 2.6 a 48.3 ± 14.1 a

Glucose (mg/dL) 48.3 ± 9.2 65.0 ± 5.8 85.7 ± 40.9 a 78.0 ± 19.9
Insulin (pg/mL) 226.8 ± 134.9 59.2 ± 62.0 a 147.2 ± 125.2 48.2 ± 49.5 a

Adiponectin (µg/mL) 15.4 ± 1.8 12.8 ± 0.2 a 13.1 ± 0.9 a 13.0 ± 1.2 a

Data are presented as means ± SD. a Significantly different from the control group (p < 0.05). b Significantly different
from the CDAHFD group (p < 0.05). ALT, alanine aminotransferase; AST, aspartate aminotransferase; T-Cho,
total cholesterol; TG, triglyceride.

3.3. Histopathological Findings

The mice in the CDAHFD, caffeine, and CGA groups showed liver histopathological features of
NASH, although mice in the control group did not (Figure 1a). Table 4 shows the semi-quantitative
histological findings of each group. Steatosis and intralobular inflammation (both p = 0.001 for all),
as well as ballooning (p = 0.002 for all), were significantly more severe in the CDAHFD, caffeine,
and CGA groups than in the control group. Perisinusoidal fibrosis was significantly more severe in the
CDAHFD, caffeine, and CGA groups than in the control group (p = 0.002, 0.004, and 0.002, respectively).
However, neither caffeine nor CGA significantly influenced these parameters. NAS (p = 0.002 for all)
and fibrosis stage (p = 0.007 for all) were significantly higher in the CDAHFD, caffeine, and CGA
groups than in the control group. However, caffeine or CGA did not significantly influence them.
Portal inflammation was not significantly different among the groups.

Table 4. Histopathological findings of experimental groups.

Parameters
Experimental Groups

Control CDAHFD Caffeine CGA

Steatosis 0 (0, 0) 3 (3, 3) a 3 (3, 3) a 3 (3, 3) a

Intralobular inflammation 0 (0, 0) 3 (3, 3) a 3 (3, 3) a 3 (3, 3) a

Portal inflammation 0 (0, 0) 0.5 (0, 1) 0.5 (0, 1) 0 (0, 1)
Ballooning 0 (0, 0) 1 (1, 2) a 1 (1, 2) a 2 (1, 2) a

NAS 0 (0, 0) 7 (7, 8) a 7 (7, 8) a 8 (7, 8) a

Perisinusoidal fibrosis 0 (0, 1) 2 (2, 2) a 2 (1, 2) a 2 (2, 2) a

Fibrosis stage 0 (0, 1) 1 (1, 1) a 1 (1, 1) a 1 (1, 1) a

Data are presented as median (min., max.). a Significantly different from the control group (p < 0.05). NAS, NAFLD
activity score.

3.4. Image Analysis of Histological Slides

Figure 1b–e shows the results of the quantitative image analysis. The prevalence of Oil red
O-positive areas, that reflects the degree of steatosis, was significantly higher in the CDAHFD, caffeine,
and CGA groups than in the control group (p < 0.001 for all). It was higher in the caffeine and CGA
groups than in the CDAHFD group, and the difference was statistically significant between the caffeine
and CDAHFD groups (p = 0.036). The prevalence of Sirius red-positive areas, that reflects the degree
of fibrosis, in the hepatic lobule, was significantly higher in the CDAHFD, caffeine, and CGA groups
than in the control group (p < 0.001 for all). It tended to be higher in the caffeine and CGA groups
than in the CDAHFD group, but the differences were not statistically significant. The prevalence
of CD45R-positive areas in the hepatic lobule, that reflects the degree of intralobular lymphocytic
infiltration, was significantly higher in the CDAHFD, caffeine, and CGA groups than in the control
group (p < 0.001 for all), and significantly higher in the caffeine and CGA groups than in the CDAHFD
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group (p = 0.008 and 0.006, respectively). The prevalence of α-SMA-positive areas in the hepatic lobule,
that reflects the number of activated HSCs, was significantly higher in the CDAHFD, caffeine, and CGA
groups than in the control group (p < 0.001 for all) but was not significantly influenced by caffeine
or CGA.
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Figure 1. Photomicrographs of the liver (a) and results of quantitative image analysis (b–e). (a) The
mice in the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), caffeine, and chlorogenic
acid (CGA) groups show liver histopathological features of nonalcoholic steatohepatitis (NASH). H&E,
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Hematoxylin and eosin. (b) The prevalence of Oil red O-positive areas reflecting the degree of steatosis,
is significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group; it is
higher in the caffeine and CGA groups than in the CDAHFD group, and the difference is statistically
significant between the caffeine and CDAHFD groups. (c) The prevalence of Sirius red-positive areas,
that reflects the degree of fibrosis, in the hepatic lobule, is significantly higher in the CDAHFD, caffeine,
and CGA groups than in the control group, and tends to be higher in the caffeine and CGA groups than
in the CDAHFD group. (d) The prevalence of CD45R-positive areas in the hepatic lobule, that reflects
the degree of intralobular lymphocytic infiltration, is significantly higher in the CDAHFD, caffeine,
and CGA groups than in the control group and significantly higher in the caffeine and CGA groups than
in the CDAHFD group. (e) The prevalence of α-SMA-positive areas in the hepatic lobule, that reflects
the number of activated hepatic stellate cells (HSCs), is significantly higher in the CDAHFD, caffeine,
and CGA groups than in the control group, but caffeine or CGA does not significantly influence it.
a Significantly different from the control group (p < 0.05). b Significantly different from the CDAHFD
group (p < 0.05).

3.5. TG and T-Cho Levels in the Liver

Figure 2a,b shows TG and T-Cho levels in the liver. TG levels in the liver were significantly higher
in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001 for all) and tended to
be higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic T-Cho levels were
significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001 for
all), but neither caffeine nor CGA significantly influenced them. Generally, hepatic TG levels were
15–20-fold higher than hepatic T-Cho levels.

Nutrients 2020, 12, x FOR PEER REVIEW 8 of 18 

 

Figure 1. Photomicrographs of the liver (a) and results of quantitative image analysis (b–e). (a) The 
mice in the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), caffeine, and 
chlorogenic acid (CGA) groups show liver histopathological features of nonalcoholic steatohepatitis 
(NASH). H&E, Hematoxylin and eosin. (b) The prevalence of Oil red O-positive areas reflecting the 
degree of steatosis, is significantly higher in the CDAHFD, caffeine, and CGA groups than in the 
control group; it is higher in the caffeine and CGA groups than in the CDAHFD group, and the 
difference is statistically significant between the caffeine and CDAHFD groups. (c) The prevalence of 
Sirius red-positive areas, that reflects the degree of fibrosis, in the hepatic lobule, is significantly 
higher in the CDAHFD, caffeine, and CGA groups than in the control group, and tends to be higher 
in the caffeine and CGA groups than in the CDAHFD group. (d) The prevalence of CD45R-positive 
areas in the hepatic lobule, that reflects the degree of intralobular lymphocytic infiltration, is 
significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group and 
significantly higher in the caffeine and CGA groups than in the CDAHFD group. (e) The prevalence 
of α-SMA-positive areas in the hepatic lobule, that reflects the number of activated hepatic stellate 
cells (HSCs), is significantly higher in the CDAHFD, caffeine, and CGA groups than in the control 
group, but caffeine or CGA does not significantly influence it. a Significantly different from the control 
group (p < 0.05). b Significantly different from the CDAHFD group (p < 0.05). 

3.5. TG and T-Cho Levels in the Liver 

Figure 2a,b shows TG and T-Cho levels in the liver. TG levels in the liver were significantly 
higher in the CDAHFD, caffeine, and CGA groups than in the control group (p < 0.001 for all) and 
tended to be higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic T-Cho 
levels were significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group 
(p < 0.001 for all), but neither caffeine nor CGA significantly influenced them. Generally, hepatic TG 
levels were 15–20-fold higher than hepatic T-Cho levels. 

  

Figure 2. Triglyceride (TG) and total cholesterol (T-Cho) levels in the liver (a,b). (a) TG levels in the 
liver are significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group 
and tend to be higher in the caffeine and CGA groups than in the CDAHFD group. (b) T-Cho levels 
in the liver are significantly higher in the CDAHFD, caffeine, and CGA groups than in the control 
group, but caffeine or CGA does not significantly influence them. Generally, hepatic TG levels are 15–
20-fold higher than hepatic T-Cho levels. a Significantly different from the control group (p < 0.05). 

3.6. Hepatic 4-HNE Levels 

Hepatic 4-HNE levels were significantly higher in the caffeine and CGA groups than in the 
control group (p = 0.013 and 0.002, respectively), but were not significantly different from those in the 
CDAHFD group (Figure 3). 

Figure 2. Triglyceride (TG) and total cholesterol (T-Cho) levels in the liver (a,b). (a) TG levels in the
liver are significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group and
tend to be higher in the caffeine and CGA groups than in the CDAHFD group. (b) T-Cho levels in the
liver are significantly higher in the CDAHFD, caffeine, and CGA groups than in the control group,
but caffeine or CGA does not significantly influence them. Generally, hepatic TG levels are 15–20-fold
higher than hepatic T-Cho levels. a Significantly different from the control group (p < 0.05).

3.6. Hepatic 4-HNE Levels

Hepatic 4-HNE levels were significantly higher in the caffeine and CGA groups than in the control
group (p = 0.013 and 0.002, respectively), but were not significantly different from those in the CDAHFD
group (Figure 3).
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3.7. Gene Expression in the Hepatic Tissue

Figure 4a–e shows the expression of hepatic cytokine and receptor genes that was determined by
real-time RT-PCR. The hepatic IL-6 expression was lower in the CDAHFD group than in the control
group; it was higher in the caffeine and CGA groups than in the CDAHFD group, and the difference
was statistically significant between the caffeine and CDAHFD groups (p = 0.043). Hepatic levels of
TNF-α (p < 0.001, p = 0.008, and p < 0.001, respectively), PPARγ (p = 0.013, 0.025, and 0.017, respectively),
and TGF-β1 (p < 0.001 for all) mRNA expression were significantly higher in the CDAHFD, caffeine,
and CGA groups than in the control group. However, these were not significantly influenced by
either caffeine or CGA. Hepatic expression of IL-10 mRNA was not significantly different among the
experimental groups.
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Figure 4. Hepatic expression of cytokine and receptor genes determined by real-time RT-PCR (a–e).
(a) The hepatic IL-6 expression is higher in the caffeine and CGA groups than in the CDAHFD group,
and the difference is statistically significant between the caffeine and CDAHFD groups. (b) Hepatic
expression of IL-10 mRNA is not significantly different among the experimental groups. (c–e) Levels of
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tumor necrosis factor (TNF)-α, peroxisome proliferator-activated receptor (PPAR)γ, and transforming growth
factor (TGF)-β1 mRNA expression in the liver are significantly higher in the CDAHFD, caffeine, and CGA
groups than in the control group. However, these are not significantly influenced by either caffeine
or CGA. a Significantly different from the control group (p < 0.05). b Significantly different from the
CDAHFD group (p < 0.05).

Figure 5a–i shows the expression of genes that are involved in lipidic and glucidic metabolism in
the liver, that was determined by additional real-time RT-PCR. Significantly more CD36 was expressed
in the livers of the CDAHFD and CGA groups than the control group (p = 0.002 and p < 0.001,
respectively), and were not significantly influenced by caffeine or CGA. Hepatic expression of PPARα
was significantly lower in the CGA group than in the control group (p = 0.007), but not significantly
different from the CDAHFD group. Hepatic MTP expression was significantly lower in the caffeine
and CGA groups than in the control group (p = 0.044 and 0.013, respectively), but not significantly
different from the CDAHFD group. Expression of PPARα and MTP tended to be lower in the CDAHFD
group than in the control group. Hepatic expression of CPT 1A, SREBP-1c, FASN, ACC, PEPCK, and PC
mRNA was not significantly different among the experimental groups.
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CDAHFD and CGA groups than the control group and are not significantly influenced by caffein
or CGA. (b) Expression of PPARα in the liver is significantly lower in the CGA group than in the
control group, but not significantly different from the CDAHFD group. (c) Microsome triglyceride transfer
protein (MTP) expression in the liver is significantly lower in the caffeine and CGA groups than in
the control group, but not significantly different from the CDAHFD group. (d–i) Hepatic expression
of carnitine palmitoyltransferase (CPT) 1A, sterol regulatory element-binding protein (SREBP)-1c, fatty acid
synthase (FASN), acetyl-CoA carboxylase (ACC), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate
carboxylase (PC) mRNA is not significantly different among the experimental groups. a Significantly
different from the control group (p < 0.05).

4. Discussion

In this study, caffeine and CGA administration to a NASH mouse model significantly increased
serum ALT levels (a liver cell injury marker) and CD45R-positive area in the hepatic lobule (that reflects
intralobular lymphocytic infiltration). The Oil red O-positive area in the liver (reflecting hepatic steatosis)
was also increased, and the effect was statistically significant for caffeine. Therefore, in the present study,
caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis
in NASH in mice. Semi-quantitative histopathological findings showed that neither caffeine nor CGA
significantly influenced steatosis and intralobular inflammation. However, we induced advanced
steatosis and inflammation using CDAHFD, and all mice in the CDAHFD, caffeine, and CGA groups
were evaluated as grade 3 for steatosis and intralobular inflammation. Therefore, these parameters
were difficult to accurately evaluate using Kleiner’s scoring system. Sirius red- and α-SMA-positive
areas, biochemically determined hepatic TG and T-Cho levels, and the expression genes other than
IL-6 in the liver were not significantly influenced by caffeine or CGA. However, a single agent rarely
significantly influences all NASH parameters. For example, we previously found that consuming
small quantities of ethanol significantly improves serum ALT and AST values, and intralobular and
portal inflammation, but does not significantly influence steatosis, fibrosis, insulin and adiponectin in
the serum, and hepatic 4-HNE levels, or cytokine and receptor gene expression in the liver [33].

Protective effects of coffee against NAFLD/NASH have been suggested in previous clinical
and experimental studies [13–15], and the effects of caffeine and CGA on NAFLD/NASH have
been examined in recent years under the assumption that they might be the effective ingredients.
In most previous experimental studies on the effects of caffeine on NAFLD/NASH, caffeine exhibited
inhibitory effects [19,22–25]. However, Hu et al. [26] reported that prenatal caffeine exposure increased
susceptibility to NAFLD in female offspring rats. Conflicting results were also reported in human
studies. Birerdinc et al. [35] reported that caffeine was protective in NAFLD patients, but Shen et al. [36]
reported that total caffeine intake was not associated with the prevalence or hepatic fibrosis in NAFLD.
Thus, the effects of caffeine on NAFLD/NASH have not yet been clarified. In this study, it was
suggested that caffeine might actually exacerbate NASH in mice. In most previous experimental
studies on the effects of CGA on NAFLD/NASH, CGA exhibited inhibitory effects [27–29]; however,
Mubarak et al. [30] reported that supplementation of an HF diet with CGA caused insulin resistance
and hepatic lipid accumulation in mice. Here, as in the study by Mubarak et al., it was suggested that
CGA might exacerbate NAFLD/NASH in mice. In the present study, hepatic MTP expression was
lower and hepatic 4-HNE and serum ALT levels were higher in the caffeine and CGA groups than in
the control and CDAHFD groups. As the inhibition of MTP is responsible for oxidative stress and
ALT elevation [37], a decreased expression of MTP by caffeine and CGA might be associated with liver
cell injury. The results of this study cannot attribute the inhibitory effects of coffee on NAFLD/NASH
to caffeine or CGA, and other ingredients of coffee might exert inhibitory effects. It was recently
reported that consumption of decaffeinated coffee protected against the development of early NASH
in mice [38].

The difference in experimental conditions is conceivably the cause of conflicting results in studies
on the effects of caffeine and CGA on NAFLD/NASH. Animal models of NAFLD/NASH used in these
studies were varied, including nutritional models such as HF, high-cholesterol, and high-fructose diets,
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and genetic models such as KK-Ay mice. Various animals, including C57BL/6 mice, Sprague-Dawley
rats, and Wistar rats, were used in the nutritional models. Furthermore, the method of administration
was varied, including drinking water, diet, oral gavage, and intragastric; the dosage was also different in
each study. Here, we used C57BL/6J mice fed CDAHFD as an animal model of NASH. C57BL/6J mouse
is one of the most commonly used mouse strains and is frequently used in studies of NAFLD/NASH.
We administered caffeine and CGA by mixing them in the diet, since it is a commonly used method to
administer caffeine and CGA to experimental animals, and the easiest to perform. We applied 0.05%
(w/w) of caffeine and 0.1% (w/w) of CGA because they are standard doses with proven positive or
negative effects in experimental animals [30,39–43]. Caffeine inhibited fat accumulation in ICR mice at
the same dose and the same method as in the present study [40]. Mubarak et al. [30] administered CGA
at the same dose and in the same manner as in the present study. Daily caffeine and CGA intake were
1.35 (65 mg/kg) and 2.3 (112 mg/kg) mg, respectively, in this study. Therefore, the caffeine and CGA
intake per body weight in this study was about 20-fold higher than that with human coffee intake;
thus, the results cannot be simply extrapolated to humans.

CDAHFD is a relatively new model diet of NASH. Classic nutritional models of NASH include
the MCD and HF diet models. Although the MCD diet induces severe histopathology of NASH,
the metabolic status of the model is opposite to that of human NASH with a remarkable decrease in body
weight. Although the metabolic status of the HF diet model is similar to that of human NAFLD/NASH,
histopathological changes in the model are mild [44]. The CDAHFD was developed to overcome the
shortcomings of these models. It was reported that C57BL/6J mice fed CDAHFD maintained or gained
weight and developed fatty liver with fibrosis by week 6 [31]. In the present study, CDAHFD also
induced severe NASH with fibrosis in C57BL/6J mice in seven weeks. However, body and EAT weight,
and serum levels of TG, T-Cho, and insulin in the CDAHFD group were significantly lower than those
in the control group. Thus, the metabolic status of the present model was thought to be opposite to
that of human NAFLD/NASH. In addition, CDAHFD did not significantly influence the expression of
genes associated with lipidic and glucidic metabolism except for CD36. This finding suggested that this
model might not be appropriate to evaluate molecular mechanisms of lipidic and glucidic metabolism.
The present findings indicated that the CDAHFD model might not be appropriate for analyzing
NAFLD/NASH pathophysiology, but it does have the advantage of rapidly inducing histopathological
changes in NASH. We also believe that the intensive biochemical, pathological, and molecular analyses
of the CDAHFD group in this study generated many new and important findings about the model.
For example, CDAHFD did not significantly influence the expression of genes associated with glucidic
metabolism (i.e., PEPCK and PC), whereas it significantly increased the expression of PPARγ and CD36
in the liver. CD36 is a transporter of fatty acid and the target gene of PPARγ, which is induced by HF
diet feeding [45]. Therefore, CDAHFD may cause hepatic steatosis by enhancing lipid intake. PPARα
regulates MTP (which is associated with TG transport) expression and plays key roles in suppressing
NAFLD [46,47]. In the present study, hepatic expression of PPARα and MTP tended to be lower in
the CDAHFD group than in the control group. Therefore, impaired transport of TG might also be
associated with CDAHFD-induced hepatic steatosis. In contrast, hepatic expression of genes associated
with fatty acid synthesis (i.e., SREBP-1c, FASN, and ACC) and β-oxidation (i.e., CPT 1A) did not show
remarkable changes by CDAHFD feeding. Review articles of animal models of NAFLD/NASH by
our group [44] and other groups [48,49] have emphasized that no animal models of NAFLD/NASH
are complete, and to reflect the entire spectrum of NASH in one model is impossible. Many models
of severe inflammation such as the MCD diet model, cholesterol and cholate model, and PTEN null
mice do not develop insulin resistance. Nonetheless, they are considered useful for evaluating NASH
histopathology and the effects of various substances on NASH [50–52]. Therefore, the present model is
thought to be a robust model for analyzing the histopathology of NASH, but it may not be appropriate
for analyzing the pathophysiology of the disease. CDAHFD is a relatively novel diet model of NASH,
and further characterization of the model (e.g., effects on genetically obese mice) should be performed
in the future. Several animal models with similar pathophysiology to human NAFLD/NASH and
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relatively severe histopathological changes have been developed recently. For example, Kohli et al. [53]
reported that mice fed HF diet and drinking water with 55% fructose and 45% sucrose (w/v) developed
increased body weight, body fat mass, fasting glucose, and were insulin resistant. Histopathologically,
those mice showed substantial steatosis with inflammatory changes, and 16% of the mice showed
stage 2 fibrosis. This kind of model may be more useful in evaluating the effects of caffeine and CGA
on NASH.

Notably, food consumption was significantly higher in the caffeine group than in the CDAHFD
group. This was an unexpected result since it is known that caffeine lowers energy intake [54].
However, it is also known that caffeine causes the release of catecholamines and increases energy
expenditure [17,20]. In the present study, despite the significantly higher food consumption and calorie
intake, the caffeine group did not show increased body, liver, and EAT weight compared with the
CDAHFD group. Thus, caffeine might have promoted appetite through activation of metabolism.
Here, increased consumption of CDAHFD may be one cause of the exacerbating effects of caffeine on
NASH. IL-6 expression in the liver determined by real-time RT-PCR was higher in the caffeine and
CGA groups than in the CDAHFD group, and the difference was statistically significant between the
caffeine and CDAHFD groups. However, the hepatic expression of IL-6 was lower in the CDAHFD
group than in the control group. Therefore, caffeine might restore normal IL-6 expression.

It was interesting that serum insulin levels tended to be higher in the caffeine group than in the
CDAHFD group. Since serum insulin levels were significantly lower in the CDAHFD group than in
the control group, the data may suggest a protective role of caffeine. However, another hypothesis is
that caffeine decreased the insulin sensitivity, since serum glucose levels were higher in the caffeine
group than in the CDAHFD group. Actually, studies that observe glucose or insulin activity after
acute caffeine consumption show an overall negative effect [55–57], and Jarrar et al. [58] reported that
caffeine seemed to decrease insulin sensitivity because glucose levels were sustained in spite of high
insulin levels.

This study has several limitations. The statistical significance of several parameters was marginal
(e.g., serum ALT levels and Oil red O-positive areas) and may not be sufficiently convincing.
Furthermore, a large sample size might contribute to statistical significance in image analyses. Actually,
there was no significant difference in the hepatic levels of TG (major lipid in the liver) between the
caffeine and CDAHFD groups, although significant difference was observed in the prevalence of Oil red
O-positive areas. However, sampling bias might be present in the biochemical analysis of TG, since only
a small amount of liver tissue (approximately 50 mg for each mouse) was analyzed. As mentioned
above, the results of experimental studies on the effects of caffeine and CGA on NAFLD/NASH are
conflicting, and conceivably due to differences in experimental conditions. The current model is not
common. Instead, the beneficial effects of caffeine and CGA have previously been demonstrated in the
common models of NAFLD (e.g., HF diet model). Importantly, most pathophysiological parameters
are not correlated with human signs. Therefore, a potential cause of the opposite findings of the
present study to most of previous studies may be the peculiarity of the CDAHFD model. In the future,
other animal models of NAFLD/NASH (especially models with similar pathophysiology to human
disease) and administration methods should be tested. Furthermore, the dose-response relationship
should also be further examined by setting multiple dosages.

5. Conclusions

In this study, caffeine and CGA significantly worsened the markers of liver cell injury, inflammation,
and/or steatosis in NASH lesions in mice. Since conflicting results have been reported for the effects
of caffeine and CGA on NAFLD/NASH, further studies including those to clarify the dose-response
relationship are recommended in the future.
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