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Abstract: Cyanobacteria can produce a wide range of toxins which have acute and chronic
adverse health effects. Affecting a variety of mammalian systems, they are generally
characterized according to their mode of action and the organs affected. Cyanobacterial
neurotoxins are one cyanotoxin class that can negatively affect human health, and repre-
sentatives of other cyanotoxins classes are increasingly showing neurotoxic effects. Of the
various human exposure routes to cyanobacterial toxins, the significance of the airborne
and inhalation route requires much greater clarity and understanding. People may be
exposed to mixtures of cyanobacterial neurotoxins through the inhalation of sprays and
dust, along with the potential to directly enter the central nervous system when crossing
the blood-brain barrier. This review aims to summarize the current state of knowledge
concerning airborne cyanobacterial neurotoxins, research gaps, health effects, and the need
for management practices to protect human and animal health.

Keywords: cyanobacteria; cyanotoxin; microcystin; beta-N-methylamino-L-alanine
(BMAA); 2,4-diaminobutyric acid (DAB); N-(2-aminoethyl)glycine (AEG); saxitoxin;
cylindrospermopsin; anatoxin-a; guanitoxin

1. Introduction
Cyanobacteria are a diverse bacterial phylum which emerged ~3.5 billion years

ago [1]. Thought to be responsible for oxygenating the early Earth atmosphere, cyanobac-
teria helped establish the conditions necessary for the evolution of the current biosphere.
Cyanobacteria inhabit a wide range of aquatic and terrestrial habitats and can tolerate
varied environmental conditions including hot and cold deserts, oceans, lakes, soil, and
thermal features such as hot springs [2,3]. Many cyanobacteria exist as vegetative cells
that are metabolically active and capable of reproduction, whereas some genera form
differentiated cells such as heterocysts which specialize in nitrogen fixation [4].

Cyanobacteria are keystone organisms in most ecosystems as evidenced by their
environmental ubiquity [3,5] and have adapted well to anthropogenic changes to the envi-
ronment resulting from climate change and pollution [6–9]. Concerning climate change,
increasing average global temperatures are likely to favor the growth of cyanobacteria
over other photoautotrophic organisms [8,10]. Similarly, nutrient pollution has also in-
creased [9,11,12], with nitrogen and phosphorous enrichment resulting in eutrophication,
and permitting massive cyanobacterial blooms to form, sometimes reaching hundreds of
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square kilometers in area, such as in Lake Erie [13–15]. Often unsightly when environ-
mental conditions deteriorate and blooms break down, cyanobacterial die-offs can lead
to adverse water quality issues when bloom material is biologically degraded [16]. As
cyanobacterial blooms grow and become more dense, toxic substances synthesized by
cyanobacteria become more concentrated [17]. Through observations of wild and domes-
tic animals (such as livestock), associations of cyanobacterial blooms with mass animal
deaths have been derived [18]. These deaths are the result of small molecular weight
secondary metabolites, known as cyanotoxins, which have adverse short and long-term
health implications [19–23].

Many cyanobacteria are capable of synthesizing cyanotoxins which may vary in terms
of chemical structure, mechanisms of toxicity, and subsequent adverse health conditions
resulting from exposure. Of growing concern are cyanotoxins associated with neurode-
generative conditions such as Amyotrophic Lateral Sclerosis (ALS), Parkinson’s Disease
(PD), and various forms of dementia such as Alzheimer’s Disease (AD). Cyanobacteria may
synthesize toxins in response to variations in pH, temperature, light intensity, and available
nitrogen and phosphorus [24–29], in addition to their potential roles as a defense mechanism
against grazers or competitors. Exposure to neurotoxicologically relevant cyanotoxins may
occur through various exposure routes including food [30–35], dietary supplements [36,37],
drinking water [28,38], maternal transfer [39–41], and inhalation [42,43]. Of these exposure
routes, exposure via inhalation is less studied, yet one of the most relevant, as cyanobac-
teria and cyanotoxins are likely to be easily transported through the atmosphere. As a
result, humans and wildlife living near sites of harmful cyanobacterial blooms may be
easily and frequently exposed. The purpose of this review is to outline the prominent
cyanotoxins associated with neurological impairment and discuss atmospheric transfer and
subsequent inhalation as an exposure route, in addition to mitigation strategies to prevent
such exposures.

2. Cyanobacterial Neurotoxins
Cyanobacteria synthesize many secondary metabolites which are harmful to humans

and wildlife. Several of these secondary metabolites have been studied extensively due to
their potency and environmental relevance. This section considers cyanotoxins which may
be the most harmful to human health from a neurological perspective, with deleterious
effects observed in neuronal and non-neuronal systems (Table 1).

Table 1. Cyanotoxins and neurological conditions.

Cyanotoxin Oxidative
Stress

Neuro-
Inflammation

Protein
Misfolding

Neuro-
Stimulation

Neuro-
Inhibition References

Anatoxin-a + - - + - [44–47]

Guanitoxin + - - + - [48,49]

Saxitoxin + + - - + [50–55]

Amino Acids * + + + + - [56–64]

Microcystin + + - + + [65–77]

Cylindrospermopsin + + - - + [78–90]

* Includes BMAA and isomers.

2.1. Anatoxin-a

The alkaloid cyanotoxin anatoxin-a (Figure 1) is synthesized by cyanobacterial genera
including Anabaena, Lyngbya, Oscillatoria, Planktothrix, Raphidiopsis, and Woronichinia [91–94].
Previously called “very fast death factor”, anatoxin-a was characterized as a depolarizing
agent in neurological tissues from multiple organisms [91–94] and bears some structural
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similarity to neurological stimulants such as cocaine [44,95]. Synthesis of anatoxin-a
and variants may be positively correlated with environmental nitrogen and phosphorous
concentrations [96–98], although some studies show that anatoxin-a synthesis may peak
with moderate nitrogen stress [99]. Anatoxin-a mimics acetylcholine, a stimulatory neu-
rotransmitter which interacts mainly with nicotinic acetylcholine receptors [44,45]. As
acetylcholinesterase is unable to degrade anatoxin-a, neuronal stimulation cannot be at-
tenuated, resulting in overstimulation [44]. In sufficient doses, exposure to anatoxin-a can
result in paralysis, asphyxiation, abnormal muscular contraction, and death. Anatoxin-a
is thought to be responsible for the deaths of animals such as domestic dogs and aquatic
birds [100,101]. Apart from the known neurological effects, anatoxin-a is thought to induce
cell death by apoptosis in rat thymocytes and fish lymphocytes, which may be caused
by elevated concentrations of reactive oxygen species (ROS) upon exposure [46,47]. Fish
lymphocytes exposed to 0.01 mg/L anatoxin-a also displayed significantly lower concentra-
tions of enzymes which alleviate ROS stress, such as superoxide dismutase (SOD), catalase,
glutathione reductase (GR) and glutathione peroxidase (GP) [47].

Figure 1. Structure of anatoxin-a.

2.2. Guanitoxin

Guanitoxin (Figure 2) is an organophosphate synthesized by the cyanobacterial genera
Dolichospermum (Anabaena), Sphaerospermopsis, Aphanizomenon, Cuspidothrix and possibly
other genera such as Microcoleus [102–104]. Comparing the toxicity of guanitoxin with
anatoxin-a revealed similar toxicological effects in a variety of tissues, in addition to profuse
salivation in test organisms [44,92,102]. Formerly known as anatoxin-a (S) (“S” denoting
salivation), the nomenclature was changed to “guanitoxin” due to significant differences
from anatoxin-a in terms of structure, mechanism of toxicity, and lethal dose [48]. Unlike
anatoxin-a, which mimics acetylcholine, guanitoxin prevents acetylcholine degradation
by inhibiting acetylcholinesterase [102]. This inhibition can result in neurotoxicity by
overstimulation, manifesting as paralysis, asphyxiation, and death. Although relatively
little is known regarding the toxic effects of guanitoxin apart from inhibition of acetyl-
cholinesterase, fish exposed to guanitoxin-producing cyanobacteria displayed changes
in ROS-associated enzymes such as SOD, CAT, and glutathione-S-transferase (GST), the
presence of micronuclei, and osmoregulatory disorders [49].

Figure 2. Structure of guanitoxin.
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2.3. Saxitoxin

Saxitoxins (Figure 3) are synthesized by cyanobacterial genera such as Lyngbya, Apha-
nizomenon, Dolichospermum, Planktothrix, and Cylindrospermopsis [105,106]. The general
structure consists of trialkyl tetrahydropurines with variable regions throughout the
molecule [50,51]. Saxitoxins can be classified as C and G toxins, as well as the LW toxins
produced by L. wollei [52]. Saxitoxins can block voltage-gated ion channels and prevent
neural signaling [50,52]. The main target of saxitoxins are voltage-gated sodium channels,
which take part in action potential generation. However, some variants of saxitoxin can
block voltage-gated potassium and calcium channels, as well as nitric oxide synthases [50].
Toxic to many species, saxitoxins synthesized in marine environments are known to accu-
mulate in shellfish and are the cause of paralytic shellfish poisoning [106–108]. Saxitoxins
may also enact neurotoxicity through oxidative stress. Various organisms including rats,
fish, Caenorhabditis elegans, and Daphnia magna show altered expression of enzymes such
as catalase and synthesis of metabolites such as glutathione in neurological tissue when
exposed to saxitoxins [53–55,109].

Figure 3. General structure of saxitoxin.

2.4. Neurotoxic Amino Acids

Neurotoxic amino acids (Figure 4) such as β-N-methylamino-L-alanine (BMAA), N-(2-
aminoethyl)-glycine (AEG) and 2,4-diaminobutyric acid (DAB) are thought to be synthe-
sized by most, if not all, cyanobacterial genera [30,110–114]. The synthesis of BMAA, AEG,
and DAB may be linked to concentrations of available nitrogen, phosphorus, light, and
pH [24–27,29]. BMAA can bioaccumulate through trophic levels in nature [30–33,115] and
may accumulate in various regions of the brain in humans and other mammals [30,31,116].
In the eukaryotic cell, BMAA competes with the amino acid L-serine for misincorporation
into proteins [56,57] and may cause protein misfolding and aggregation [116]. BMAA
may also cause excitotoxicity by interacting with glutamate receptors [58,59,117,118] and
is thought to selectively damage motor neurons [59,119,120]. Symptoms of ALS, PD, and
dementia are associated with chronic exposure to BMAA in humans and non-human pri-
mates [30,56,121]. BMAA may also affect the proliferation of neural cancer cells, albeit with
different effects observed depending on the cell line [122].

Figure 4. Structure of BMAA.

Some studies have shown that both DAB and AEG are more neurotoxic than
BMAA, although toxicity can vary depending on the test organism and choice of
bioassay [59,123–125]. AEG and DAB may be more neurotoxic than BMAA when tested
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in cortical cultures [59]. Although the exact mechanisms of AEG toxicity are not clear,
DAB has been shown to be more excitotoxic than BMAA in the nervous systems of some
invertebrates [125].

Exposure to neurotoxic amino acids may also induce toxicity by oxidative stress,
epigenetic changes, impaired neurite development, apoptosis, neuronal inflammation,
and morphological changes in neuronal mitochondria [59–64]. Like other toxins, BMAA
is associated with elevated concentrations of enzymes associated with oxidative stress
observed in some organisms, and elevated concentrations of ROS as well as DNA damage
in neural stem cells [60,62]. BMAA and AEG can inhibit the transport of the glutathione
precursor cystine into primary neuronal cultures [59]. Neuroinflammatory biomarkers
such as elevated levels of COX2, nuclear NF-kB, TNF-alpha, and IL-1 beta expression are
also associated with BMAA exposure. Finally, consistent with its role as a causative agent
of ALS, exposure to BMAA is correlated with the presence of TDP-43 aggregates [63,64].

2.5. Microcystin

Microcystins are cyclic heptapeptides synthesized by cyanobacterial genera including
Microcystis, Planktothrix, and Nostoc [126,127]. Over 240 microcystin congeners have been
identified, due largely to amino acid substitutions, including at two positions in the peptide
structure, “X” and “Z”, giving rise to the nomenclature of these toxins [128]. Microcystin
synthesis is correlated with concentrations of available nitrogen and phosphorous [29,129].
Microcystins are hepatotoxins, inhibitors of phosphatases such as PP2A and tumor promot-
ers [130–132]. Several mechanisms exist by which microcystin elicit toxicity. Microcystin-LR
(MC-LR) (Figure 5) can cause ROS stress as evidenced by the dose dependent elevation of
hydrogen peroxide in various cell types as well as altered expression of ROS-associated
enzymes [65–69]. MC-LR can also induce neuroinflammation, as changes in expression of
proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), interleukin-1
beta (IL-1 beta) and interleukin-6 (IL-6), along with enzymes such as nitric oxide synthase
(NOS) and COX-2 have all been associated with MC-LR exposure [70–75]. The ability
of microcystin to inhibit PP2A, whose function is necessary for proper neuronal func-
tion, could explain some neurological symptoms associated with MC exposure [133–135].
Chronic exposure to MC-LR can lead to disruption of the blood brain barrier (BBB) and
neuroinflammation [71,72,136]. Microcystin effects on the BBB are likely brought on by
disruption of tight junctions, increasing expression of matrix metalo-proteases (MMPs) and
low levels of tight junction proteins such as Occludin and Claudin 5 [72]. Microcystins
have also been shown to alter neuronal signaling in Aplysia and rats, albeit by different
mechanisms. In Aplysia, MC-LR may prolong inward ion currents induced by serotonin
and cyclic adenosine monophosphate [76], while in the rat hippocampal dentate gyrus,
MC-LR inhibits long-term potentiation (LTP), leading to inhibition of spatial memory [77].
In rats, MC-LR may be responsible for the formation of Lewy bodies and cell-to-cell transfer
of alpha-synuclein in the nervous system [71].

 

Figure 5. Structure of Microcystin-LR (MC-LR).



Molecules 2025, 30, 2320 6 of 26

2.6. Cylindrospermopsin

Cylindrospermopsin (Figure 6) is an alkaloid cyanotoxin, consisting of a tricyclic
guanidine moiety and a hydroxymethyluracil [137]. Synthesized by several cyanobac-
terial genera including Cylindrospermopsis, Umezakia, Aphanizomenon, Raphidiopsis, and
Anabaena [78], cylindrospermopsin is of growing concern due to its potent cytotoxicity. One
mechanism of cylindrospermopsin toxicity, translation inhibition, may lead to the buildup
of reactive oxygen species (ROS), as free radical scavengers such as glutathione may not be
synthesized, potentially leading to cell death by apoptosis and DNA damage [79–85]. It
should be noted that the toxic effects of cylindrospermopsin may change depending on cell
type [22,138–142]. While cylindrospermopsin has deleterious effects on multiple cell types
including neurons [78], less is known regarding potential mechanisms of neuronal toxicity.
Hinojosa et al. showed decreased viability in murine primary neuronal cultures exposed
to cylindrospermopsin and proposed that cylindrospermopsin may disrupt synaptic in-
tegrity [86]. Cylindrospermopsin can also cross the BBB and disrupt acetylcholine activity
in certain fish species [87–89]. Some evidence shows that cylindrospermopsin can cause
neuroinflammation in BV-2 and N2a cells with elevated levels of TNF-alpha in each upon
exposure [90].

Figure 6. Structure of Cylindrospermopsin.

3. Cyanotoxin Exposure Routes
3.1. Exposure to Cyanotoxins from Aquatic Environments

Globally, cyanotoxins have been implicated in intoxications of humans and wildlife. In
2014, roughly 500,000 Ohioans living in the Toledo area were without potable water due to
the release of microcystins such as MC-LR from a large cyanobacterial bloom in the Western
Basin of Lake Erie [28,38,143]. Animals which use cyanotoxin-contaminated water for
drinking or as a habitat are also at risk of intoxication. For example, cyanotoxin exposure
was thought to be responsible for the deaths of African elephants that drank from water
sources known for cyanobacterial blooms [144]. Guanitoxin has been noted as the cause
of waterfowl poisonings in Danish Lakes [52,145], and the deaths of livestock have been
reported after consumption of water containing cylindrospermopsin [22]. Cyanotoxins
may also be responsible for marine cetacean deaths [146].

Edible marine invertebrates such as shrimp and mollusks can accumulate BMAA in
their tissues [33,147], and saxitoxins in shellfish may lead to shellfish poisoning [106,108].
Fish tissues can accumulate cyanotoxins in both marine and freshwater environments.
BMAA was detected in the tissues of a variety of edible fish species in the Black Sea, as
well as in carp from Lake Mascoma, New Hampshire amongst others [115,147–149]. More
recently, BMAA has been detected in Lake Erie fish, which are consumed after being caught
recreationally and commercially [150].

Cyanotoxins originating from aquatic environments may also impact terrestrial envi-
ronments, albeit indirectly, as water contaminated with cyanotoxins may be used in agri-
culture. As cyanotoxins can accumulate in a variety of plants, exposure may occur through
the consumption of contaminated plant matter after irrigation with cyanotoxin-containing
water [30,151–160]. Mohammad et al. showed that BMAA contaminated water used to
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irrigate edible plants accumulated to detectable levels in both free and protein-associated
states [158]. Microcystin can accumulate in edible plants such as lettuces, radishes, and
carrots after irrigation with Microcystis and/or microcystin-containing water, which may
hinder plant development depending on the concentration and duration of exposure [155].
The use of aquatic organisms for commercial animal feed can also lead to accumulation of
BMAA in livestock [33].

3.2. Exposure to Cyanotoxins from Terrestrial Environments

Terrestrial cyanobacteria are capable of synthesizing many of the same toxins as
aquatic species. On Guam, an unusually high number of individuals showed symptoms
of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) which
includes characteristic symptoms of ALS, AD, and PD [161,162]. Cox et al. examined Nostoc
species inhabiting the coralloid roots of the cycad Cycas micronesica which were found
to produce BMAA. BMAA was present at high concentrations in the seeds of the cycad
which were consumed by flying foxes native to Guam. BMAA in the flying foxes and cycad
seeds accumulated >1000-fold compared to that detected in the Nostoc associated with the
cycad coralloid root. Cycad flour prepared by native Chamorro people also contained free
and protein bound BMAA. Those who consumed flying foxes and cycad seed flour over
extended periods of time accumulated BMAA in brain tissues [30,31].

Another possible exposure route to terrestrial cyanotoxins are biological soil crusts.
Biological soil crusts are important in arid environments where they stabilize the uppermost
soil surfaces, binding soil particles together and providing a physical barrier preventing
erosion [163,164]. As cyanobacteria may constitute a large proportion of the biomass found
in soil crusts [103,124,165–168], cyanotoxins have the potential to occur at varying concen-
trations and types depending on environmental conditions and the composition of genera
present [167]. In the desert soils of Qatar, for example, prominent cyanobacterial genera
included Microcoleus, Phormidium, and Chroococcus [166,168,169] and cyanotoxins such as
microcystin, guanitoxin, BMAA, DAB, and AEG have been found in crust material [103].
In the Arctic, microcystin and anatoxin-a have been detected in biological soil crusts [170].
Biological soil crusts from loess deposits in Iran showed great diversity of cyanobacterial
genera, but varying toxicity [167].

Other terrestrial sources of cyanotoxins include dry lake beds and cyanobacteria found
in arctic regions. Dry and receding lake beds such as the Great Salt Lake in the State of Utah
are thought to be sources of airborne BMAA, AEG, and DAB [171]. One final source of
terrestrial cyanotoxins comes from cyanobacterial mats, such as those found in the Antarctic
from which BMAA and microcystins were detected [172].

3.3. Exposure to Cyanotoxins from Food and Dietary Supplements

Dietary supplements containing or consisting entirely of cyanobacteria are popular
due to their high nutrient content. Species of the genus Arthrospira are consumed in Central
Africa [173] and are marketed in the United States along with Aphanizomenon flos-aquae as
the dietary supplement “spirulina”. Despite being considered non-toxic, representatives of
these cyanobacteria can synthesize a variety of toxins or may be contaminated with toxic
cyanobacterial species before processing for consumption. In a screen for 37 cyanotoxins
in supplements which included spirulina and Aphanizomenon flos-aquae, Fontaine et al.
detected microcystins, DAB, anatoxin-a, and beta-amino-N-methylamine (BAMA) [35].
Roy-Lachapelle et al. also screened dietary supplements for cyanotoxins, with several
detected above levels considered tolerable for daily intake [36]. However, as certain toxins
such as BMAA have the potential to bioaccumulate in human tissues [30,31], repeated
consumption of dietary supplements containing cyanobacteria may serve as a route of
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chronic exposure and potentially lead to neurological conditions. Metcalf et al. examined
Arthrospira consumed by people in the African nation of Chad and provided evidence for
the presence of microcystins and DAB [173]. Nostoc species such as Nostoc commune and
Nostoc flagelliforme are consumed whole or as fa cai noodles in Peru and China respectively,
and have both been shown to contain BMAA [34,174].

3.4. Exposure to Cyanotoxins in the Atmosphere

Although exposure to cyanotoxins from aquatic and terrestrial environments, as well
as through food and dietary supplements, is well documented, exposure to cyanobacteria
and cyanotoxins via the atmosphere is less well studied. Cyanobacteria may constitute a
significant proportion of aerial microbial communities, as they can withstand a range of
environmental conditions [169,175–181]. This presents unique health risks, as air currents
can carry particles containing cyanobacteria and cyanotoxins over long distances [182],
potentially being able to adversely affect individuals over broad spatial distributions.
Cyanobacteria have also been detected in the atmosphere of indoor facilities, implying that
air filtration methods may not be adequate at preventing airborne exposure [177,183–186].
Various mechanisms exist by which cyanobacteria and cyanotoxins can enter the atmo-
sphere, and these can vary depending on whether their origin is terrestrial or aquatic.

Bubbles can be generated by wave action or the result of precipitation hitting the
surface of water. After forming below the surface, the outer film of bubbles can accumulate
bacteria [187]. Bacterial accumulation on bubbles is dependent on bubble size, bacterial
concentrations in the water, and the distance the bubble travels before reaching the surface,
with larger bubbles that travel greater distances accumulating more bacteria [188,189].
As the bubble bursts upon hitting the surface of the water, bacteria concentrated on the
bubble are released by propulsion of jet and film drops. Jet drops are generated from
the release of water from the inside of the bubble. Film drops are composed of drops
from the surface of the water upon bubble bursting. Both types of drops are capable of
ejecting bacteria and potentially toxic molecules into the atmosphere [187]. For example,
microcystin congeners can enter the atmosphere with the bursting of bubbles, creating lake
spray aerosols (LSAs) [190,191].

Terrestrial sources of atmospheric cyanobacteria and cyanotoxins are less well under-
stood, but may include soil, biocrusts, plant matter, and lichen [30,103,165,166,170,182,192–194].
Physical disruption of soil surfaces and biocrusts can disperse cyanobacteria into the atmo-
sphere [182]. In arid regions, dust particles containing cyanobacteria and associated toxins
may enter the atmosphere after being swept up by air currents moving over soil surfaces.
Furthermore, up to 109 bacterial cells may be present in a single gram of desert soil, sug-
gesting that microbes will be more prevalent in the atmosphere after dust storms [169,195].
Some cyanotoxins have been detected on farmland and in groundwater [194,196], pre-
senting the possibility of dispersal during agricultural practices. Some terrestrial Nostoc
species form large colonies which are subject to desiccation, while others associate with
fungi with forming lichen [192,193]. Desiccated or dead Nostoc and lichen as well as other
abundant terrestrial cyanobacteria and cyanotoxins may also enter the atmosphere if they
are physically disturbed.

4. Cyanobacteria and Cyanotoxins in the Atmosphere
Microalgae were observed as being present in the atmosphere as early as 1844 [197].

Since that time, the number of microorganisms identified in the atmosphere has greatly
increased, including many cyanobacterial genera, with their presence dependent on both
cellular and environmental characteristics [43,176,178,179,198]. Small cells may be more
prevalent in the atmosphere according to some studies, as their small size may influence the
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ease with which they are swept up by air currents. Pico-cyanobacteria, which are 0.2–2 µm
in diameter, are sometimes the predominant bacteria detected in aerosols [176,178]. Mi-
crocystis cells, which are between 3 and 4 µm in diameter, have been found during air
sampling of the Baltic Sea and other habitats [199,200]. Bacterial cells of similar size have
also been detected in mucosal samples (i.e., lung and nasal) from hospital patients [43], and
Microcystis species including Microcystis aeruginosa were documented by Genitsaris et al.
from inland samples [199]. Apart from cell size, members of the genus Microcystis may
be more prone to aerosolization, as synthesis of gas vesicles allows them to float near the
surface of aquatic environments, placing them near air currents moving across the surface
of the water [21,201].

Although smaller cyanobacteria may predominate in the atmosphere, larger cyanobac-
teria may still be detected. Genitsaris et al. cataloged many cyanobacterial genera from
atmospheric samples, which included Lyngbya, Phormidium, and Oscillatoria that form long
filamentous trichomes [199]. Lyngbya species, which can reach up to 6 µm in width and com-
monly benthic [202], have been reported in tropical regions, but are more distinguishable
in the atmosphere after harsh weather conditions such as monsoons [178,179]. Terrestrial
Nostoc species have also been detected in aerosols [179,199]. 17 cyanobacterial species were
detected in studies performed in Texas (USA) [175]. Some microalgae and cyanobacteria in
this study were detected in samples taken from an airplane, implying that cell size may not
be a significant factor for aerosolization and dispersal from terrestrial environments [175].

It may be assumed that greater wind speeds result in higher concentrations of
cyanobacteria and cyanotoxins in the atmosphere. While bioaerosols may be positively
correlated with wind speeds greater than 4 m/s, some studies suggest that wind speed
may be negatively correlated with bioaerosols below 4 m/s [203,204]. Trout-Haney et al.
observed a slightly negative correlation for wind speed and concentrations of aerosolized
pico-cyanobacteria [176]. Wind speed may also be neutral under some circumstances,
as Wood and Dietrich did not observe any correlation between wind speed and atmo-
spheric concentrations of microcystin or nodularin [205]. Climatic factors can also influence
cyanobacterial aerosolization. In India, for example, cyanobacterial genera detected in
the atmosphere may change depending on the season, which is likely correlated with
changes in temperature, precipitation, and humidity [179]. As mentioned above, certain
genera were observed in tropical regions only after monsoons. Conditions characteristic
of monsoons, such as high wind speed and precipitation, may provide the physical force
necessary to aerosolize great numbers of bioparticles containing cyanobacteria [198].

Along with cyanobacteria, several cyanotoxins have been detected in air samples.
Atmospheric cyanotoxins have been detected around water bodies known for harmful
cyanobacterial blooms, as well as terrestrial environments. For example, microcystin
and nodularin have been detected around several lakes worldwide during cyanobacterial
blooms [205–210]. Anatoxin-a has been detected near a pond known for hypereutrophic
conditions and harmful cyanobacterial blooms in New England [211]. BMAA has been
detected in atmospheric samples around Lake Mascoma and surrounding water bodies in
New England [115,198]. As various cyanotoxins have been detected in farm soil and dry
lake beds such as the Great Salt Lake [171,194], inland soils may be a potential source of
aerial cyanotoxins. Guanitoxin, to our knowledge, has not been detected in air samples.
However, the presence of guanitoxin in desert biocrusts which may release cyanotoxins
upon disruption may lend credence to guanitoxin possibly being present in the atmo-
sphere derived from arid environments [103,166]. Limited data exists on the presence of
aerosolized saxitoxin. A possible explanation is that some cyanobacteria that synthesize
saxitoxin, such as L. wollei, are benthic, which may make entry into the atmosphere more
difficult without extreme weather conditions (discussed above). Dabny did not detect
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saxitoxins in aerosol samples taken from a freshwater environment [212] however, other
studies such as Yu et al. were able to detect saxitoxins in aerosol samples from a marine
environment [213].

5. Health Implications of Atmospheric Cyanobacteria and Cyanotoxins
5.1. Possible Consequences of Exposure to Atmospheric Cyanobacteria and Associated Neurotoxins

Cyanobacteria that enter the atmosphere may present various health concerns. Cyan-
otoxins such as microcystin and BMAA, detected around some New Hampshire lakes, have
been speculated to be causative agents of ALS cases in the surrounding area [115,214]. As
mentioned above, cyanobacteria found in lung and nasal samples of hospital patients in
New Hampshire were similar in size to Microcystis species [43]. In some cases, patients
suffering from ALS were reported to live within 0.5 miles of lakes known for regular
cyanobacterial blooms [214].

Cyanobacteria and cyanotoxins may also impact the health of individuals recreating on
or near aquatic cyanobacterial blooms. Cheng et al. detected microcystin on air filters worn
on the lapel of participants recreating near lakes with cyanobacterial blooms, implying
that atmospheric microcystin was in close enough proximity to the face to be inhaled [208].
Backer et al. monitored the health of participants recreating on or near lakes with and
without cyanobacterial blooms. While Backer et al. did not find a statistically significant
difference in the number of participants who reported differences in health before and after
recreation, many participants reported symptoms of dermal, respiratory, and digestive
discomfort only after recreation, which were not experienced by participants recreating
on control lakes with no visible bloom [207]. A separate study by Backer et al. showed
similar results, with some participants only reporting health changes after recreation on
bloom-containing lakes [206]. In both studies, microcystin was detected in atmospheric
samples [206,207], supporting the idea that aerosolized microcystin may be a causative
agent for the observed health changes.

5.2. Atmospheric Cyanobacteria and the Spread of Toxins

It should be noted that aerosolized cyanobacteria may spread hazardous substances
other than cyanotoxins. Toxins such as polycyclic aromatic hydrocarbons (PAHs) and heavy
metals may also be spread by phytoplankton [215–217], PAHs are flat planar molecules
that can enter the environment through spilled fuel or biochar and are thought to be
carcinogenic [218,219]. Heavy metals are present in many environments and may cause
neurological complications such as ALS [220–222]. Studies performed on Microcystis aerugi-
nosa support the hypothesis that both PAHs and heavy metals adhere to the cell surface,
with some heavy metals possibly able to enhance PAH adsorption [217]. Tao et al. (2014)
showed that metal salts such as copper nitrate and silver nitrate at concentrations of
500–5000 µmol/L enhanced the adsorption of PAHs such as phenanthrene onto M. aerugi-
nosa cells [223]. As cyanobacteria have been detected in lung and nasal samples [43], it may
be possible that exposed individuals may be inhaling multiple toxins.

5.3. Occupational Exposure

Occupational exposure to cyanobacteria and cyanotoxins has been reported in some
instances, but documentation of exposure specifically through inhalation is limited. Stewart
et al. discussed several potential instances where cyanobacterial exposure may occur in
laboratory settings and mass culture facilities, with those working with dehydrated or
powdered cyanobacteria possibly being more at risk [224]. Other examples included
soldiers performing canoeing exercises at a UK waterbody supporting a cyanobacteria
bloom, resulting in atypical pneumonia in some recruits [225,226]. As these exercises
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involved full body immersion in cyanobacteria contaminated water, ingestion was the most
likely source of exposure, although inhalation may have also occurred, which could explain
the occurrence of pneumonia in some recruits [225,226].

In certain parts of the world, significant areas of land are covered with cyanobacterial
biocrusts [227]. Exposure to these crusts and cyanotoxins may result in a higher risk of
developing neurological conditions. For example, unusually high rates of ALS have been
observed in deployed military personnel who served in the first Persian Gulf War (Oper-
ation Desert Shield) from 1990 to 1991 versus those who received the same training and
were not deployed [228–231]. While some evidence suggests that instances of ALS in active
service members may be the result of administered anti-chemical warfare agents [231],
contributions from cyanotoxins such as BMAA, AEG, DAB, microcystins, and guanitoxin
present in desert biocrusts becoming airborne and inhaled after physical disruption cannot
be discounted [103,124,166].

5.4. Cyanobacteria and Cyanotoxins in Indoor Environments

While little is known about how atmospheric cyanobacteria and cyanotoxins may
chronically or acutely adversely affect human health, more information is available demon-
strating the proximity of potentially affected individuals to airborne contaminants. Par-
ticularly concerning is that cyanobacteria are amongst the most abundant photosynthetic
microbes detected in the atmosphere of indoor environments [184–186,215]. As many as
40 algal taxa have been detected on indoor dust particles [184]. Chu et al. found that of
26 taxa detected indoors, cyanobacteria were the most abundant, with predominant genera
including those possibly originating from terrestrial environments such as Phormidium [184].
Some genera potentially originating from aquatic environments, including Anabaena, have
also been detected indoors [184,186].

As cyanobacteria may be transported to indoor environments on dust particles, it may
be inferred that the same is true with cyanotoxins. Since soil is a heterogenous mixture
of chemically diverse materials [232], cyanotoxins could enter indoor environments via
adhesion to soil-originating dust. For example, some terrestrial cyanobacteria such as Nostoc
are capable of synthesizing multiple toxins, including microcystin [127], and it may be
inferred that cyanotoxins could enter the atmosphere on dust particles from areas with high
concentrations of Nostoc. Further sources of indoor airborne cyanobacteria and cyanotoxins
include areas that use dried cyanobacteria for the preparation of food [34,52,174].

5.5. Dose-Response for Inhaled Cyanotoxins

Although cyanobacteria and many of their associated toxins negatively impact the
nervous system, the mode by which exposure occurs may influence the severity of symp-
toms. While data showing dose–response relationships for inhalation is not available
for all classes of cyanotoxins discussed in this review, some cyanotoxins such as MC-LR,
anatoxin-a, and BMAA have been derived. LD50 concentrations for MC-LR and anatoxin-
a decrease upon exposure via nasal administration as opposed to other routes such as
gastric intubation, reflecting the potency of direct inhalation [233,234]. Inhalation-based
exposure to MC-LR resulted in increased liver size which is indicative of liver damage
and increased proportionally to exposure concentrations [233]. Simultaneous exposure to
MC-LR and anatoxin-a via inhalation can also result in synergistic toxicity which becomes
more apparent with increasing toxin concentrations. However, it should be noted that
mice exposed to aerosolized MC-LR did not show any adverse health defects, although
this could be explained by technical limitations and the inability of mice to breathe large
enough quantities of aerosolized toxins to exhibit symptoms of intoxication [233]. Although
not administered via inhalation, Fawell et al. showed that mice exposed to anatoxin-a
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displayed dose-dependent changes in respiratory action at sublethal doses [235]. Benson
et al. also showed a dose-dependent response in mice exposed to 200–265 µg/m3 of MC-LR,
with exposed mice inhaling MC-LR for a period of seven days. Mice inhaling MC-LR for
0.5, 1, and 2 h displayed concurrent increases in the instances of nasal lesions and nasal
epithelium necrosis, with both higher concentrations and longer periods of exposure [236].

BMAA has been shown to damage cells of the olfactory bulb and olfactory tract [42],
but the degree to which BMAA may be toxic upon inhalation may be organism dependent.
For example, Scott et al. showed that rats administered BMAA via inhalation did not exhibit
any adverse health effects upon exposure to environmentally relevant concentrations. As
concentrations of neurotoxic degradation products of BMAA such as 2,3-diaminoproprionic
acid (DAP) increased proportionally to concentrations of inhaled BMAA, this implied that
rats may show a degree of resistance to the toxic effects of inhaled BMAA [237]. However,
Pierezan et al. showed that mice exposed intranasally to BMAA displayed selective damage
to the olfactory bulb, as well as decreased viability and neurite growth in primary cultures
of mice olfactory cells. It should be noted that Pierezan et al. did not observe adverse effects
of BMAA at concentrations below 100µM in olfactory bulb neurons. Mixed cultures of
olfactory neurons and glial cells showed decreased viability at 500µM concentrations, but
not at 250µM, demonstrating the critical nature of BMAA dose on inhalation toxicity [238].
See Table 2 for a summary of the results discussed above.

Table 2. Toxicological analysis of inhaled anatoxin-a, MC-LR, and BMAA in rodent models.

Cyanotoxin Route LD50 Test Organism Reference

Anatoxin-a Inhalation 2000 µg/kg Mouse [233]

Microcystin-LR Inhalation 250 µg/kg Mouse [233]

Microcystin-LR Aerosol NA * Mouse [233]

Microcystin-LR Inhalation 43 µg/kg Mouse [234]

BMAA Inhalation NA Rat [236]
* This study was limited to aerosol exposure at 0.0005 µg/kg. No deaths were observed at 0.0005 µg/kg.

5.6. Biomarkers for Inhalation of Cyanotoxins

Studies examining biomarkers for exposure to cyanotoxins, specifically through inhala-
tion, are somewhat lacking, although it could be assumed that the biomarkers mentioned
above for oxidative stress, neuroinflammation, and protein aggregation could be seen in
cases of inhalation toxicity. One study reported nasal legions in mice exposed to MC-LR
for seven days, in addition to increased expression of two unidentified proteins in mouse
plasma which directly correlated with MC-LR exposure [236]. Although not conducted in
the context of inhalation, changes in gene expression and the phosphorylation of enzymes
involved in cell division have been documented in human-airway epithelial cells upon
exposure to sublethal concentrations of cylindrospermopsin [239,240].

6. Mitigation of Cyanobacteria and Cyanotoxins in the Atmosphere
Several strategies exist which may lessen the impacts of harmful cyanobacterial blooms.

However, few studies have been conducted with the intention of reducing cyanobacteria
and cyanotoxins in the atmosphere. Since many cyanobacteria originate from aquatic
environments, strategies aimed at reducing aquatic blooms may also reduce the amount of
atmospheric cyanobacteria and cyanotoxins.

Current control methods utilize chemical agents which induce flocculation, the ag-
gregation of dispersed bacterial cells in solution, forming flakes known as flocs [241].
Chemical agents such as aluminum or iron-based compounds and organic compounds
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like chitosan flocculate cyanobacteria by neutralizing the cell surface and precipitating
them from solution [28,242–244]. A method known as Floc and Sink utilizes clay particles
which act as ballast, causing the flocculated cyanobacteria to sink and removing them from
the surface of waterbodies [28,245]. Although blooms may recover, temporarily removing
cyanobacteria from surface waters may reduce aerosolized cyanobacteria, as fewer cells
would be released into the atmosphere if only for a limited period. Flocculated cells may
also not adhere to bubble films, possibly reducing the number of cells available to enter the
atmosphere through mechanisms such as bubble bursting [187].

Reducing the amount of available nutrients in an aquatic environment may also reduce
concentrations of cyanobacteria and thus cyanotoxins. To reduce bioavailable nutrients
such as phosphates that enter aquatic environments as agricultural runoff, mitigation
strategies include reducing fertilizer use on watershed farmland [245–247]. For example,
cover crops such as tillage radishes grow extensive root systems capable of drawing
nutrients upward from deeper soil layers to be utilized by cash crops, and could possibly
reduce the total amount of phosphorus containing fertilizers needed for application to
farmland [245,248–250]. Strategies that mitigate phosphates already present in waterbodies
include the addition of compounds such as alum, clays, and lanthanum-modified bentonite,
all of which precipitate phosphate anions from surface waters [28,251]. In either case, this
limits bioavailable phosphorus and may reduce the growth of aquatic cyanobacteria, and
the subsequent number of cells available to be liberated into the atmosphere.

Nie et al. investigated the presence of cyanobacteria on HVAC filters and found
cyanobacteria of the genera Pseudanabaena, Nodularia, and Letpolyngbya [252]. These findings
suggest that air-filtration methods may reduce concentrations of airborne cyanobacteria
and lessen human exposure to cyanobacteria. Gaston et al. employed a filtration system in
which a combination of high-efficiency particular air (HEPA) filters, air conditioning (AC)
filter cassettes, and face mask pieces were used to filter airborne cyanobacteria. Roughly
80% of aerosolized cyanobacteria detected in this study were prevented from entering the
atmosphere and were attached to one or more components of the filtration system [253],
suggesting that in-house air filters along with personal protection face masks may help to
minimize human exposure to airborne cyanobacteria.

7. Research Gaps
Although much is known about exposure to cyanobacterial toxins via drinking and

recreational water as well as from contaminated crops and food, the contribution of the
airborne cyanotoxin exposure route to toxicity is largely unknown. A further compound-
ing factor is that, unlike exposure via water, avoiding toxic compounds within air is
more difficult due to the necessity of inhalation and penetration of cyanobacteria into
indoor environments.

If such exposure is unavoidable, current research gaps include accurate and simple
means to detect and quantify cyanobacteria and cyanotoxins in air to provide an early
warning system, like that provided by US national weather services for brevetoxins and
wildfire smoke [254–256]. Such a system may be particularly important for large lakes,
such as Lake Erie and the Great Salt Lake, or marine environments. Regarding Lake
Erie, persistent cyanobacterial blooms, largely comprising the genus Microcystis, have the
potential to cover large surface areas with microcystin contamination [12,257]. With smaller
lakes, it may be sufficient to simply use the “precautionary principle” and post warning
notices when toxic blooms are present or likely to be airborne. Although this may be
sufficient for members of the public periodically recreating on lakes, individuals whose
residences are near such waterbodies may be at increased risk of acute and chronic adverse
health effects [214].
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Other research gaps include the potential to filter air samples and remove cyanobac-
teria and their components as a preventative measure. Although some experiments have
been performed in laboratory settings [253], publicly available technologies to specifically
serve this purpose have, to our knowledge, not been made available. Non-specifically,
such remedies may take the form of simple HEPA filters or bespoke filtration systems.
It is likely that most airborne exposure occurs through the inhalation of water droplets,
cellular material, and debris or dust particles, as shown by the presence of cyanobacteria
in human lung samples and indoor environments [43,184–186]. Furthermore, the aerial
exposure route may manifest in different toxicological outcomes if compounds are inhaled.
This is largely because compounds may enter the body through the olfactory bulb and
subsequently have the potential to bypass the BBB, resulting in neurotoxicity. BMAA,
for example, was present in mouse olfactory bulbs following direct unilateral intranasal
instillation, providing evidence that BMAA can bypass the BBB and enter the brain directly
through the olfactory bulb [238]. Cyanotoxins such as BMAA, DAB, and AEG have also
been detected in the olfactory bulbs of postmortem human subjects, which corresponded
with the presence of proinflammatory proteins such as IL-6 and CASP1 in subjects with ad-
vanced Alzheimer’s Disease. Concurrently, the olfactory tracts of postmortem Alzheimer’s
Disease patients showed pathologies such as neuropil vacuolation, gliosis, and the presence
of reactive microglia and tauopathies [42].

Globally, the presence and persistence of cyanobacterial blooms is highly variable,
with some lakes having large persistent blooms (e.g., Lake Erie), some serving as perma-
nent cyanobacterial ecosystems (e.g., Rift Valley Lakes, Great Salt Lake), and the affected
majority being small lakes with periodic/annual cyanobacterial blooms [38,258–262]. There-
fore, a greater understanding of temporal and geographic ranges of blooms may aid in
the identification of at-risk human populations. This includes the need to obtain accu-
rate and rapid determinations of toxin concentrations to ascertain potential degrees of
exposure. This can be easily achieved using low-cost, low-tech detection devices such as im-
munoassays, as evidenced by self-administered COVID-19 tests during the pandemic [263].
Furthermore, if properly calibrated, techniques such as qPCR may also be amenable to this
task to increase the amount of available data for assessing disease patterns and trends in
populations [264–266].

Although cases of acute toxicity from cyanobacterial toxin exposure are relatively easy
to determine and investigate, understanding potential chronic effects requires greater effort.
Under such scenarios, as a person may be exposed to cyanobacteria and their toxins at
multiple times over multiple years, a better understanding of the amount and frequency of
exposure would be invaluable [267–269]. Although this would require many analyses to
be performed, the data may be amenable to the application of techniques such as machine
learning to look for patterns in exposure without human bias or interference [267–269].
Another research gap with respect to chronic exposure concerns genetic differences within
human populations which may affect susceptibility to cyanotoxin exposure. With some
neurodegenerative diseases such as ALS and PD, a percentage of cases are thought to
be caused by genetic predisposition with environmental triggers. By applying health
assessment criteria such as those devised by Bradford-Hill, a better understanding of the
ability of cyanobacteria and their toxins to cause adverse human health effects and disease
can be achieved [270,271].

The potential list of diseases associated with exposure to cyanobacteria and their toxins
continues to grow [52,267–269,271,272]. With the correct tools and surveillance networks
in place, a better understanding of less-studied exposure routes can be achieved. The
increasing analysis of cyanobacteria and their toxins in air indicates that this exposure route
may be more important than previously considered. Having a better grasp on the occur-



Molecules 2025, 30, 2320 15 of 26

rence and prevalence of cyanobacterial toxins in air may also lead to a more informed risk
assessment. This may include a better understanding and partitioning of toxin allocation
amounts for health protection and may also result in changes to recommended permissible
cyanotoxin concentrations in water, food, and other compartments.

Perhaps the greatest research gap concerns the human exposome and the totality of
exposure. Whether by water, air, or food, humans are exposed to a variety of compounds
with potential acute and chronic deleterious effects. A better understanding of the vari-
ety of compounds that people are exposed to is required, along with data and research
concerning potential synergistic toxicological effects [273]. To protect human health from
the actions of cyanobacteria and cyanotoxins, the quantity of these compounds and how
they interact in human bodies will provide the means to better protect human health. This
is especially pertinent when combined with likely adverse effects of climate change on
harmful cyanobacterial bloom occurrence and distribution.

Author Contributions: Original draft preparation was carried out by Z.J.M. and J.S.M. with Z.J.M. as
the primary author. Z.J.M., J.S.M. and E.W.S. contributed to review and editing. Investigation was
carried out primarily by Z.J.M. with contributions and edits from J.S.M. and E.W.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to the thank the Center for Great Lakes and Watershed Studies for
their support. We would also like to thank Chris Ward, Aspassia Chatziefthimiou, and Jari Willing
for their insightful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schopf, J.W.; Packer, B.M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia.

Science 1987, 237, 70. [CrossRef] [PubMed]
2. Papke, R.T.; Ramsing, N.B.; Bateson, M.M.; Ward, D.M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol.

2003, 5, 650–659. [CrossRef] [PubMed]
3. Kulasooriya, S.A. Cyanobacteria: Pioneers of planet earth. Ceylon J. Sci. (Biol. Sci.) 2012, 40, 71–88. [CrossRef]
4. Álvarez, C.; Jiménez-Ríos, L.; Iniesta-Pallarés, M.; Jurado-Flores, A.; Molina-Heredia, F.P.; Ng, C.K.; Mariscal, V. Symbiosis

between cyanobacteria and plants: From molecular studies to agronomic applications. J. Exp. Bot. 2023, 74, 6145–6157. [CrossRef]
5. Gaysina, L.A.; Saraf, A.; Singh, P. Cyanobacteria in diverse habitats. In Cyanobacteria; Academic Press: Cambridge, MA, USA,

2019; pp. 1–28.
6. Polyak, Y.; Zaytseva, T.; Medvedeva, N. Response of toxic cyanobacterium Microcystis aeruginosa to environmental pollution.

Water Air Soil Pollut. 2013, 224, 1494. [CrossRef]
7. Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R.; Sethunathan, N. The impacts of environmental pollutants on

microalgae and cyanobacteria. Crit. Rev. Environ. Sci. Technol. 2010, 40, 699–821. [CrossRef]
8. Fujimoto, N.; Sudo, R.; Sugiura, N.; Inamori, Y. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and

competition under various N: P supply ratios and temperatures. Limnol. Oceanogr. 1997, 42, 250–256. [CrossRef]
9. Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with

phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [CrossRef]
10. O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophica-

tion and climate change. Harmful Algae 2012, 14, 313–334. [CrossRef]
11. Grizzetti, B.; Bouraoui, F.; Aloe, A. Changes of nitrogen and phosphorus loads to European seas. Glob. Change Biol. 2012, 18,

769–782. [CrossRef]
12. Grizzetti, B.; Billen, G.; Davidson, E.A.; Winiwarter, W.; de Vries, W.; Fowler, D.; Howard, C.M.; Bleeker, A.; Sutton, M.A.;

Lassaletta, L.; et al. Global nitrogen and phosphorus pollution. In Just Enough Nitrogen: Perspectives on How to Get There for Regions
with Too Much and Too Little Nitrogen; Springer: Berlin/Heidelberg, Germany, 2020; pp. 421–431.

13. Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloğlu,
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