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Abstract

Evolutionary biologists commonly interpret adaptations of organisms by reference to a phenotype-fitness map, a model of
how different states of a phenotype affect fitness. Notwithstanding the popularity of this approach, it remains difficult to
directly test these mappings, both because the map often describes only a small subset of phenotypes contributing to total
fitness and because direct measures of fitness are difficult to obtain and compare to the map. Both limitations can be
overcome for bacterial viruses (phages) grown in the experimental condition of unlimited hosts. A complete accounting of
fitness requires 3 easily measured phenotypes, and total fitness is also directly measurable for arbitrary genotypes. Yet
despite the presumed transparency of this system, directly estimated fitnesses often differ from fitnesses calculated from
the phenotype-fitness map. This study attempts to resolve these discrepancies, both by developing a more exact analytical
phenotype-fitness map and by exploring the empirical foundations of direct fitness estimates. We derive an equation (the
phenotype-fitness map) for exponential phage growth that allows an arbitrary distribution of lysis times and burst sizes. We
also show that direct estimates of fitness are, in many cases, plausibly in error because the population has not attained
stable age distribution and thus violates the model underlying the phenotype-fitness map. In conjunction with data
provided here, the new understanding appears to resolve a discrepancy between the reported fitness of phage T7 and the
substantially lower value calculated from its phenotype-fitness map.
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Introduction

Fitness is the ultimate metric of natural selection. Our

understanding and appreciation of how fitness is determined

relies on partitioning an organism into components known as

phenotypes, such as fecundity, survival, behavior, physiology, and

many others. A phenotype-fitness map is the specific relationship

between fitness and the phenotype states of individuals (e.g., a

particular beak size or number of offspring). From these

relationships, we can anticipate how the phenotypes will evolve

under natural selection.

It is often pragmatic, if not necessary, to limit phenotype-fitness

maps to just a few of the phenotypes determining total fitness.

Inferences of evolution based on these disembodied phenotypes

should be robust if the variation affecting those phenotypes does not

have pleiotropic effects outside those phenotypes or affect trade-offs

involving other phenotypes. Yet some model systems enable the

measurement of a set of phenotypes that completely determines

fitness, and these systems should be of special importance in

understanding the strengths and weaknesses of approaches that use

phenotypes isolated from the whole. One such model is the growth

of a bacterial virus (bacteriophage or ‘phage’) on a continual excess

of hosts. In this system, phage fitness is thought to be completely

determined by a mere three phenotypes, all easily measurable [1]

and translatable into total fitness [2–6]. In addition, the system

allows independent determination of phage fitness as an empirical

check on the complete phenotype-fitness map. This system thus

seems well suited to explore the strengths and weaknesses of

phenotype-fitness maps as a general tool in evolutionary biology.

Yet despite its simplicity, the currently understood phage

phenotype-fitness map does not match reality. In the few cases

that a comparison is possible between direct measures of fitness

and fitness calculated from the full set of phenotypes, there are

serious discrepancies [3,7,8] (and see below). Given the impor-

tance of phenotype-fitness maps in evolutionary biology and the

accessibility of this unique system to empirical and analytical

exploration, it seems justified to identify reasons for the

incongruities, which we attempt here.

Growth rate as phage fitness: biology and mechanics
Bacteriophages are viruses that reproduce by infecting and

killing bacteria. Under suitable growth conditions, they typically
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multiply much faster than bacteria and can quickly exhaust the

host population. In the lab, however, they can be propagated by

dilution and serial transfer to new cultures of hosts so that the

phage population is undergoing continual expansion without ever

overwhelming the host population. In this environment, the

relevant measure of phage fitness is growth rate of its population.

In turn, growth rate is determined by host density and three phage

parameters: burst size (fecundity), lysis time (time between

infection and cell bursting to release progeny), and adsorption

rate. When using large numbers of cells and phage, the process is

appropriately modeled by mass action dynamics [1,2,5] unless one

is concerned with the fate of rare mutants [6]. Furthermore, all 3

phage parameters can be measured in a single assay [1].

Under serial transfer, growth of the culture eventually becomes

emancipated from initial conditions, and an approximate formula

for growth rate of the phage population is trivially b1=G , where b

is burst size and G is average generation time [2,4]. Average

generation time is determined from lysis time, adsorption rate,

and cell density. Unfortunately, use of the average generation

time is known to underestimate actual phage growth rate,

seriously so when cell density is low [9]. A more explicit formula

has overcome this bias [5,6], reviewed below, although even that

model makes the unrealistic assumption that the phage

parameters do not vary.

Incongruity between the phenotype-fitness map and
direct measures

In a study of phage T7, observed fitness of a genotype adapted

to lab conditions was nearly 48 doublings/hr [8], whereas the

calculated fitness is 39 (using the formula of [5]). We have

experienced other discrepancies of 3–5 doublings/hr (unpublished

and [10]). Wang [7] and Shao and Wang [3] have also observed

discrepancies, although their method of propagation does not lend

itself easily to the analytic formula. These are major discrepancies,

especially when considering that doublings/hr is an exponential

measure of fitness, whereby even small differences have large

effects on population behavior. These incongruities motivate this

paper.

It may seem that any discrepancy between a direct measure of

fitness and a measure calculated from a phenotype-fitness map

must result from a flawed map instead of a flawed direct measure.

Despite this intuition, both can be at fault. The phenotype-fitness

map can predict the wrong fitness either because the phenotypes

are measured incorrectly or because they are converted into fitness

incorrectly. Alternatively, empirical measures of fitness can be

wrong because the model used to fit the data is in error. This

paper is organized along this dichotomy. The first section in

Results reviews the existing analytical model developed to

calculate fitness (the theoretical phenotype-fitness map). Then (in

‘An Amended Model’), the existing model is extended to include

greater realism; the new results are both analytical and numerical.

The third Results section identifies a problem in the direct

measurement of fitness. The fourth section revisits the T7 example

in light of this new understanding.

Results

The Basic Model
The basic model describes the growth rate of a large population

of phage, all of the same genotype. The process is thus one of

dynamics, not evolution. With constant cell density (C), adsorption

rate (k), burst size (b), and a strictly invariant lysis time (L), we may

write the rate of change of phage density (P) as

_PPt~{kCPtzbkCPt{L: ð1Þ

The subscript t in Pt indicates that phage density is a function of

time t. Pt{L is the phage density L time units in the past. This

equation assumes a closed environment and ignores phage loss

from death, washout, and all other causes except infection –

assumptions appropriate for lab propagation. The equation also

assumes phage density is sufficiently low that cell density is not

reduced by infection.

An easy solution applies under steady-state conditions, when

growth of the phage population becomes exponential. Under

exponential growth, we can write Pt~P0ert and Pt{x~Pte
{rx,

with r the solution to

r~kC(be{rL{1) ð2Þ

[5,6]. The quantity r is commonly referred to as the intrinsic

growth rate. Although (2) is transcendental, it is easily solved

numerically for a given set of parameters.

An Amended Model
A general approach to variation in lysis time: the B(x)

function. Although the assumption of fixed lysis time is a

sufficiently accurate approximation for many phages, it is violated

for many others and is violated even for mutants and novel growth

environments of some phages that otherwise show little variance in

lysis time. Burst size is highly variable, presumably across all

phages [11]. Variance in lysis time and burst size are easily

accommodated in (1) above:

_PPt~{kCPtz

ð?
0

It(x)B(x)dx,

It(x)~kCPt{x: ð3Þ

It(x) denotes infections that occurred x time units before time t.
B(x) is the burst size function, the rate of progeny production, per

cell, of cells infected x time units in the past, accounting for the

possibility that only a subset of infected cells will lyse after x units.

B(x) is independent of the state of the culture and hence of time t.

The actual number of progeny released from the average infected

cell from y to z minutes post infection is

ðz

y

B(x)dx and the average

burst size of an infected cell is b~

ð?
0

B(x)dx. B(x) will be zero for

times less than some threshold, because infected cells require a

minimum time after infection to assemble the first viable progeny

(known as the eclipse period, E). When there is no variance in lysis

time, B(x) is simply a spike (delta function).

B(x) is found as the derivative of the function of phage titer over

time obtained from a standard, one-step growth curve. A one-step

curve provides the time course since infection of progeny produced

per infected cell, rising from 0 and reaching an asymptote at the

burst size (Fig. 1). (In a strict sense, a one-step curve used for

deriving B(x) must be corrected for any asynchronous infection.)

B(x) can be thought of as a composite function derived from

separate lysis time and burst size functions. Yet although it is

possible to derive B(x) from separate functions of burst size

(conditioned on lysis time) and lysis probability over time, it is not

possible to work backward from B(x) to obtain separate lysis and

Phage Phenotype Fitness Maps
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burst functions unless burst size is independent of x (in which case,

the shape of B(x) matches the shape of the lysis function). Thus, if

B(x) is used to calculate the mean, variance, or other moments of

lysis time, those moments will be weighted by any systematic

change in burst size with x. Since B(x) gives the average number

of progeny produced per unit time, it does not provide information

about variance in burst size among cells lysing at the same time;

that variance is in fact irrelevant to the growth rate equations

because of the mass action assumption, but is relevant to the fate of

genotypes when rare [6].

An analytical solution for the amended model. Assuming

the population has attained exponential growth, equation (3) can

be solved analytically by using the aforementioned fact that

Pt~Pt{xerx. Then It(x)~kCPte
{rx and

_PPt~{kCPtzkCPt

ð?
0

e{rxB(x)dx: ð4Þ

If we rewrite B(x) as bb(x), where b is the average, total burst size,

then b(x) can be treated as a probability density function (pdf) of

burst. If the constant b is moved outside, the resulting integral is

merely the moment generating function of b(x), with the dummy

variable set to {r. Writing again Pt~P0ert, we can simplify (4) to

r~kC {1zbM({r)½ �, ð5Þ

where M() is the moment generating function of b(x).

This decomposition of B(x) requires that burst size be

independent of x. If average burst size changes with x, a scaling

function must be included inside the integral.

Special cases. Given that no progeny can be produced prior

to some minimum time after infection (E), greater flexibility in

fitting the model may be offered by modifying the time scale of

progeny production. In particular, we may let x~Ezy and

confine the burst pdf to the interval y§0. Assuming that b(x) is a

gamma pdf, the solution for r obeys

r~kC {1zbe{rE(1zr
s2

L
)
{L2

s2

" #
, ð6Þ

where L is the mean lysis time and s2 the variance in lysis time

(measured on y). If instead b(x) is uniform on ½E,T �, as in Fig. 1D,

the solution obeys

r~kC {1z
b

T{E

e{rE

r
{

e{rT

r

� �� �
: ð7Þ

Extensions of the amended model. Two additional

modifications of (3) may be needed for realism in serial transfer.

One is to include changes in cell density, which can increase from

cell division and decrease from infection:

_PPt~{kCtPtz

ð?
0

It(x)B(x)dx,

It(x)~kCt{xPt{x,

_CCt~aCt{kCtPt, ð8Þ

Figure 1. The burst function B(x) and its derivation from a 1-step growth curve. (A) A sample one-step growth curve [the six data points
are from Fig. 4 in Bull et al.([20])]. The curve was fit to a gamma cumulative density function, with appropriate scaling and translation of the time axis
by 28 minutes and adjusted for the time of dilution, similar to the method in Heineman et al. [21]. (B) The B(x) function derived from the curve in (A).
The area under the B(x) curve equals the height reached by the curve in (A), which is the burst size. (C) The one-step growth data from (A) fit by eye
to a straight line. (D) The uniform (rectangular) B(x) function derived from the function on the left. The two examples merely show the different
shapes of B(x) functions that can provide a suitable fit to a one-step assay, although a greater density of data in the assay may not be so permissive
of functional forms. Many of the simulations presented below assume the rectangular shape, as in (D).
doi:10.1371/journal.pone.0027796.g001
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where cell density Ct is now a function of time t and a is the

growth rate of cells. The fluctuations in cell density will preclude

the strict attainment of exponential phage growth, so the previous

analytical results will be only approximate [6]. The importance of

accounting for changes in cell density can be evaluated by

simulation.

A second dimension of realism is to allow variance in the

adsorption rate, k. Here, we do not model this effect, because we

have no evidence that it is relevant in T7, at least over timescales

that should dominate serial transfer dynamics. However, we

acknowledge that it might be necessary to include this effect for

some systems. There are different ways that nature might vary

adsorption rate, and only some are amenable to easy inclusion.

One type of variation is to suppose that each burst produces an

array of progeny with different adsorption rates, as would result if

some virions had 6 tail fibers, others 5, and so on. With this type of

variation, each phage particle has a specific adsorption rate that it

maintains for life, and the model requires a separate phage

equation for each adsorption rate category, all bursts contributing

to each category. The cell equation likewise needs a separate loss

term for each phage type. Another form of adsorption rate

variation is due to phage aging. If adsorption rates decline with

time, separate equations for each adsorption rate category are also

needed, but one phage type decays into another phage type, rather

than all types arising within single bursts. Finally, phage particles

may undergo maturation after release, so that their adsorption rate

increases with time [12].

Simulations: effect of lysis time variance and cell growth
A simulation of equations (8) revealed the effects of various

elaborations of (1) (Table 1). Results were contrasted between the

basic model (fixed C and L) and the amended model with

variation in lysis time (s2
w0) and cell growth (a~0:03, a

doubling every 23 minutes, which approximates our system). The

B(x) function was either a spike spanning 0:01 minutes (the

minimum interval possible under the numerical integration

scheme) or, for the s2 column, was a rectangular function like

that in Fig. 1 D. For the s2 calculation in each row of this table,

the base and height of the rectangular B(x) was chosen to achieve

the indicated lysis time variance while maintaining the same burst

size and average lysis time (L) used in the other two columns of

that row. The simulation results for the basic model column were

found to match analytical results for equations (2) [variance in

B(x) near zero]; likewise, simulation results for the s2 column

(large variance) matched (7).

Cell growth (a~~0:03). Allowing cells to grow during single

cultures increased the fitness estimate, provided that phage

densities were maintained orders of magnitude below cell

densities. This qualitative result is obvious for the same reason

that phage fitness increases with higher initial cell density, all else

equal: higher cell density reduces generation time by reducing the

time a phage spends in the free state. The magnitude of the effect

seen in Table 1 is not so easily understood, however. It must first

be appreciated that the simulation mimicked actual serial transfer

in using a dilution and transfer schedule similar to those used in

practice: the dilution factor was between 100 and 10,000, and

transfer interval between 15 and 30 minutes, so that phage

densities remained low relative to cell densities. Thus rapid

transfer must be used when fitness is high, or the phage will quickly

outnumber cells (e.g., 15 minute transfers are required when

fitness is 45 doublings/hr). Since each new culture starts with the

same initial cell density, there is less time for cell growth when

transfers are rapid than when they are slow. So a larger effect of

cell growth is expected for phages with low growth rates because

those cultures provide more time for cells to grow before transfer.

In addition, however, the effect of cell growth is larger for

phages with low adsorption rates. This counter-intuitive effect of

adsorption rate may stem from the fact that the duration of a

phage’s life that is spent in the free state varies according to the

inverse of the product of adsorption rate and cell density (1=kC).

When the product is high, phages spend little time in the free state,

so further increases in cell density do not appreciably shorten the

free state; when the product is low, further increases in cell density

do appreciably shorten the free state, and thus shorten generation

time. Thus the benefit of higher cell density stemming from culture

growth is realized more at low adsorption rates than at high ones.

Variable lysis time (s2~~2:7). Allowing variation in B(x)
invariably increased fitness, even though the variation was

symmetric around the mean lysis time. The reason for this effect

is that early bursts contribute more to fitness than late bursts

detract. The benefit of variance in lysis time was greater with

higher baseline fitness, but this effect may be a trivial consequence

of differences in mean lysis time. All trials in this column used the

same burst function relative to the mean lysis time, so the early

bursts shortened generation time proportionally more when lysis

time was short than when long. We also studied the effect of an

asymmetric B(x) function, but fitness effects could not be

Table 1. Simulated phage growth rate per parameter modifications.

parameters calculated fitness (dbl/hr)

Label k (mL/min) L (min) burst basic a~~0:03 s2~~2:7

L1 1|10{8 10.0 250 44.2 44.8 47.2

L2 1|10{8 25.0 250 18.4 18.7 18.7

L3 1|10{9 10.0 250 34.0 35.7 35.6

L4 1|10{9 25.0 250 15.6 16.4 15.7

L5 1|10{8 10.0 100 36.8 37.4 38.9

L6 1|10{9 25.0 100 12.8 13.6 12.9

Initial cell density was set at 1|108 cells/mL. In the basic model, cell density was constant and B(x) was a spike lasting the minimum interval of iteration (0:01 minutes)
as an approximation to zero variance. In the a column, B(x) was the same as in the basic model, but cells increased in density at rate a~0:03 per min. In the s2 column,
the B(x) function was rectangular, spanning +2.85 minutes on each side of the mean so that the variance in lysis time was 2:7 min2 ; cell density was constant. As a
check of the simulation for the basic and s2 models, fitness estimates were found to be indistinguishable from those in eqns (2) and (7) for their respective cases. In the
simulations, densities were updated every 0:01 minute.
doi:10.1371/journal.pone.0027796.t001
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attributed solely to skew because other moments varied when skew

was changed.

Estimating fitness directly from sequential titers
Sampling phage titers temporally seems to provide the most

relevant and convenient method of measuring fitness directly.

Typically, one adds phage to a bacterial culture, transfers a small

volume to a new culture at the appropriate time and repeats the

process as long as needed. Titers used in the fitness calculation are

taken from the culture at the time of transfer to a new culture, the

sample being treated with chloroform to kill the cells and stop

phage growth. The first sample for the fitness calculation is

typically taken after 30 minutes or more of phage growth (which is

not usually the first culture in the series), and the second sample is

taken an hour or more after the first sample. The growth rate is

determined by the difference in titers between the two samplings,

adjusted for the time and any transfer dilutions between them. The

only issue with this approach is to ensure that the population is

growing exponentially. Attainment of exponential growth rests on

the population having attained a stable age-of-infection distribu-

tion (henceforth ‘‘stable age distribution’’). A stable age distribu-

tion implies that the fraction of infected cells that has been infected

for just 1 minute, just 2 minutes, and so on does not change into

the future.

When conducting an assay, the age distribution is clearly not

stable at first, because phage are added all at once to a culture of

cells. Most infections from those phage will occur rapidly, and then

there will be a long interval before the infected cells burst. During

this interval, few new infections are occurring. If lysis time is

largely invariant, bursts will then also be highly synchronous, and

the asynchrony of infection times will persist for many generations.

Subtle deviations from a stable age distribution can persist for

generations (Fig. 2).

On an intuitive level, we may think of a stable age distribution

as represented by a large variance of infection times in the culture

relative to the duration of the phage life cycle. Starting from a

newly inoculated culture, the variance of infection times (V ) comes

both from the variance in lysis time and the variance in time to

adsorption. Under exponential decay of free phage from infection,

the variance of infection times is 1=k2C2; the variance in lysis time

depends on B(x). With multiple rounds of infection through time,

the variance in infection times will increase linearly (VzVzV :::)
to a first approximation. Thus, one can obtain a qualitative sense

of how quickly a stable age distribution will be attained by

knowing both the lysis time variance and the loss to adsorption

relative to average lysis time.

To illustrate the error introduced by fitting phage titers from

two time points, the simulation model of the previous section was

run for various conditions and is illustrated for three cases: one

with a high adsorption rate and short lysis time, one with a low

adsorption rate and short lysis time, and one with a low adsorption

rate and long lysis time (L1, L3, and L4, basic model, Table 1).

Strong effects of deviation from stable age distribution are seen in

all runs, with moderate to large effects on fitness estimation across

the first few hours (Fig. 3). The pattern of deviation differs radically

between the three conditions, precluding any obvious empirical

generalization.

Revisiting T7
The previous section offered possible reasons for a discrepancy

between fitness calculated from the basic model and fitness

estimated directly from sequential titers of a serial transfer

experiment. We now return to the discrepancy between the two

methods of fitness determination specifically for the strain referred

to as T7Hi in [8]. Cell density at the time of phage addition was

intended to be 1|108/mL. The estimated lysis time was

10:4+0:2 min, burst size was 266+16 phage, and adsorption

rate was 3:3+0:03|10{9 mL/min. With a delta function for

B(x), the calculated fitness is 39:3 doublings/hr, whereas the

directly estimated value is 47:9.

For the present study, we considered the possibility that some of

the prior parameter estimates were in error. Fitness calculations

are highly sensitive to lysis time and adsorption rates because of

the effect on generation time (less so for burst size), so lysis time

and adsorption rates were re-evaluated. There was no suggestion

that lysis time was different from that reported, but adsorption rate

was re-estimated as 8:9+0:8|10{9, a 2.7-fold increase. We also

checked for the possibility of adsorption rate variation when

measured over different intervals; there was no evidence that the

adsorption rate constant measured over two minutes differed from

that over 4 minutes, and no evidence of an effect of aging the

lysate for 24 hr before the assay; thus we use a model of fixed k.

The fitness calculated from the basic model for these parameters

is 42:8, the increase over 39:3 due to the higher adsorption rate.

The calculation rises modestly to 43:8 by including cell growth

(a~0:03, a doubling time of 23 min) and variance in lysis time

(s2~0:4, as per [8], using the B(x) function of Table 1). To

illustrate the sensitivity of calculated fitness to lysis time, the

estimate of 43:8 rises to 44:2 merely by decreasing mean lysis time

0:1 minute to 10:3, all else equal. It is not practical to estimate

mean lysis time to the nearest 0:1 minute, thus the calculated

fitness cannot be precise.

The direct fitness estimate could be affected by the failure of the

culture to obtain a stable age distribution. An inflated direct

estimate would help bring the two numbers into agreement. A

simulation shows that the oscillations in the estimate of r are

potentially large enough to account for the high reported value

(47:9) if the variance of B(x) is as small as reported, but not if it is

slightly larger (Fig. 4).

To assess the possibility of deviations from stable age

distribution, we performed new serial transfers of T7Hi, this time

recording phage titer at each transfer out to 2 hr; fitness estimates

in the previous study were based on titers taken at 40 min and at

Figure 2. Deviations from stable age distribution in simula-
tions. Each of the three curves shows the profile of infection ‘ages’ at a
specific stage of a culture, given as the approximate number of
generations indicated (the number of generations associated with each
curve is the number of transfers on 12 minute intervals). The 20-
generations curve shows the approximate stable age distribution.
Curves from earlier times indicate progressively greater deviations from
stable age distribution. Infections were simulated as in Table 1.
Parameters were chosen to match T7 values: the adsorption rate
constant was 8:9|10{9 mL/min, cell density was 108 (assumed
constant), B(x) was uniform across 9.3 to 11.5 minutes with a total
burst size of 266.
doi:10.1371/journal.pone.0027796.g002
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Figure 3. Deviations from stable age distribution in simulated serial transfer protocols and their effects on direct fitness
estimation. (A), (C), and (E) each show free phage density as a function of time. Transfers were performed every 15 min (top row), 20 min (middle
row) or 30 min (bottom row), the vertical lines indicating the drop in titer following each transfer. When a stable age distribution has been achieved,
the set of points from a single culture (between inoculation and transfer) should lie on a straight, inclined line, as is approximately true for the right-
most profiles. The absence of stable age distribution is most pronounced at the left end of each figure. (B), (D), and (F) show fitness estimates (r) for
the respective panels to their left, calculated from titers separated by 1 hour. The horizontal axis indicates the time of the second sample used to
estimate r. Lines connect the points for ease of visualization but have no specific meaning. The three data sets reveal different patterns of error in
fitness estimation, but two sets reveal errors lasting hours after the assay is initiated. Top row is based on conditions L1 from Table 1, basic model;
middle row is based on conditions L3, basic model; bottom row is based on conditions L4, basic model.
doi:10.1371/journal.pone.0027796.g003

Figure 4. Fitness estimates in a simulation of T7 infection during serial transfer every 15 minutes. Estimates are based on samples
separated by 60 minutes or 45 minutes, as indicated. Parameters are from the text and Fig. 2 for T7Hi , except that the variance is B(x)~0:4 in (A) and
1:0 in (B), using a rectangular B(x) function as in Fig. 1D. The oscillations are stronger with the smaller variance in lysis time. The horizontal axis shows
the time at which the second titer was taken. The estimates shown use data only from the second simulated culture onward.
doi:10.1371/journal.pone.0027796.g004
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100 min. Methods were as before [8], except that transfers this

time were made every 15 min instead of every 20 min. Sequential

titers reveal a behavior characteristic of the failure to have

attained stable age distribution (Fig. 5), and calculations of r

based on these data fail to stabilize before 2 hr. Importantly,

these new data suggest a direct fitness estimate of 42{43 that is

compatible with the calculated one and considerably lower than

the published one.

At face value, there is reconciliation between the former directly

estimated fitness of T7Hi and the current one (the previous one

was plausibly inflated by a violation of stable age distribution);

there is also agreement between the calculated and directly

estimated fitnesses provided here. Some qualifications are

warranted, however. First, it is not strictly possible to revisit the

former fitness estimate; frozen cell stocks were not the same for the

two sets of assays, and the ingredients used for LB broth now and

then possibly differ (LB is not a defined medium). Thus, conditions

used in the assays are subject to unknown variation. Second, the

reconciliation is likely no better than approximate, because the

simulations show that fitnesses are sensitive to deviations in

parameter values that lie well within measurement error. Third,

manual serial transfer assays are cumbersome and do not provide

the level of resolution needed for a detailed resolution of within-

culture dynamics. A more complete resolution of the empirical

dimensions of this problem thus awaits automation of serial

transfer and a reporter system to monitor infection rates in real

time.

The temporal pattern of r values calculated from simulations

parameterized with T7 data in Fig. 4 does not match the empirical

pattern, at least in the nature of the oscillations. The basis for this

discrepancy is not clear, but there are some obvious possibilities to

consider. First, as shown in Fig. 3, the temporal pattern is

qualitatively sensitive to at least modest variations in individual

parameters. It is thus plausible that combinations of T7

parameters statistically compatible with the observed values could

be found that lead to a better fit of the r calculations. More

fundamentally, however, the biological titers differ from the

simulated titers. Simulated titers are of free phage. The titers

estimated in an experiment are taken from a sample of the culture

treated with chloroform and thus include free phage and phage

released by cells partway through infection when exposed to

chloroform. It is challenging to model this reality: the number of

phage released from an infected cell depends on the number of

progeny produced since infection and on how many of those

progeny are released from the cell by chloroform treatment. The

effect of chloroform is not easily calculated because chloroform

merely creates lesions in cells but does not lyse them unless the

infection has proceeded long enough that lysin has accumulated

inside the cell.

Discussion

This study provides the most accurate model to date of the

phenotype-fitness map of bacteriophage growth. This map applies

specifically to the idealized environment of serial propagation on a

continual excess of hosts. The model developed here extends a

previous analytical solution by allowing distributions of lysis time

(rather than a fixed time) and in using simulation to measure

sources of error in fitness measurement. Although the specifics

apply to bacteriophage growth, some of the principles are likely to

be general. In particular, a deviation from stable age distribution

and the use of full parameter distributions rather than parameter

means is likely of broad relevance to fitness measures in other

experimental microbial systems.

The model developed here is dynamic rather than evolutionary,

but its chief utility is evolutionary prediction. By specifying phage

fitness as a function of three parameters (or parameter distribu-

tions), the model is easily used to understand how fitness changes

with changes in the parameters, hence how selection operates on

each of the three phenotypes. The immediate value of such a

model is to improve our ability to apply experimental studies of

phages in testing evolutionary models and in interpreting

laboratory evolution of phages and other viruses. Such experi-

mental systems often offer the only real hope of testing models

intended for viruses relevant to human health, so the correct

interpretation of phage studies is important. More broadly, work

such as this enhances an appreciation of the strengths and

limitations of phenotype-fitness maps of other organisms.

For the parameter combinations considered here, the cumula-

tive effect of errors can easily lead to a 5% difference between

measured and calculated fitness, and even a 10% error is feasible.

As growth rate is a geometric measure of fitness, any error

compounds rapidly over generations. However, with an awareness

Figure 5. Violation of stable age distribution in laboratory transfers of T7Hi. (A) Sequential titers in two independent cultures. Inter-transfer
intervals (15 min) and transfer volumes (5 mL of 10,000) were the same for all transfers, so the common titer oscillation out to 90 min presumably
reflects a violation of stable age distribution. (B) Calculations of r from these data based on titers spanning 60 minutes (45 minutes) vary, without
converging before 120 min for the second sample. The horizontal axis refers to the time at which the second sample was taken; the time of the first
sample depends on whether the estimate spanned 45 or 60 minutes. The horizontal, gray bar is the approximate value of the fitness calculated in this
paper from the phenotype-fitness map parameterized with burst size, lysis time, and adsorption rate estimates.
doi:10.1371/journal.pone.0027796.g005
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of the possible problems, it is also feasible to anticipate and

perhaps reduce errors by including appropriate extensions of the

basic model, with simulations if necessary. Application of this new

perspective to T7 data seemingly explained the large discrepancy

between the two methods of fitness estimation evident in prior

work. It should also be appreciated that, even with this new

understanding, the methods of parameter estimation are too

coarse to provide accuracy beyond 1–2 doublings/hr when phage

fitness is as high as in T7.

As noted, a large potential error arises in the direct

calculation of an exponential growth rate if the culture has

not neared a stable age-of-infection distribution. The deviation

from stable age distribution decays with time, but the rate of

decay depends highly on the variance in lysis time and

adsorption rate in the culture. Thus the extent to which

deviation from a stable age distribution is a problem will vary

from phage to phage and also vary with culture conditions.

Various empirical methods to hasten the approach to stable age

distribution may be attempted. For example, reducing the

concentration of cells in the initial culture has the effect of

slowing infections and thus of dispersing them over time,

compared to a culture with high cell density. Thus it might be

supposed that a more rapid approach to stable age distribution

could be achieved with a protocol in which the first culture used

low cell density. Yet this protocol does not appear to work well

(simulations not shown), as it leads to a high density of free

phage in the first culture, and those free phage are quickly

adsorbed when transfered to a culture with high cell density. An

alternative protocol might be to inoculate phage incrementally

into the first culture, spreading their infections over time

(suggested by a reviewer). We have not evaluated this approach,

but as with any attempt to bypass natural decay, it runs the risk

of delaying decay instead of hastening it; such a protocol might

need to be tailored specifically to each system.

The existence of large estimation errors has implications for

the interpretation of some phage studies. One is that the

measurement of small fitness effects must be interpreted with

caution, at least when those fitnesses constitute a form of growth

rate [13–16]. Small fitness effects may be real for the exact

measurement assay, but the present study suggests that small

effects measured in one assay may not translate across even minor

variations in protocol. Use of competition strains to estimate a

relative fitness may alleviate some of the problem, but if the two

strains in the same culture experience different approaches to

stable age distribution, then even competitor strains will face the

problem identified here.

In many studies, errors in fitness estimation may have little

impact. For example, the optimal lysis time evolves as 1=r [5]. To

first order, a small percent error in r leads to the same percent

error in 1=r. Thus, if 1=r is 5 minutes, a 10% error is &0:5
minutes, barely detectable in lysis time assays, and potentially

much smaller than the deviation between the predicted optimum

and the observed endpoint of evolution (as in [8]). Much of phage

experimental evolution is about large magnitudes of evolution, and

the types of errors identified here will not change conclusions

based on those effects.

Our analysis underscores that mapping specific phenotypes into

fitness is complicated, and that predicted fitness values are highly

sensitive to details of individual phenotypes (e.g., the exact lysis

time). These findings are reminiscent of results by Wahl and

coauthors [6,17,18], who found that fixation probabilities can

differ widely for rare mutations affecting different phenotypes,

even if these mutations have the same effect on long-term growth

rate (i.e., fitness). They also found that fixation probabilities were

dramatically altered by the exact timing of dilutions [6]. In

summary, theirs and our results show that mapping phenotypes to

fitness and evolutionary success is a difficult and non-trivial

undertaking, even in a system as simple as bacteriophage grown in

a chemostat.

An obvious, if difficult next step is to model the intracellular

determinants of the three phage parameters of burst size, lysis

time, and adsorption rate. This deeper model would provide the

basis for understanding the evolution of intracellular mechanics

through their effects on the higher-level phenotypes. This level of

understanding appears within reach: Endy et al. [19] generated a

kinetic simulation model of the life cycle of phage T7, with over

100 genetic elements and based entirely on empirically determined

parameter values. As methods improve for measuring intracellular

concentrations and localization of phage proteins, we may be able

to move to this next level and create a molecular-based phenotype-

fitness map.

Methods

Assays of sequential titers of phage T7 used the serial transfer

methods of Heineman and Bull [8]. Briefly,E. coli K-12 cells (strain

IJ1133) were grown in 10 mL of LB broth in 125 mL flasks in an

orbital waterbath with agitation for 1 hr at 37o C to a density of

108 cells/mL. Phage were added, grown for 15 min, and a sample

of the culture was transfered to another culture of cells that had

been incubating for 1 hr. A sample of the completed flask was

extracted over chloroform and used for titer determination. Phage

titers were maintained two orders of magnitude below cell

densities to ensure that host density was only negligibly depressed

by infection.

Adsorption assays were conducted by adding phage to a culture

of cells that had been incubated for 1 hr to a density of 108 cells/

mL (following the same protocol used for sequential titer

measures). Cell density (C) was measured just prior to phage

addition by plating to determine colony forming units. At time

t~2 (4) minutes after phage addition, a sample was removed.

Total phage titer (Ptot) was determined by plating an aliquot

immediately, and free phage titer (Pfree) was determined by plating

an aliquot of the supernatant of a centrifuged culture (12,000 rpm

for 30 sec). The adsorption rate constant (k) was estimated from

Pfree~Ptot½e{kCt� ð9Þ

in units mL/min. This ‘end-point’ determination runs the risk of

underestimating k when t is large (S. Abedon, pers. comm.), but

should be largely free of this problem for the time intervals used

here.

Numerical analyses of phage population dynamics (equations

(8)) were used for Figs. 3 and 4 and Table 1. Computer programs

to conduct these analyses were written in C, with variables

updated every 0:01 minute.
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