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An experimental form of hepatic porphyria which biochemically resembles the 
genetic disease of man, acute intermittent porphyria (1, 2), can be induced readily in 
rats by the administration of allylisopropylacetamide (AIA), 1 a chemical agent struc- 
turally related to Sedormid (3, 4). The increase in urinary output of &aminolevulinic 
acid (ALA) and porphobilinogen (PBG) and the hepatic accumulation of porphyrins 
that result from treatment with this agent are due to the induction of hepatic ~- 
aminolevulinate synthetase (ALAS) (5), the initial and rate-limiting enzyme in the 
biosynthesis of porphyrins and heine (6, 7). 

The production of experimental porphyria in rats with AIA is accompanied by a 
concomitant hypertrophy of the liver (8) which can be accounted for almost entirely 
by an increase in the volume of hepatocytes (9). Ultrastructural studies of the liver in 
AIA-treated rats have revealed substantial proliferation of the smooth endoplasmic 
reticulum (SER), enlargement of various intracellular organelles, and accumulation of 
lipid droplets in the hepatocytes (9-11). 

During the course of studies on drug-induced experimental porphyria in 
animals, we noted that  neonatal rats were refractory to the porphyria-inducing 
properties of various drugs and chemicals including the potent ALAS-inducing 
agent, AIA (12, 13). The observation prompted the present study, which is 
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porphobilinogen; SER, smooth endoplasmic reticulum. 
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c o n c e r n e d  w i t h  t h e  b i o c h e m i c a l  a n d  m o r p h o l o g i c a l  a l t e r a t i o n s  in  t h e  l ivers  of 

A I A - t r e a t e d  r a t s  d u r i n g  v a r i o u s  s tages  of p o s t n a t a l  d e v e l o p m e n t .  T h e  o c c u r e n c e  

of d e v e l o p m e n t a l  changes  in  t h e  i n d u c i b i l i t y  of h e p a t i c  A L A S  w h i c h  we r e p o r t  

he r e  also p r o v i d e d  us w i t h  a u n i q u e  o p p o r t u n i t y  to  e x a m i n e  t he  r e l a t i o n s h i p  

b e t w e e n  A L A S  a c t i v i t y  in  l iver  cells a n d  t he  d r u g - m e d i a t e d  i n d u c t i o n  of t h e  

h e p a t i c  h e m o p r o t e i n ,  c y t o c h r o m e  P-450.  

Materials and Methods 

Animals.--Female Sprague-Dawley rats (Charles River Laboratories, Wilmington, Mass.) 
were obtained on the 16th day of pregnancy and housed singly in cages free of softwood bed- 
ding (14). The times of birth of the neonates were carefully noted for each pregnant female, 
and the neonates were allowed free access to maternal milk after birth. The age of each liter 
of neonates was determined with an accuracy of 4-12 hr. 

On the day before experiments, the neonates were removed from their mothers and fasted 
for various periods up to 24 hr. Drugs and chemicals were administered intraperitoneally. The 
neonates were studied for induction of hepatic ALAS at 5-day intervals from birth until 20 
days of age and at 10-day intervals thereafter until 40 days of age. Fetuses were examined for 
response to AIA in utero by administering the chemical to pregnant rats 5 days before the date 
of expected delivery. For the microsomal cytochrome P-450, the neonates were examined at  
ages 3, 6, 10, and 30 days. Female rats weighing 100-200 g were used as adults in all experi- 
ments. 

Drugs and Chemlcals.--Phenobarbital (100 mg/kg) and AIA (400 mg/kg) were administered 
as aqueous solutions of 0.85% NaC1. Diethoxycarbonyl dihydrocollidine (DDC) 2 (250 rag/ 
kg) was administered as a solution ill propylene glycol. ALA (30-120 moles/100 g) was given 
as a solution in 0.85% NaC1. 

Enzyme Assay.--ALAS was assayed in liver homogenates according to the method of 
Marver et at. (15). Some reaction mixtures for this enzyme assay contained succinyl coenzyme 
A synthesized according to the method of Simon and Shemin (16). ALA and amino acetone, 
synthesized in the reaction mixtures, were separated and determined by solvent extraction as 
described by Granick (7). The unit of ALAS activity was expressed as millimicromoles ALA 
formed per hour per gram liver. 

Determination of Microsomal Cytochrome.--Cytochrome P-450 was quantitated in dithio- 
nite-reduced preparations of liver microsomal fractions by its carbon monoxide difference 
spectrum as determined in a Cary 15 spectrophotometer (Cary Instruments, Monrovia, Calif.) 
according to the method of Omura and Sato (17). Incorporation of ALA-3,5-3H and glycine- 
2-~*C (New England Nuclear Corp., Boston, Mass.) into microsomal cytochrome P-450 was 
carried out as follows: 50 ~zCi/100 g of ALA-3,5-3H or 30 #Ci/100 g of glycine-2-14C was in- 
jected intraperitoneally and the rats sacrificed 3 hr later. Microsomal preparations from their 
livers were then converted to carbon monoxide-binding particles by digestion with 0.3% (w/v) 
crude pancreatic lipase (Steapsin, Nutritional Biochemicals Corporation, Cleveland, Ohio), as 
described by Omura and Sato (17). The resulting preparations, containing 80-95% of original 
cytochrome P450 in the form of cytochrome P-420 (18) and virtually free of cytochrmne b5, 
were counted in a Beckman LS-250 Liquid Scintillation System (Beckman Instruments, Inc., 
Fullerton, Calif.) as in the method of Levin and Kuntzman (19). 

Cytochrome b5 was determined from the difference spectrum between nicotinanfide adenine 
dinucleotide (reduced form)- (NADH)-reduced and air-saturated suspensions of microsomes 
(18). In some preparations of microsomal fractions as well as of CO-binding particles, NADH- 

2 Gift from Professor S. Granick, The Rockefeller University. 
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cytochrome b5 reductase, purified according to Takesue and Omura (20), was added to ensure 
complete reduction of cytochrome bs. Protein was measured according to the method of Lowry 
et al. (21). 

Porph~rir~ Deterraination.--Porphyrin content of the liver was determined spectro- 
fluorometrically as follows. Homogenates of livers were prepared in distilled water and small 
aliquots, containing approximately 10 mg of protein, were freeze-dried. Porphyrins from the 
lyophilates were then extracted with a solvent containing equal volumes of N-perchloric acid 
and absolute methanol (Spectral Grade, Matheson Coleman & Bell, Matheson Co., Inc., East 
Rutherford, N. J.). After t i t rat ion through Whatman No. 2 filter paper, fluorescence emission 
spectra of porphyrins contained in the solvent were traced in a Hitachi-Perkin-Elmer MPF- 
2A fluorescence spectrophotometer (Hitachi, Ltd., Tokyo, Japan; Perkin-Elmer Corp. Instru- 
ment Div., Norwalk, Conn.) (22). 

Bilirubin Determination.--Serurn bilirubin was measured by coupling with diazotized 
sulfanilic acid (23). 

Electron Microscopic Studies.--Livers from 27 animals were examined in the electron micro- 
scope 16 hr after administration of 0.85% NaCI solution (9 animals), phenobarbital (9 animals), 
and AIA (9 animals). With the exception of 3 adult animals (1 control and 2 AIA-treated), the 
remaining animals were 5 or 7 days old. 

The liver specimens were cubed into 1 mm blocks and fixed in 3% (w/v) glutaraldehyde in 
a modified Tyrode's solution (pH 7.2) for 3 hr (24), rinsed in 7.5% (w/v) sucrose solution 
buffered with 0.01 M phosphate buffer (pH 7.2), and then postfixed in Millonig's osmic acid 
fixative (25). Mter  dehydration in graded ethanol solutions, tissue blocks were passed through 
propylene oxide and embedded in Maraglas (Polysciences, Inc., Rydal, Pa.). Mid-zonal areas 
of the hepatic lobule were selected for thin sectioning from 1-/z-thick sections after examination 
by phase-contrast microscopy. Thin sections stained with uranyl acetate and lead citrate were 
examined in a Philips EM 300 electron microscope (Philips Electronic Instruments, Mr. 
Vernon, N. Y.). 

RESULTS 

Induction of Hepatic ALAS.--There was a progressive increase in the activity 
of hepatic ALAS after a single administration of AIA to adult rats. The activity 
reached a peak level, approximately 12 times the control values, by 12-16 hr 
after the administration of the chemical (Fig. 1). Fig. 1 also shows the response 
of hepatic ALAS activity after a single injection of an equivalent dose of AIA 
to neonatal rats. No induction of ALAS of a magnitude comparable to that seen 
in adult rats was noted. The mean value of ALAS activity did approximately 
double (P < 0.01) by the 9th hr after AIA. No further increase in ALAS ac- 
tivity was noted during an observation period of up to 30 hr after injection of 
the inducing agent. 

Fig. 2 illustrates the response to AIA in rats during various perinatal and de- 
velopmental stages. An essentially complete lack of full responsiveness to the 
induction of hepatic ALAS characterized the fetuses and the newborn animals, 
despite the great potency of AIA for induction of this enzyme in adult rats. This 
refractoriness lasted until about 10 days of age. Some induction was seen by 15 
days of age, and the inducibility of hepatic ALAS rapidly increased thereafter 
during weaning, approaching adult levels with further physical maturation. 
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Of interest were the observations on the basal hepatic ALAS activity in the 
immediate perinatal periods (Fig. 2). The ALAS activities in fetal rats 5 days 
before delivery were significantly higher than those noted during later periods 
in development. The mean activity of ALAS in the fetal liver was 55 m#moles/  
hr per g. The activity progressively declined after delivery to reach one third of 
this level by  the 15th day. Similar observations on hepatic ALAS activities of 
fetal rats, guinea pigs, and rabbits have recently been made by  Woods and 
Dixon (26). 
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FIG. I. Time course of induction of ALAS in adult and neonatal rats by AIA. 30 adult 
female rats weighing 130-140 g and 40 7-day-old rats were starved for 24 hr before administra- 
tion of AIA (400 mg/kg) intraperitoneally. Rats were killed in groups of 3-5 at indicated 
intervals and hepatic ALAS activity was determined in each liver. Each point represents the 
mean value of ALAS activity 4- one standard deviation. 

Fig. 3 shows the refractoriness of neonates to the induction of ALAS by pheno- 
barbital, a drug which caused an approximately four-fold increase in hepatic 
ALAS activity in adult rats. No  statistically significant increase in ALAS ac- 
t ivity was noted in neonates treated with phenobarbital. The newborn rats were 
also refractory to the induction of ALAS by DDC, an extremely potent por- 
phyria-inducing chemical known to induce readily this enzyme in adult animals 
(6) and other experimental preparations (7). 

The following manipulations had no influence on the neonatal refractoriness 
to drug induction of hepatic ALAS: (a) variations of substrate concentrations 
in the enzyme assay, (b) variations of the interval between drug administration 
and the enzyme assay, (c) addition of succinyl coenzyme A to the ALAS reac- 
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tion mixture,  (d) adminis t ra t ion  of glucocorticoids to the newborn animals,  and 
(e) wi thdrawal  of the neonates from materna l  milk or feeding on an artificial 
formula 3 for 60-72 hr. Moreover,  unlike adul t  animals, in whom fasting enhances 
the degree of ALAS induction b y  drugs (27), the ALAS activit ies in fas ted and 
nonfasted neonates did not  differ significantly. 

The  absence of possible inhibitors of ALAS in neonata l  livers (28) was as- 
certained by  addi t ion experiments in which vary ing  amounts  of homogenates 
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FIG. 2. Relation between perinatal development and induction of hepatic ALAS by AIA. 
5-10 rats of indicated age before and after birth were starved for 24 hr and given AIA (400 
mg/kg) intraperitoneally. Adult rats were mature virgin female rats weighing 150-200 g. 16 
hr after AIA, the animals were killed and hepatic ALAS activity was determined in each liver. 
Each point represents the mean value of ALAS activity + one standard deviation. 

of neonatal  l iver were added to ALAS react ion mixtures containing adul t  l iver 
homogenates with high ALAS activities.  The  la t te r  act ivi t ies were not  inhibi ted 
b y  the neonatal  homogenates.  The  gestat ional  hormones, estradiol  and pro- 
gesterone, to which the neonates m a y  have been exposed, did not  inhibi t  the 
drug induction of ALAS in adul t  animals when they  were pre t rea ted  with these 
hormones, 4 both singly and in combination,  for 7 days.  

Artificial formula was prepared as follows: 60 g egg yolk, 60 g dry milk, 90 g corn oil, 6 g 
casein, 6 g commercial vitamin mixture for rats, 6 g choline, and 372 g distilled water to make 
600 g of formula. 

4 Estradiol (1 mg) or progesterone (10 mg) in 0.5 ml propylene glycol administered sub- 
cutaneously. 
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Changes in Liver Weight after the Administration of AIA. - -A  substantial 
enlargement of liver weight is a well-known concomitant of the hepatic por- 
phyria produced by AIA in adult rats (9, 27). As shown in Table I, a greater 
than 100 % average increase in liver weight was noted in adult rats approxi- 
mately 16 hr after a single administration of AIA. In contrast, no significant 
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FIG. 3. Time course of induction of ALAS in adul t  and neonatal  rats  by phenobarbital .  
30 adul t  female rats  weighing about  100 g and 20 5-day-old rats  were s tarved for 16 h r  before 
administrat ion of AIA (400 mg/kg)  intraperitoneally. Ra t s  were killed in groups of 4-5 at  
indicated intervals and hepatic ALAS activity was determined in each liver. Each  point  repre- 
sents the mean  value of ALAS activity -4- one s tandard deviation. 

T A B L E  I 

M e a n  Liver Weights  in  Ra t s  of  Var ious  Ages  Treated W i t h  A I A *  

Age Control AIA Change in liver weight 

g _-t: standard error g ::i: slandard error % 

5 days 0.21 -4- 0.02 (11) 0 .19 -¢- 0.01 (10) Not  significant 
20 days 1.20 + 0.11 (9) 1.50 q- 0.05 (9) + 2 5  (P = 0.025) 
Adults~ 2.04 4- 0.23 (8) 4.11 -4- 0.21 (8) +103  (P < 0.005) 

* All animals  were fasted 24 hr  before AIA administrat ion.  Liver weights were deter- 
mined 16 hr  after AIA. Figures in parentheses indicate number  of animals.  

:~ 100-200 g in body weight. 
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FIG. 4. Induction of microsomal cytochrome P-450 by phenobarbital in developing rats. 
Animals of indicated age were starved for 16 hr and divided into 3 groups: the "saline" group 
received 0.85~o NaC1 intraperitoneally; the "phenobarbital" group received 100 mg/kg of 
phenobarbital in 0.85% NaC1 intraperitoneally; the "phenobarbital + ALA" group received, 
in addition to phenobarbital, 120 #moles of ALA in 0.85% NaC1 intraperitoneally in three 
divided doses, the first dose immediately after, the second and third at  4 and 8 hr after, 
phenobarbital treatment. Each group of animals was killed 24 hr later, livers were pooled, 
and the microsomal fractions isolated. Cytochrome P450 was determined in each pooled prep- 
aration of liver microsomes. The number of animals ranged from 5 adults (100-150 g) to 18 
for the neonates. 

TABLE I I  

Incorporation of Glyclne-2-14C and ALA-3,5-aH into Carbon Monoxide-Binding Particles 
of Neonatal Rat Liver* 

ALA-3,5-3H Glycine-2J4C 

cpm/g liver cpm/g liver 
Control 6088 (17) 6404 (15) 
Phenobarbital-treated 19,869 (14) 11,838 (16) 

* 5-day-old (ALA-3,5-3H) and 7-day-old (glycine-2-14C) rats were given the labeled 
precursors intraperitoneally 16 hr after treatment with saline (control) or phenobarbital. 
The rats were killed 3 hr later and livers were pooled and carbon monoxide-binding particles 
isolated from pooled livers as described. Figures in parentheses indicate the number of ani- 
mals. 
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change in liver weight was detectable in AIA-treated neonatal  rats of 5 days of 

age. By 20 days of age, however, at which time a significant AIA-mediated 
induction of hepatic ALAS was detectable (Fig. 2), a smaller (25%) but  sig- 
nificant increase in liver weight was apparent  in the developing animals. 

Relationship 3etween Induction of Hepatic ALAS and Microsomal Cytochrome 
P-450.--ALAS is the rate-limiting enzyme in the hepatic biosynthesis of por- 
phyrins and heine (6, 7); it has therefore been suggested that  the induction of 
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FIG. 5. Fluorescence emission spectra of porphyrins isolated from livers of neonatal rat. 
treated with phenobarbital and phenobarbital plus ALA. Three groups of 17-18 rats of 5 days 
of age were treated with 0.85% NaC1, phenobarbital (100 mg/kg in 0.85% NaC1), and pheno- 
barbital plus ALA (90 #moles/100 g in 0.85% NaC1). ALA was administered in three divided 
doses as indicated in the legend for Fig. 4. Each group of animals was killed 24 hr later and the 
homogenates from the pooled livers were lyophilized and extracted with perchloric acid- 
methanol solvent. The fluorescence emission spectrum was traced for each solvent at identical 
sensitivity setting. A represents tracings for saline- and phenobarbital-treated groups, showing 
no porphyrin fluorescence; B represents a tracing for the phenobarbital plus ALA-treated 
group. The emission spectrum is similar to that obtained for the protoporphyrin IX standard, 
curve C. 
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this enzyme, which would then lead to an increase in availability of heine, 
might be a necessary event preceding the increase in the hepatic microsomal 
hemoprotein, cytochrome P-450, which is brought  about by exposure of ani- 
mals to drugs such as phenobarbital (29). This relationship between ALAS 
activity and cytochrome P-450 of the liver was examined in neonatal and de- 
veloping rats (Fig. 4) by  quantitating the hemoprotein level after t reatment  of 
the animals with phenobarbital.  Untreated newborn rats had very  little P-450 
in the liver, amounting to about one third of the level present in adult hepatic 
microsomes when expressed in terms of microsomal protein, Despite the re- 
fractoriness of the neonates to induction of hepatic ALAS by phenobarbital,  

TABLE III  
Serum Total Bilirubin in Neonatal Rats Treated with ALA * 

No. of animals Total bilirubin 

Control (17) 
Phenobarbital (18) 
Phenobarbital plus: 

120/zmoles/100 g ALA (18) 
90/zmoles/100 g ALA (18) 
60/zmoles/100 g ALA (18) 
30/zmoles/100 g ALA (18) 

120/zmoles/100 g ALA (17) 

(mg/lO0 ml) 

0.4 
0.1 

4.3 
1.4 
1.7 
0.6 

11.3 

* 5-6-day-old rats weighing 11-15 g were used. Control animals received 0.1-0.15 ml of 
0.85% NaCI. Phenobarbital was given intraperitoneally at 100 mg/kg. ALA was admin- 
istered intraperitoneally in three divided doses at 4-hr intervals, beginning immediately 
after the phenobarbital treatment. All animals sacrificed by decapitation 24 hr later. Blood 
from animals in each group was pooled and the bilirubin concentration in the pooled sera 
was determined. 

an increase in microsomal cytochrome P-450 of the liver mediated by  this drug 
was demonstrable throughout the neonatal period (Fig. 4). A more than two- 
fold increase in this cytochrome was noted as early as 3 days after birth after 
t reatment  with phenobarbital, although the drug-stimulated level of P-450 at 
that  age was still substantially less than the P-450 level in the microsomal frac- 
tions of untreated adult rat livers (Fig. 4). Phenobarbital-treated neonates 
also incorporated the heine precursors, ALA and glycine, into microsomal 
cytochrome P-450 at rates significantly increased over those of untreated litter 
mates (Table I I) .  

Effect of A L A  on Phenobarbital-Mediated Induction of Microsomal Cyto- 
chrome P-450. - -To examine further the relationship between hepatic ALAS and 
the degree of phenobarbital-stimulated induction of cytochrome P-450, the 
rate of the ALAS step was arbitrarily increased in the liver by exogenous ad- 
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ministration of the product of this enzymic reaction, ALA. Treatment with 
various doses of ALA up to 30/zmoles/100 g of body weight, administered in 
3-4 divided doses during the 24 hr after exposure to phenobarbital, had no in- 
fluence on the drug-mediated increase in cytochrome P-450 of neonatal rats. 
When it was given in doses in excess of 60 ~moles/100 g, however, the ALA in 
fact blocked the drug-induction of P-450 in the microsomal fractions of the 
neonates (Fig. 4). 

Hepatic uptake and conversion of the exogenous ALA to porphyrins and 
heme was established by the following observations. First, after the administra- 
tion of ALA, there was a progressive and large increase in the amount of 
porphyrins found in liver cells (mostly in the form of protoporphyrin IX) as 
shown by the representative fluorescence emission spectra of liver extracts 
depicted in Fig. 5. Second, the conversion of this protoporphyrin I X  to heme 
was demonstrated by the rapid appearance of hyperbilibubinemia and jaundice 
in the ALA-treated neonates (Table I I I ) .  This hyperbilirubinemia, which was 
an unexpected finding, implies the presence of a protoporphyrin IX-to-heme 
conversion catalyzed by ferrochelatase ~ and then a heme-to-bilirubin conver- 
sion catalyzed by the heme oxygenase (30, 31) in the livers of the neonatal ani- 
mals. Protoporphyrin I X  itself is not a substrate for heme oxygenase (31). 

Electron Microscopic Observations.--The electron microscopic appearance of 
a hepatic parenchymal cell from an adult rat treated with 0.85 % NaC1 solution 
is illustrated in Fig. 6. Fasting for the 40 hr experimental period resulted in 
depletion of a major portion of the visible glycogen rosettes; no other ultra- 
structural changes were noted. 

Fig. 7 depicts a representative hepatocyte from the liver of an adult rat  16 
hr after a single dose of AIA. The hepatocytes were hypertrophied because of 
an increase in both the nucleus and cytoplasm; the nucleoli were markedly 
enlarged with the increase disproportionately greater than that of the total cell. 
The most striking morphologic change noted was a marked proliferation of 
SER membranes so that masses composed ahnost exclusively of SER were 
prominent within the cytoplasm. The cisternae of the hypertrophied SER had 
a more regular diameter than those of controls and thus appeared tubular in 
nature. Golgi-associated vesicles of porphyric livers contained dense lipid-like 
material, and apparent lipoprotein granules were present within SER cisternae 
as well as in the Golgi vesicles. There was also a patchy accumulation of large 
lipid vacuoles within the cytoplasm, usually within or adjacent to areas of 
hypertrophied SER. These hepatocellular alterations were entirely similar to 

5 In a preliminary study, the presence of ferrochelatase activity (32) was demonstrated in 
the liver homogenates of the newborn rats. In 5-day-old rats, the activity of this enzyme was 
approximately 50% of that noted in the adult rats weighing 100 g, when expressed in terms of 
wet weight of the liver. 



Fro. 6. Adult liver, control. Hepatocyte from an adult rat  treated with 0.85% NaC1 solu- 
tion. Note the relatively small nucleolus (NL) and the Golgi apparatus (G) containing small 
granules of medium density. Small islands of SER (S) are present. )< 15,000. 

Fro. 7. Adult liver, AIA effect. Hepatocyte from an adult rat treated with AIA 16 hr 
before sacrifice. Note the prominent enlargement of the nucleolus (NL) and the large cyto- 
plasmic masses of hypertrophied SER (S). Lipid vacuole (L). X 15,000. 
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FIO. 8. Neonatal liver, control. Parenchymal cells of neonatal animals were much smaller 
than those of adult animals and contained prominent nucleoli. Neonatal liver ceils generally 
contained relatively small quantities of rough-surfaced endoplasmic reticulum and very scant 
SER. The Golgi apparatus (G) and associated vesicles very frequently contained numerous 
lipoprotein-like granules (40-60 m~z in diameter) of high density. A bile canaliculus (BC). 
X 15,000. 

Fro. 9. Neonatal liver, AIA effect. No morphologic changes attributable to AIA treatment 
were detected in neonatal hepatocytes. X 15,000. 
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FIG. 10. Neonatal liver, phenobarbital effect. Livers of neonatal rats treated with pheno- 
barbital occasionally showed greater development of SER (S) than was observed in any of the 
control animals. Tubular hypertrophy of the SER as seen in hepatocytes of adult rats treated 
with phenobarbital was not observed in the neonatal animals. The Golgi apparatus (G) and 
associated vesicles showed a relative depletion of lipoprotein-like granules. X 15,000. 

FIG. 11. Same as Fig. 10. This higher magnification of the SER shows connections between 
the smooth and the rough-surfaced endoplasmic reticulum. Many membrane-bound and un- 
bound polysomes are present. A bile canaliculus (BC). X 30,000. 
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those previously described in detail in rats treated with the porphyria-inducing 
agent, AIA (9). 

The parenchymal cells of neonatal livers had an ultrastructural appearance 
different from that of adult livers, and the neonatal liver cells responded dif- 
ferently to AIA administration. The neonatal cells were smaller in size, with a 
higher nucleo-cytoplasmic ratio. There was less rough endoplasmic reticulum 
in the cytoplasm. Particularly striking was the paucity of SER (Fig. 8). Rela- 
tive to the other cytoplasmic components, the Golgi apparatus appeared 
especially well developed and contained numerous lipoprotein-like granules of 
high density. 

Administration of AIA to neonatal rats utilizing the same experimental 
conditions which induced pronounced morphological changes in adult rat livers 
produced no detectable structural alterations (Fig. 9). Livers from the 7 AIA- 
treated neonatal rats appeared identical in all respects with those of untreated 
litter mates. 

Of the livers from 9 neonatal rats treated with phenobarbital, 3 demonstrated 
development of the SER in excess of that observed in any of the 8 untreated 
litter mates (Figs. 10 and 11). This increase in SER was patchy, involving some 
hepatocytes but not others in a given section; however, the livers of pheno- 
barbital-treated neonates exhibited no tubular hypertrophy of the SER such as 
that observed in adult animals treated with phenobarbital (33). Golgi-associated 
vesicles appeared to contain fewer lipoprotein-like granules than were noted 
in untreated litter mates. 

DISCUSSION 

Drug induction of hepatic ALAS and the production of experimental hepatic 
porphyria in animals can be modified by a number of nutritional, endocrine, 
genetic, and other factors. Thus, starvation before the administration of por- 
phyrinogenic drugs or chemicals enhances the induction of ALAS (27), while 
feeding or the administration of glucose diminishes or abolishes this drug effect 
(3, 27). Glucocorficoid hormones have a permissive effect on the drug induction 
of ALAS (34), i.e., adrenalectomy abolishes the drug effect, which can be re- 
stored by subsequent replacement of the glucocorticoid hormone, hydrocorti- 
sone. Administration of heme, the end product of the porphyrin-heme pathway, 
also abolishes the drug induction of ALAS (29, 35), an effect that has been at- 
tributed to the role of heine as a corepressor agent in the regulation of ALAS 
synthesis in liver cells (7, 36). Heine also inhibits the apparent incorporation of 
ALAS found in the soluble fraction of liver cells into the mitochondria after 
drug induction of this enzyme (37). Ferric citrate has a marked synergistic 
effect in the induction of ALAS (38). Finally, genetic factors have recently 
been invoked to explain differences in the degree of inducibility of ALAS in 
various strains of inbred mice (39). To this list must now be added the age and 
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the developmental stage of animals which, as shown in the present study, also 
have a profound effect on the drug induction of hepatic ALAS. 

The perinatal period of the mammal is generally characterized by a lack in 
many tissues of the full enzymatic constitution of the adult (40, 41), and the 
process of parturition or the physical development after birth correlates 
specifically with the appearance or the increase in activity of a number of hepa- 
tic enzymes. Those hepatic enzymes which show increases in their specific 
activity during certain stages in the postnatal period include histidase (42), 
acetyl coenzyme A carboxylase (43), tyrosine aminotransferase (44, 45), 
tryptophan oxygenase (46), serine dehydratase (47), uridine diphosphate glu- 
curonyl (UDP-glucuronyl) transferase (48, 49), certain drug-metabolizing 
enzymes (50), and others (51-61). 

The induction of some of these enzymes which accompanies endocrine, 
nutritional, pharmacological, or other manipulations does not become apparent 
until after specific stages in perinatal maturation have been reached. For ex- 
ample, the induction of hepatic tyrosine aminotransferase (45) and tryptophan 
oxygenase (46) by administration of hydrocorfisone or L-tryptophan in the rat 
is not possible until several days after birth or until about the 15th postnatal 
day, respectively. Various factors such as hormone secretion during puberty 
(42), dietary changes associated with weaning (43), and secretion of glucocorti- 
coid hormones and glucagon during perinatal periods (62, 63) have been pro- 
posed as underlying these alterations in hepatic enzyme activity and their in- 
ducibility by various agents. 

Our findings in this study suggest that the nutritional or endocrine altera- 
tions associated with physical maturation in the rat do not constitute the basis 
for the refractoriness of the neonates to the porphyrinogenic effects of various 
drugs and chemicals. Dietary and endocrine manipulations had no effect on the 
failure in the neonates of full induction of hepatic ALAS by drugs until the ap- 
proximate time of weaning. 

ALAS is localized in the mitochondria of hepatocytes (6, 64). The synthesis 
of this enzyme appears to take place in the endoplasmic reticulum, and the 
enzyme accumulates transiently in the soluble fraction of the liver cells (64). 
I t  is then incorporated into mitochondria. I t  is obvious that the induction of 
hepatic ALAS involves a complex series of events that include, in the final 
stages, protein synthesis in the endoplasmic reticulum and subsequent transfer 
of this enzymic protein into highly specialized subcellular organelles, the 
mitochondria. Functional maturation of the endoplasmic reticulum for ex- 
pressing the genetic material for ALAS and of the mitochondria for incorpora- 
tion of the synthesized ALAS would be necessary before chemicals such as AIA 
could manifest their full pharmocological potential, viz., excessive hepatic 
synthesis of porphyrins and their precursors. Thus, an "immaturity" in one or 
more of the steps in the sequence of events leading to an increase in the amount 
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of mitochondrial ALAS would account for our findings. In this respect, it is of 
interest that enzymes concerned with the mitochondrial electron transport 
system in the rat do not reach specific activities corresponding to those of adult 
animals until about 20-25 days after birth or until weaning (65, 66); however, 
an isolated defect of the neonatal liver mitochondria involving an inability to 
incorporate newly synthesized ALAS could not explain the low over-all activity 
of the enzyme in the livers of immature rats as noted in our experiments. 

The induction of ALAS by AIA in the rat is accompanied by an array of 
morphological alterations that are demonstratable by electron microscopy. 
These include: (a) hypertrophy of hepatocytes, (b) volume enlargements of 
cytoplasm, nucleus, and nucleoli of hepatocytes, (c) accumulation of lipoprotein- 
like granules within the cisternae of the SER, (d) formation of lipid droplets in 
the cytoplasm, and (e) proliferation of the SER (9-11). The mitochondria, 
however, show surprisingly little morphological change depsite the fact that the 
newly synthesized ALAS localizes in these structures. 

Some of the manipulations that have been shown to prevent the AIA-mediated 
induction of hepatic ALAS also prevent the morphological changes known to 
accompany the increase in the activity of this enzyme. Thus, in adrenalecto- 
mized rats or rats treated with metabolic inhibitors such as puromycin and 
actinomycin D, AIA fails to induce ALAS and does not produce the electron 
microscopic changes in the liver cells described above. Cultured rat hepatoma 
cells (67), which do not respond to AIA by induction of ALAS, also fail to de- 
velop these morphological alterations. 6 The present observations in neonatal 
rat livers are similar in that AIA produced neither an induction of ALAS nor 
nltrastructural changes in the hepatocytes. 

The association of the induction of ALAS with the morphological changes 
found in hepatocytes suggest that these two seemingly disparate phenomena 
may be causally related in the production of experimental porphyria in the rat 
by AIA, although it is not possible at the present time to elucidate the basis of 
this relationship or the sequence in which the two phenomena take place. I t  is 
clear, however, that the AIA-mediated induction of ALAS is associated with 
alterations in biochemical pathways that are not directly involved in porphyrin- 
heme biosynthesis, and that such alterations, e.g. changes in the rates of syn- 
thesis of cholesterol and phospholipids (68), may find morphological expression 
in the ultrastructural changes observed in the liver cells. 

Cytochrome P-450, the hepatic hemoprotein that acts as the terminal oxy- 
genase in the microsomal mixed-function oxidase system (19, 69), can be induced 
by a variety of steroids as well as drugs, including barbiturates, polycyclic 
aromatic hydrocarbons, etc. (70, 71). The induction of P-450 is associated with 
increased activity of the liver for oxidative and, to a certain extent, reductive 
metabolism of many drugs, although this relationship is not strictly stoichio- 

6UnpubUshed observations. 
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metric (72-74). Although heme is the prosthetic group for cytochrome P-450 
and is thus obviously required for the synthesis of this hemoprotein, it can also 
block the drug-mediated induction of P-450 when it is administered exogenously 
(75). 

We have shown in the present investigation that the phenobarbital-mediated 
induction of microsomal cytochrome P-450 does take place in neonatal rats 
despite the refractoriness of these animals to the effects of drugs which induce 
ALAS and would thus be expected to increase hepatic concentrations of por- 
phyrins and heine. The level of P-450 in the hepatocytes of the newborn rats is 
low, with a corresponding scantiness of the SER demonstrable by electron 
microscopy (Fig. 8). On a single treatment with phenobarbital, however, the 
P-450 levels in neonatal livers more than doubled (Fig. 4) and islands of SER 
became discernible in some of the hepatocytes (Figs. 10 and 11). These findings 
are compatible with the recently described increases in hepatic rates of metabo- 
lism of aniline, ethylmorphine, and phenobarbital (76) in suckling rats exposed 
to phenobarbital. Our observations further indicate that the synthesis of P-450 
in the neonates appears to be under a regulatory control different from that of 
ALAS and that the basal production of ALA in the neonatal liver is sufficient 
to meet the heine requirements imposed by drug-induced increases in P-450 
synthesis. Increasing the hepatic concentration of ALA, porphyrins (Fig. 5), 
and presumably free heine by administration of exogenous ALA to neonatal 
rats did not enhance the phenobarbital induction of P-450. Indeed, when the 
amount of administered ALA exceeded 60 ttmoles/100 g body weight, the in- 
duction of P-450 was actually blocked (Fig. 4) and the neonatal animals de- 
veloped hyperbilirubinemia (Table III).  Since bilirubin itself has no effect on 
the phenobarbital-mediated induction of P-450 (29), such an inhibitory effect 
of exogenous ALA must be due to its conversion to free heine in the liver and the 
action of this heme as a repressor of P-450 synthesis. I t  is not clear why this 
repressive effect of ALA was not observed in adult rats (Fig. 4). I t  is possible 
that there is a more rapid renal clearance of exogenous ALA in the adult ani- 
mals. 

Thus, the relationship between the activity of the porphyrin-heme biosyn- 
thetic pathway on the one hand and the rate of synthesis of cytochrome P-450 
on the other in the mammalian liver appears to be a complex one. In contrast 
to the hemopoietic system in which the enhancement of porphyrin and heine 
formation by the induction of ALAS increases the rate of synthesis of the 
hemoprotein, hemoglobin (77, 78), no such direct relation seems to hold in the 
liver at least as far as the formation of the hemoprotein, P-450, is concerned. 
Increasing the heme concentration in the liver by ALA administration, as evi- 
denced by the rapid appearance of hyperbilirubinemia (Table III),  did not 
increase hepatic P-450 levels. Such manipulations in fact resulted in repressive 
effects on P-450 formation. This finding contrasts also with the case of another 
hepatic hemoprotein, tryptophan oxygenase, the activity of which increases in 
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the rat on treatment with AIA (79, 80) as well as with ALA (81). There is no 
ready explanation for the paradoxical phenomenon in which free heine can on 
the one hand act as a prosthetic group and on the other act as an apparent re- 
pressor in the synthesis of cytochrome P-450. The presence within hepatocytes 
of more than one heine pool with distinct metabolic functions could explain these 
findings. Further studies concerning the existence of such functionally distinct 
heine pools, however, are hampered by the lack of sensitive means for quanti- 
tating free heine levels in biological materials. 

SUMMARY 

The mitochondrial enzyme ~-aminolevulinate synthetase (ALAS) controls 
the rate-limiting step in the synthesis of porphyrins and heine. An experimental 
form of hepatic porphyria can be readily elicited in laboratory animals, such as 
the rat, by drugs and foreign chemicals which are known to enhance the de novo 

formation of this enzyme in the liver. 
The present study shows that there is a striking refractoriness to the induction 

of ALAS during the perinatal period in the rat. Chemicals which have potent 
porphyria-inducing activity in adult animals have no significant inducing ef- 
fect on hepatic ALAS in neonates. The ultrastructural changes which accompany 
the induction of ALAS by drugs and chemicals in adult liver also fail to take 
place in the livers of neonates. A progressive capacity for responding to the 
action of chemical inducers of hepatic ALAS does, however, develop in neonatal 
animals so that by approximately 5-6 wk of age experimental porphyria can be 
elicited as effectively in them as in adults. 

The reasons for the refractoriness of hepatic ALAS to induction in the 
perinatal period are not known; but the findings of this study make it clear that  
ALAS belongs to that  increasingly large group of liver enzymes in mammals 
whose appearance, increase of activity, or inducibility is developmentally 
determined. 

The occurrence of developmental changes in the indicibility of ALAS in the 
liver of neonates also provided an opportunity to study the relationship of this 
enzyme activity to the drug-mediated induction of the hepatic hemoprotein 
cytochrome P-450. This inducible hemoprotein serves as the terminal oxygenase 
in the microsomal mixed-function oxidase system in the liver. The results of 
this study indicate that, in contrast to the refractoriness of ALAS to induc- 
tion, significant drug-induced changes of hepatic P-450 content and of heine- 
precursor incorporation into this cytochrome do take place in neonates. The 
synthesis of P-450 thus appears to be under a regulatory control different from 
that  of ALAS in neonates, and the relation between ALAS activity and P-450 
formation is not therefore a direct one. 
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