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For estrogen receptor (ER)-negative breast cancer patients, paclitaxel (P), doxorubicin
(A) and cyclophosphamide (C) neoadjuvant chemotherapy (NAC) is the standard
therapeutic regimen. Pathologic complete response (pCR) and residual disease (RD)
are common surrogate measures of chemosensitivity. After NAC, most patients still
have RD; of these, some partially respond to NAC, whereas others show extreme
resistance and cannot benefit from NAC but only suffer complications resulting from
drug toxicity. Here we developed a qualitative transcriptional signature, based on the
within-sample relative expression ordering (REO) of gene pairs, to identify extremely
resistant samples to PAC NAC. Using gene expression data for ER-negative breast
cancer patients including 113 pCR samples and 137 RD samples from four datasets,
we selected 61 gene pairs with reversal REO patterns between the two groups as
the resistance signature, denoted as NR61. Samples with more than 37 signature
gene pairs that had the same REO patterns within the extremely resistant group were
defined as having extreme resistance; otherwise, they were considered responders. In
the GSE25055 and GSE25065 dataset, the NR61 signature could correctly identify 44
(97.8%) of the 45 pCR samples and 22 (95.7%) of the 23 pCR samples as responder
samples, respectively; it also identified 13 (16.9%) of 77 RD samples and 8 (21.1%) of
38 RD samples as extremely resistant samples, respectively. Survival analysis showed
that the distant relapse-free survival (DRFS) time of the 14 extremely resistant cases
was significantly shorter than that of the 108 responders (P < 0.01; HR = 3.84; 95%
CI = 1.91–7.70) in GSE25055. Similar results were obtained in GSE25065. Moreover, in
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the integrated data of the two datasets with 94 responders and 21 extremely resistant
samples identified from RD patients, the former had significantly longer DRFS than the
latter (P < 0.01; HR = 2.22; 95% CI = 1.26–3.90). In summary, our signature could
effectively identify patients who completely respond to PAC NAC, as well as cases
of extreme resistance, which can assist decision-making on the clinical therapy for
these patients.

Keywords: breast cancer, neoadjuvant chemotherapy, pathological complete response, extreme resistance,
relative expression ordering

INTRODUCTION

Breast cancer is a common malignancy with the highest incidence
and mortality among females (Ferlay et al., 2015; Jia et al., 2015).
A standard regimen for estrogen receptor (ER)-negative breast
cancer patients, accounting for 30% of breast cancer patients,
is paclitaxel (P), doxorubicin (A), and cyclophosphamide (C)
neoadjuvant chemotherapy (NAC) (Jemal et al., 2011). However,
the heterogeneity of breast cancer can result in different responses
to standard therapy (Rouzier et al., 2005; Carey et al., 2007).

In clinical practice, a pathologic complete response (pCR)
is defined as a non-viable invasive cancer in the breast and
lymph nodes after the completion of NAC, indicating a complete
response to NAC and a favorable outcome (Kaufmann, 2003;
Guarneri, 2006; Mieog et al., 2007; Liedtke et al., 2008; Rastogi
et al., 2008). However, the proportion of pCR is quite low among
patients accepting NAC, and most patients have residual disease
(RD) (Popovici et al., 2010). Among patients with RD, accounting
for a great proportion of patients treated with NAC, most are
partial responders, whereas the others are extremely resistant
to NAC. These extremely resistant patients cannot benefit from
NAC, but only suffer complications resulting from the toxic
effects of NAC. More seriously, these patients may lose the best
treatment time because clinicians would evaluate the feasibility
of curative or conservative surgery after finishing chemotherapy
and a series of examinations (Helene et al., 2012). Therefore,
the development of a predictor to identify extremely resistant
patients who cannot benefit from NAC is of great significance.

Up to now, many signatures have been developed for pCR
prediction (Hess et al., 2006; Thuerigen, 2006; Liedtke et al.,
2009), but few studies have focused on the identification of
extremely resistant patients. The pCR predictive signatures
are based on risk scores summarized from quantitative
transcriptional data, which have poor reproducibility (Borst
and Wessels, 2010; Tabchy et al., 2010; Zhang et al., 2013; Qi
et al., 2016) due to widespread batch effects and the uncertain
quality of clinical samples. Although several reported quantitative
transcriptional disease signatures – including AlloMap R© (Pham
et al., 2010) – have been approved by the Food and Drug
Administration, the tissue samples must be sent to specific
laboratories for measurement with strict quality control, which
limits their wider applications in clinical practice.

In contrast, qualitative transcriptional signatures based on
within-sample relative expression orderings (REOs) are found to
be robust against experimental batch effects and can be directly
applied to samples at the individualized level (Eddy et al., 2010;

Wang et al., 2013; Chen et al., 2017). REO is a binary variable
based on comparing the mRNA levels within a single pair of
genes (Geman et al., 2004). For a gene pair (i, j), the REO pattern
represents whether the expression level of i is higher or lower than
that of j in the sample. Additionally, REO-based signatures are
also highly robust against common factors that lead to the failure
of quantitative transcriptional signatures in clinical applications,
such as varied proportions of tumor epithelial cells (Cheng et al.,
2017), amplification bias for minimum specimens (Liu et al.,
2017), and partial RNA degradation (Freidin et al., 2012; Chen
et al., 2017). Thus, the REO-based method is more practicable for
tissue biopsy samples acquired by fine needle aspiration (FNA) or
core biopsy (CBX) prior to NAC.

Based on the within-sample REOs of gene pairs, Zhang
et al. (2013) have developed a pCR predictor and a prognosis
predictor for RD to identify patients who might benefit from
NAC. However, this study did not consider the impact of
ER subtype. ER-positive patients with good prognosis have a
lower pCR rate than that of ER-negative patients with poor
prognosis (Guarneri, 2006). Meanwhile, for the same set of breast
cancer patients approximately 20% of ER states determined by
immunohistochemical (IHC) methods gave different results for
different pathologists (Dubowitz, 1991; Arihiro et al., 2007),
especially for weak ER-positive samples (Hammond et al., 2010;
Sheffield et al., 2016), which may reduce the accuracy of pCR
prediction. Thus, we re-determined the ER status of breast
cancer patients using the 112-gene-pair signature for ER status
developed by Cai et al. (2018) to reduce misjudgments of
ER status by IHC.

In this study, we used the gene expression data of ER-negative
samples reclassified by the 112-gene-pair signature to identify a
qualitative transcriptional signature consisting of 61 gene pairs to
predict patients with extreme resistance to PAC chemotherapy.
Our signature was well-verified in two independent datasets with
survival information.

MATERIALS AND METHODS

Data and Preprocessing
We collected four expression datasets (GSE20194, GSE20271,
GSE41998, and MDA133) including 250 IHC-determined ER-
negative breast cancer patients in total, who accepted PAC
NAC, from the Gene Expression Omnibus (GEO1) and the MD

1http://www.ncbi.nlm.nih.gov/geo/
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Anderson Cancer Center2 databases. In the datasets of GSE20194
and GSE20271, we only used the expression data of patients who
received paclitaxel followed by fluorouracil (F), doxorubicin [or
epirubicin (E)], and cyclophosphamide. In the GSE41998 and
MDA133 datasets, the treatment regimens for these patients were
PFAC and PAC, respectively.

Two other independent expression datasets (GSE25055 and
GSE25065) were used to evaluate whether there was a difference
in survival between the responsive and the resistant groups. The
treatment regimen for patients in GSE25055 was PAC or PA and
the treatment regimen for patients in GSE25065 was PA.

Although PAC NAC is a very common chemotherapeutic
regimen, doctors design individual drug delivery schemes for
each patient, depending on their condition. Some patients
received 6 months of NAC including PFAC (e.g., GSE20194),
whereas others received sequential NAC starting with 4 cycles
of AC administered every 3 weeks, followed by paclitaxel weekly
for 12 weeks (e.g., GSE41998). In this study, we only considered
the drug type and not the dose of each drug or the duration of
chemotherapy. The clinical characteristics for each dataset are
summarized in Table 1.

For the Affymetrix array data, the raw intensity files (.cel),
downloaded from the GEO database were processed using the
Robust Multichip Average algorithm (RMA) for background
adjustment without quantile normalization. The probe identity
documents (ID) were mapped to the Entrez gene ID according
to the corresponding platform annotation files. If a probe did not
map to a gene or was mapped to multiple genes, the data for this
probe were deleted. If multiple probes mapped to the same gene,
the arithmetic mean of the expression values for the multiple
probes was taken as the final expression value for this gene.

ER Status Re-determination
We used the 112-gene-pair signature developed by Cai et al.
(2018) to reclassify the ER-negative samples. An IHC-determined
ER-negative patient was reclassified as ER-negative if more than
68 gene pairs match the REOs of the ER-negative signature.

Identification of the REO-Based
Resistant Signature
For each RD (or pCR) sample, the gene expression profile
was first converted into a rank profile according to measured

2https://bioinformatics.mdanderson.org/pubdata.html

expression levels in ascending order (the lowest expression value
corresponds to the smallest rank). Then, pair-wise combinations
of all genes were examined to determine the REO pattern of
each gene pair within the sample. The within-sample REO
of a gene pair (i, j) has only two possibilities, Gi > Gj or
Gi < Gj, where Gi and Gj denote the expression values.
If the number of RD samples with a certain REO pattern
(Gi > Gj or Gi < Gj) is significantly more than expected by
chance, we define this gene pair as a stable gene pair of RD
samples; stable gene pairs of pCR samples are defined in a
similar manner. The significance of a REO in RD (or pCR)
samples was determined using a binomial test (Bahn, 1969)
as follows:

P = 1−
∑k−1

i=0

(
n
i

)
p0

i (1 − p0)
(n − i) (1)

where n is the total number of samples with the RD (or pCR)
status, k denotes the number of samples that have a certain REO
pattern (Gi > Gj or Gi < Gj), and p0 denotes the probability
of observing a gene pair with a certain REO pattern by chance
(here, p0 = 0.5). Then the P-values were adjusted using the
Benjamini and Hochberg (1995) procedure to control the false
discovery rate (FDR).

We then defined stable-reversal gene pairs as pairs that
had a significantly stable REO pattern in the pCR samples
and RD samples, respectively, but had a reversal REO pattern
between the two groups.

Significant Majority Vote Rule
Based on the stable-reversal gene pairs between the pCR
and RD, we developed an extremely resistant signature.
A sample was identified as an extremely resistant sample, if
the number of REOs of the signature gene pairs matching that
of the extremely resistant group was significantly more than
expected by chance. The threshold for identifying an extremely
resistant sample was determined according to a binomial test
as follows:

P = 1 −
∑k−1

i=0

(
n
i

)
p0

i (1 − p0)
(n − i) (2)

where n is the number of signature gene pairs and k is the
number of gene pairs in the sample that match the REOs

TABLE 1 | Description of all datasets collected in this study.

Usage Dataset Regimen ER-negative sample size pCR RD With DRFS information

Training GSE20194 Popovici et al. (2010) T-FA(E)Ca 114 46 68 no

GSE20271 Tabchy et al. (2010) T-FA(E)C 79 19 60 no

MDA133 Hess et al. (2006) T-FAC 51 27 24 no

GSE41998 Horak et al. (2013) T-ACb 48 29 19d no

Validation GSE25055 Hatzis et al. (2011) T-AC;TAc 129 45 84 yes

GSE25065 Hatzis et al. (2011) TA 68 23 45 yes

aT-FA(E)C paclitaxel (T) followed by fluorouracil (F), doxorubicin (A) [or epirubicin (E)] and cyclophosphamide (C). bT-AC doxorubicin (A) and cyclophosphamide (C) followed
by paclitaxel (T). cTA taxane (T) and anthracycline (A) based regimens. dPD and SD samples representing tumor residuals screened from RD samples.
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for the extremely resistant group. p0 (here, p0 = 0.5) is the
probability of a gene pair having a certain REO pattern in a
sample by chance.

Survival Analysis
The distant relapse-free survival (DRFS), defined as the time
from surgery to distant recurrence or the final documented

date (censored), was used as a surrogate assessment of
tumor response status (Liedtke et al., 2008). A log-rank
test was used to assess the difference between the Kaplan–
Meier estimates of DRFS in two different groups. The
univariate Cox proportional-hazards regression model was used
to calculate the hazard ratios (HRs) and their 95% confidence
intervals (CIs).

FIGURE 1 | The flowchart for developing and validating the resistant signature.
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RESULTS

Development of the Resistant Signature
The flowchart of the process used for developing and validating
the resistance signature is shown in Figure 1. Using the
112-gene-pair signature for the ER status, 100, 64, 43, and
43 samples were re-determined as ER-negative samples from
the GSE20194, GSE20271, MDA133, and GSE41998 dataset,
respectively (Table 2).

To identify an extremely resistant signature, we first extracted
169,222 gene pairs with stable (binomial test, FDR < 0.05)
but reversed REOs between the pCR and RD group from the
integrated data of the GSE20194, GSE20271, and MDA133
datasets, with 86 pCR samples and 121 RD samples in total.
We then used the GSE41998 dataset to optimize the signature.
Beside the pCR and RD category, the GSE41998 dataset also
provided an evaluation of drug response criteria in solid
tumors (RECIST), which divided the patients into four groups:
complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD) (Watanabe et al., 2009).
Among them, SD and PD indicated that the tumor area of
the patients did not improve significantly but was increased
after receiving NAC; therefore, we screened out the PD and SD
samples from the RD samples as extremely resistant samples.
We then extracted 30,588 stable-reversal gene pairs between the
16 extremely resistant samples and 27 pCR samples. Finally,
61 gene pairs that had consistent REO patterns between the
above two lists of stable-reversal gene pairs were selected
as the resistance signature, denoted as NR61. The details of
NR61 are shown in Table 3. Each gene pair has a certain
REO pattern in extremely resistant patients and a reversal
REO pattern in responsive patients. Based on the significant
majority vote rule (see section “Materials and Methods”), if
more than 37 gene pairs (P < 0.05) of NR61 showed the
same REO patterns as observed in extreme resistance, the
sample was identified as extremely resistant; otherwise, it was
considered a responder.

Researchers (Tong et al., 2015) have proven that if two
different regimens share one or several drugs, then the overlaps
of the clinically relevant drug resistance genes (CRGs) for the
two different regimens should be considered as the CRGs for the
shared drug(s). We speculated that this is similar for clinically
relevant drug resistance gene pairs (CRGPs). In this study,

TABLE 2 | The ER-negative samples reclassified by the 112-gene-pairs signature
from the IHC-determined ER-negative samples.

Usage Dataset Reclassified ER-negative
sample size

pCR RD

Training GSE20194 100 43 57

GSE20271 64 19 45

MDA133 43 24 19

GSE41998 43 27 16a

Validation GSE25055 122 45 77

GSE25065 61 23 38

aPD and SD samples representing tumor residuals screened from RD samples.

TABLE 3 | Each pair of genes in NR61.

Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2

UBTD1 ACOX1 LAMA5 SMARCC1 LMAN2L COBL

NOVA2 ADCY2 GPX5 SST RBP3 PART1

TAS2R1 APLP1 GRIA1 SST DNAH2 PART1

GCLM ARL1 TMEM165 VAMP7 GCLM CHIC2

RASL11B CKB STC1 VEGFB ACKR4 TOX3

PTPRA RCAN1 TGFB3 AKAP1 ATHL1 SLC43A3

AGPAT2 GNAQ TPST2 SPOP SLC30A1 ERGIC2

PLD2 GTF2F1 LETM1 SORBS2 FAM69A CRNKL1

B4GALT5 HNRNPF COPZ1 IQGAP1 VRK2 DPM3

NOS2 HSPA1L GCLM PRPF4B SFXN3 CPVL

GCLM IPO5 MICALL2 PRPF4B TRAFD1 BSPRY

SYDE1 MAZ IGSF3 ZNHIT3 GCLM C5orf22

GTF2H3 NFIB FAM69A RNF14 SLC12A4 LMO3

MCAM NFIB TJP1 GCC2 SULT2B1 LMO3

TBC1D4 NFIB LETM1 TOX4 SLC28A1 LMO3

NUAK1 NFIB C10orf2 DCAF7 SEMA3F FKBPL

FZD6 NUCB2 CPA3 SPAG5 GCLM AIDA

CIAPIN1 PBX1 DUOX1 OR7E14P P3H1 C17orf70

TRIT1 PBX3 MPPE1 KAT7 KREMEN2 IL17RC

GCLM RBM3 GLTSCR1 XPO7 SMURF1 KLHL22

MMP16 RYR3

The expression patterns of these gene pairs is Gene 1 > Gene 2 in the extremely
resistant samples and Gene 1 < Gene 2 in the response samples.

overlapping gene pairs between 169,222 CRGPs of PFAC and
30,588 CRGPs of PAC should thus be the CRGPs for PAC.
Thus, the resistant signature that we developed is specific for
predicting PAC resistance. However, the NR61 signature should
be applicable for patients who received any combination of P,
A, and C, as the extremely resistant patients identified by this
signature showed multidrug resistant to P, A, and C.

Performance of the NR61 Signature
In the GSE25055 and GSE25065 datasets, 122 and 61 ER-negative
breast cancer samples were separately re-determined using the
112-gene-pair signature (Table 2) and were used to validate
NR61. Among these re-determined ER-negative samples, the
NR61 signature could correctly classify 44 (97.8%) out of 45 pCR
samples and 22 (95.7%) out of 23 pCR samples as responder
samples, which showed that NR61 can effectively identify patients
that completely responded to PAC NAC.

The survival analysis was then used to validate the NR61
signature, assuming that the responsive patients have a better
prognosis than the extremely resistant patients. First, the survival
analysis was performed in all re-determined ER-negative breast
cancer patients. In the GSE25055 dataset with 122 ER-negative
breast cancer patients, 108 and 14 patients were classified as
responders and extremely resistant, respectively. The extremely
resistant patients had a significantly shorter DRFS time than
the responders (log-rank P < 0.01; HR = 3.84; 95% CI = 1.91–
7.70; Figure 2A). Similar results were obtained in the GSE25065
dataset with 61 ER-negative breast cancer patients (log-rank
P < 0.01; HR = 3.07; 95% CI = 1.28–7.36; Figure 2B).
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FIGURE 2 | Kaplan–Meier estimates of distant relapse-free survival (DRFS). DRFS curves for responder and extreme resistance in (A) GSE25055; (B) GSE25065;
(C) RD samples of GSE25055; (D) RD samples of GSE25065; (E) integrated RD samples of GSE25055 and GSE25065.

To avoid the impact of pCR patients and further demonstrate
the poor prognosis of extremely resistant patients, the survival
analysis was limited to RD patients. For the 77 RD patients
with ER-negative breast cancer in the GSE25055 dataset, 64 and
13 patients were classified into the responder and extremely
resistant group, respectively. Survival analysis showed that the
DRFS time of the extremely resistant group was significantly
shorter than that of the responders (log-rank P < 0.01;
HR = 2.59; 95% CI = 1.28–5.27; Figure 2C). In the RD
samples from the GSE25065 dataset with 38 ER-negative breast
cancer patients, the NR61 signature stratified 30 and 8 RD
patients into the responder and extremely resistant groups,
respectively. Survival analysis showed that, in this dataset with
a small sample size (low statistical power) there was a trend
of difference in the DRFS time between the responder and
extremely resistant groups (log-rank P = 0.29; HR = 1.66;
95% CI = 0.65–4.24; Figure 2D). In the integrated data of
the two datasets with 94 responders and 21 extremely resistant
patients in total, identified from the RD patients, the former had
significantly longer DRFS than the latter (log-rank P < 0.01;
HR = 2.22; 95% CI = 1.26–3.90; Figure 2E). This result
indicates that NR61 well divided the RD samples into two
categories, one of which is the PR to NAC with a good
prognosis, whereas the other has a very poor prognosis, which
is extreme resistance.

In the validation dataset where a number of patients received
PA rather than PAC, the extremely resistant patients who were
multidrug resistant to P, A, and C should have a poor prognosis,
while those patients who were resistant to P and A but sensitive
to C would be classified into the response group. The patients
under a treatment of PA should have a poor prognosis. However,
we still observed the extremely resistant group had a significantly
longer survival than the responder group, even though the latter
included some patients with poor prognosis.

All the above results indicate that the extremely resistant
patients identified by NR61 cannot benefit from the PAC
NAC treatment. The NR61 signature is thus expected
to assist physicians in choosing treatment plans for ER-
negative breast cancer patients in clinical practice. If a
patient is judged as extremely resistant by NR61, accepting
PAC NAC may only cause complications and a loss
of the best time for surgery. For these patients, other
chemotherapeutic regimens or direct surgery might be more
sensible options.

Correlation of NR61 With HER2 Status
and PAM50 Subtype
As HER2 status is an important prognostic and predictive
signature, we evaluated the performance of NR61 in HER2−
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and HER2+ patients, respectively. We found that all 61 ER-
negative breast cancer samples of GSE25065 were HER2− and
that 115 of 122 ER-negative breast cancer samples in GSE25055
were HER2−. In the 115 HER2+ patients, the survival of the
responder group and the extremely resistant group as identified
by NR61 was significantly different (Supplementary Figure 1A).
A similar result was found in 74 RD samples (Supplementary
Figure 1B). For another seven patients in GSE25055, the HER2
status of three patients was positive, and four patients were
uncertain. All of these seven patients were classified into the
responder group by NR61.

In addition, we counted the number of samples for each
PAM50 subtype in the responder group and in the extremely
resistant group as reclassified by NR61. In the responder group
of the GSE25055 dataset, the sample sizes of Normal, Luminal
A, Luminal B, HER2, and basal-like were 1, 0, 0, 1, and
12, respectively. In the extremely resistant group, the sample
size corresponding to these subtypes was 8, 0, 0, 8, and 92,
respectively. A Chi-square test showed no statistically significant
difference in the sample distribution of each PAM50 subtype
between the responder group and the extremely resistant group
(P = 0.9986, Supplementary Figure 2A). Similar results were also
observed in the GSE25065 dataset (P = 0.1213, Supplementary
Figure 2B). This result indicates that there is no relationship
between NR61 and PAM50 subtypes.

DISCUSSION

In this study, we developed a qualitative drug resistant signature
(NR61), which could well predict the ER-negative breast cancer
patients who were extremely resistant to PAC NAC. Based on
this signature a total of 183 ER-negative patients in the two
validation datasets could be divided into responder and extremely
resistant patients. Our research showed that the DRFS time of
the extremely resistant group was significantly shorter than that
of the responders. Patients identified with extreme resistance
should be recommended other treatment schemes to avoid
unnecessary suffering and expenses. Additionally, this signature
can correctly identify almost all patients who can completely
respond to PAC NAC.

Our qualitative transcriptional signature based on the within-
sample REOs is robust against batch effects (Chen et al., 2017;
Cheng et al., 2017; Guan et al., 2018) and could be performed
for the individual analysis of ER-negative breast cancer, which is
of great value for clinical application. The REO-based signatures
may lose some so-called “subtle” quantitative information of gene
expression measurements. However, the “subtle” quantitative
information is often unreliable because it is affected by the high
variations in measurement and batch effects, the proportions
of tumor epithelial cells in clinical tissue samples, partial RNA
degradation during specimen preparation and storage, and the
amplification bias of low-input RNA (Freidin et al., 2012; Chen
et al., 2017). Even the ratios of the expression values of gene pairs
are affected by batch effects (Loven et al., 2012; Qi et al., 2016).
Thus, this apparent disadvantage of REO analysis is actually a
unique advantage in terms of robustness (Chen et al., 2017).

In this study, PD and SD samples screened from RD samples
were defined as extremely resistant to PAC NAC. The pCR-RD
system is based on microscopic observation and a large number
of patients are diagnosed with RD. However, in the image-based
RECIST system (Watanabe et al., 2009), PD is defined as at least
a 20% increase in the sum of the diameters of target lesions
after receiving NAC, and SD is defined as neither sufficient
shrinkage to qualify for PR (at least a 30% decrease in the sum
of diameters of target lesions) nor sufficient increase to qualify
for PD, both of which are less sensitive to NAC. Therefore, it is
reasonable to screen PD and SD patients from RD patients as
extremely resistant, as used in this study. However, there is only
one dataset with information of both RECIST and pCR-RD. Thus,
we used the DRFS to evaluate whether the identified patients can
benefit from PAC NAC.

Due to the lack of RNA-seq data with suitable drug response
information, we only tested the NR61 signature in the microarray
data measured on the Affymetrix platform. In future, we will
collect the breast cancer expression data from the RNA-seq
platform to optimize our signature, in order to improve its
cross-platform ability.

CONCLUSION

In summary, the NR61 signature could be used to robustly
identify patients who are extremely resistant to PAC NAC among
ER-negative breast cancer patients. These patients are highly
unlikely to benefit from the PAC NAC regimen and should thus
be recommended other therapeutic regimens. The clinical value
of the NR61 signature for extreme resistance to the PAC NAC
regimen thus deserves further validation.
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