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Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one 
of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of 
behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed 
to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview 
of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts 
(and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary 
approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become 
one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety 
of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, 
only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation 
of a particular brain area.
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Introduction

Behavioural studies over the last few decades have shown 
that fish possess cognitive abilities greatly  exceeding 
those originally suggested by Tinbergen, who stated that 
cognitve skills in fish are confined to fixed action pat-
terns (Tinbergen 1951). Instead, there is ample evidence 
that fish possess cognitive abilities rivalling those of 
mammals and birds (for reviews see Brown et al. 2011; 
Schluessel 2015). ‘Cognition’ hereby refers to higher 
order mental functions (Brown et  al. 2011; Marchetti 
2018), that include four different processes: perception, 
attention, memory formation and learning (Brown et al. 
2011; Shettleworth 2010; Schluessel 2015). Together, 

these four processes provide animals with the ability to 
make decisions (Shettleworth 2010; Ebbesson and Braith-
waite 2012). Animal cognition is a rather modern field of 
research, aiming to comprehend animals’ mental abilities, 
as well as examining their underlying neural processes 
and mechanisms. There are several reasons that make fish 
a particularly interesting group to study this topic in. The 
group holds some of the most ancient forms of vertebrates, 
giving them a key position in the vertebrate phylogenetic 
tree. Compared to other vertebrates, there is also an unpar-
alleled diversity featuring many exciting radiations which 
allow researchers to study influences of phylogeny versus 
ecology.

While cognition studies on fish are still less abundant 
than on mammals or birds—specifically in regards to the 
number of species studied—there really is a plethora of 
behavioural cognition studies available (see for example 
Kotrschal et al. 1998; Bshary et al. 2002; Brown et al. 
2011). Furthermore, many studies over the last century 
have investigated fish, and in particular teleost neuroanat-
omy, assessing brain structures and their functions as well 
as neural connections and pathways both on a gross and 
molecular level (e.g. Nieuwenhuys 1963; Northcutt 1978, 
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2011; Northcutt and Braford 1980; Northcutt and Davis 
1983; Nieuwenhuys and Pouwels 1983; Nieuwenhuys and 
Meek 1990; Wullimann 1997; Hofmann 2001; Rodríguez 
et al. 2005; Salas et al. 2006; Ito et al. 2007; Ito and Yama-
moto 2009; Hurtado-Parrado 2010; Rupp et al. 1996; Ver-
nier 2017; Yamamoto and Bloch 2017). Information about 
fish neuroanatomy is crucial to a deeper understanding of 
fish cognition as a whole, as cognitive input is processed 
in various regions throughout the brain. It has been sug-
gested that fish neural architecture involved in cognitive 
information processing represents both analogous and 
potentially homologous structures to those found in mam-
mals (Broglio et al. 2003, 2011), thereby supporting the 
behavioural findings that fish possess higher cognitive 
capabilities comparable to those of mammals including 
those of non-human primates (Brown et al. 2011). Unfor-
tunately, only few studies have combined the two fields, 
i.e. behaviour and neuroanatomy, and identified the neural 
substrates involved in the specific processing of cognitive 
information in fish (e.g. Rodriguez et al. 2006; Kotrschal 
et al. 2013a, b; for reviews see Wullimann and Mueller 
2004; Broglio et al. 2011; Ebbesson and Braithwaite 2012; 
Demski 2013; Maruska and Fernald 2018). In the follow-
ing review, two approaches (lesions and IEG studies) that 
can be used to elucidate specific structure–function rela-
tionships involved in processing cognitive information will 
be presented. A third method, i.e. volumetric studies, will 
only be mentioned briefly, despite being frequently used to 
determine functionality from structure. Volumetric studies 
look for correlations between the presence or the extend of 
a particular ability and the size of a particular brain struc-
ture, which from our perspective, provides a worthy first 
step in identifying potential areas of interest but generally 
leaves more room for error than alternative methods. In-
vivo imaging studies and optogenetic studies are also men-
tioned briefly at the end of the review, both offering excit-
ing new possibilities. Lesions studies determine specific 
impairments in cognitive abilities following the removal of 
a particular brain region or target nuclei, while IEG studies 
look for differences in gene expression patterns in response 
to varying treatments, such as learning, stress or recalling of 
cognitive information compared to untreated controls. Both 
methods have advantages and disadvantages that will be 
discussed. To familiarize the reader with the teleost brain, 
a short overview of potentially relevant brain structures is 
provided first.

The teleost brain

In the following, the cichlid brain will be introduced briefly 
for reference purposes. Obviously, fish brains vary in size 
and structure, and this section is only meant to provide a 

short overview of the major brain regions and nuclei that 
will be mentioned in later sections, i.e. in the lesion and IEG 
study descriptions, several of which have been conducted 
on cichlids. For this reason, any areas/nuclei mentioned 
throughout the paper (in any species) will be crosslinked to 
the figures provided in this section on the structure of the 
cichlid brain.

Generally, the fish brain follows the common vertebrate 
Bauplan. The neural tube gives rise to three primary mor-
phological vesicles: the forebrain (prosencephalon), the 
midbrain (mesencephalon), and the hindbrain (rhomben-
cephalon), which is continuous with the spinal cord. The 
three vesicle stage develops into the five-vesicle stage. As 
described in the “columnar model”, the forebrain— which in 
fish lacks the mammalian neocortex—is subdivided into the 
diencephalon caudally and the telencephalon rostrally. The 
diencephalon is then further divided into the thalamus dor-
sally and the hypothalamus ventrally, while the telencepha-
lon is further subdivided into the pallium dorsally and the 
subpallium ventrally. The midbrain connects the forebrain 
to the hindbrain (rhombencephalon). Finally, the hindbrain 
is divided into the myelencephalon (containing the medulla 
oblongata) caudally and the metencephalon (containing the 
cerebellum and pons) rostrally (Herrick 1910; Wullimann 
1997; Simões et al. 2012; Yamamoto and Bloch 2017).

A second model, the “prosomeric model”, was proposed 
by Puelles and Rubenstein in the early 1990s and attributes 
morphological meaning to gene expression patterns (Puelles 
and Rubestain 2003). Here, the forebrain is subdivided into 
the posterior diencephalon and the anterior secondary pros-
encephalon. The diencephalon is then further subdivided 
into the pretectum, thalamus, and prethalamus, while the 
secondary prosencephalon at the anterior end of the fore-
brain contains the telencephalon dorsally and the hypothala-
mus ventrally.

The third and newest model, proposed by Affaticati et al. 
(2015), divides the secondary prosencephalon into three 
parts: the telencephalon, hypothalamus, and optic recess 
region (Affaticati et al. 2015). Figure 1 presents the three 
available models featuring the different subdivisions of the 
forebrain (Yamamoto et al. 2017 modified), Fig. 2 shows 
the major brain regions of a teleost fish from a dorsal and 
lateral perspective. 

The telencephalon of Actinopterygians (which represent 
the largest group within the fishes) undergoes a different 
embryological development than all other craniates (Fig. 3), 
a so-called ‘eversion’ process (Gage 1893) that produces 
two telencephalic hemispheres separated by a single ven-
tricle (Broglio et al. 2005) and a proliferative zone that lies 
at the dorsal part of the telencephalon (Mueller and Wul-
limann 2009). All other craniates undergo an ‘evagination’ 
process that produces two telencephalic hemispheres, each 
one with its own ventricular cavity, and a proliferative zone 
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that is oriented towards the ventricles (Muller and Wulli-
mann 2009).

Due to the different embryological development of 
Actinopterygians, potentially homologous or functionally 
equivalent structures are found in different locations than 
in other fish (such as in the chondrichthyans) or other verte-
brate groups (Wullimann 1997). The forebrain of ray-finned 
fishes contains a number of areas common to all species 
(Northcutt 2002) while other areas are only seen in some 
highly derived groups, such as cichlids. This can include 
the presence or absence of nuclei or different structuring of 
particulate regions.

The neural correlates for most cognitive functions in fish 
are still largely unknown, with the well-known exception of 
the lateral and medial divisions of the dorsal telencephalon 
(see Fig. 4b, section D). These two areas have been inves-
tigated in several studies and are by many considered to be 
potential homologues of the mammalian hippocampus and 
amygdala, respectively (for reviews see Rodriguez et al. 2006; 
Broglio et al. 2011; Ebbesson and Braithwaite 2012; but see 
also Saito and Watanabe 2004; 2006). However, these areas 
may also be involved in additional, so far unstudied, cognitive 
processes. Moreover, the functions of other areas within the 
telencephalon, such as the dorsal or central divisions of the 
dorsal telencephalic area (see Fig. 4b, sections B, C), are still 
unknown, as are the functions of most of its ventral regions.

Even less information is available on the diencephalon 
or the cognitive involvement of brain regions outside of 

the forebrain. While the connectivity between and within 
some brain areas may be known (e.g. Ahrens and Wulli-
mann 2002; Folgueira et al. 2004a, b), there is not a single 
nucleus or area in the diencephalon whose function or con-
tribution to possessing specific cognitive abilities has been 
studied and identified in detail. This includes the habenula 
(see Fig. 4b, section D), the thalamus (see Fig. 4b, sec-
tion D) and the hypothalamus, which is highly derived in 
many teleost groups (Ahrens and Wullimann 2002). There 
is a prominent visual pathway extending from the tectum 
over the nucleus corticalis and the nucleus glomerulosus 
(see Fig. 4b, sections E, F) to the inferior lobes of the 
hypothalamus (see Fig. 4b, sections F–H) (Wullimann and 
Meyer 1990; Butler et al. 1991; Ahrens and Wullimann 
2002). There are also some other highly derived areas, such 
as the mammillary body (see Fig. 4b, section F) and the 
nucleus of the posterior tuberculum. The latter has exten-
sive projections to the medial part of the dorsal telencepha-
lon (Murakami et al. 1983). In some fish groups, other 
areas are also markedly elaborated, e.g. the lateral torus 
(see Fig. 4b, sections D, E), which is related to gustatory 
functions (Ahrens and Wullimann 2002), and the anterior 
tuberal nucleus, which is particularly enlarged in catfish, 
and possibly related to acoustic communication. A range of 
forebrain areas has been electrically stimulated and behav-
ioural responses have been described for several fish spe-
cies (e.g. Demski 1973, 1977, 1983; Demski and Knigge 
1971; Demski and Picker 1973). Stimulations in a number 

Fig. 1   Models featuring the different subdivisions of the forebrain. a 
The columnar model in which the hypothalamus is considered to be 
the ventral half of the diencephalon. b The prosomeric model origi-
nally proposed by Puelles and Rubenstein in which the hypothalamus 
is proposed to be the ventral half of the most anterior part of the fore-

brain, and the telencephalon and hypothalamus consist of the second-
ary prosencephalon. c A new model proposed by Affaticati et  al. in 
which the secondary prosencephalon is divided into three parts, the 
telencephalon, hypothalamus, and optic recess region (ORR) ( modi-
fied from Yamamoto et al. 2017)
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Fig. 2   Brain of a cichlid fish, Thorichtys meeki. a Lateral view; b 
dorsal view. Six major areas can be identified: olfactory bulbs (dark 
green), telencephalon (light green), optic tectum (red), cerebellum 
(pink) + crista cerebellari (light green), inferior lobe of hypothalamus 
(purple), vagal lobe (blue) (courtesy of Michael Hofmann) (colour 
figure online)

Fig. 3   Schematic representation 
of the process of evagination in 
Non-Actinopterygians and ever-
sion in Actinopterygians (modi-
fied from Broglio et al. 2005)

Fig. 4   a Shown is the lateral view of the Pseudotropheus zebra brain (ros-
tral to caudal); the oblique lines (A–L) give the locations of the transverse 
sections through the brain. b Cryostat sections of the P. zebra brain (A–L). 
The right side shows the microphotos of the original sections after Nissl 
staining, the left side shows a schematic drawing of identifiable areas and 
nuclei. CC crista cerebellaris, CCe corpus cerebelli, Chr commissura 
horizontalis, CIL central nucleus of inferior lobe, CM mamillary body, 
CN nucleus corticalis, CP central posterior thalamic nucleus, D dorsal tel-
encephalic region, Dc central area of D, Dc-d dorsal subdivision of Dc, 
Dc-r rostral area of Dc, Dc-v ventral division of Dc, Dd dorsal area of D, 
DIL diffuse nucleus of the inferior lobe, Dl lateral area of D, Dl-d dorsal 
subdivision of Dl, Dl-g granular area from Dl, Dl-v ventral subdivision of 
Dl, Dl-v1,2 parts of Dl-v, Dm medial area of D, Dm-1,2,3 subdivisions of 
Dm, DP dorsal posterior thalamic nucleus, Dp posterior area of D, dpca 
decussation of anterior cerebellar peduncle, EG eminentia granularis, EN 
entopeduncular nucleus, FR fasciculus retroflexus, GN nucleus glomeru-
losus, H habenula, ILdl dorsolateral part of the inferior lobe, ILvm ventro-
medial part of the inferior lobe, ILdv ventromedial part of the inferior lob, 
IMRF intermediate reticular formation, IRF inferior reticular formation, 
LFB lateral forebrain bundle, LLF lateral-longitudinal fasciculu, MLF 
medial-longitudinal fasciculus, Mo medulla oblongata, MS spinal cord, 
Ni nucleus isthmi, NIII nucleus nervi oculomotori, NIV trochlear nucleus, 
NVm motor nucleus of trigeminal nerve, Ni nucleus isthmi, NPT posterior 
tuberal nucleus, OB olfactory bulb, Obgl glomerular area of the olfactory 
bulb, Obgra granular area of the olfactory bulb, OC optic chiasm, OTV 
ventrolateral optical tract, PGZ periventricular gray zones of the TeO, 
POA pre-optic area, PTN nucleus posterior tuberis, RL lateral recess, RV 
rhombencephalic ventricle, SRF superior reticular formation, TTB tectob-
ulbaric tract, Tel telencephalon, TeO optic tectum, TeV tectal ventricle, TL 
torus longitudinalis, TLA lateral torus, TOd dorsal optic tract, TOv ventral 
optic tract, TS semicircular torus, V ventral telencephalic area, VIII vesti-
bulocochlear nerve, Vam medial area of the valvula cerebelli, Val lateral 
area of the valvula cerebelli, Vc central area of V, Vd dorsal area of V, VL 
vagal lobe, Vl lateral area of V, Vs supracommissural nucleus of V, Vv 
ventral area of V, WN Edinger-Westphal Nucleus, X vagus nerve (slides 
taken from Jauch 2015)

▸
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of hypothalamic areas for example changed specific types 
of social behaviours, suggesting that some social functions 
are located or mediated by the hypothalamus. Particularly 
the inferior lobes (see Fig. 4b, sections G, H) can be quite 
large and receive indirect visual input through the nucleus 
glomerulosus (see Fig. 4b, sections E, F). In some species, 

the inferior lobes can be even larger than the entire tel-
encephalon (Hofmann, pers. comm.). In summary, only 
a few detailed studies, focusing on a few potential roles of 
specific forebrain areas, exist, while it seems highly likely 
that at least some of these regions are also involved in the 
processing of (other) cognitive tasks.

Fig. 4   (continued)
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Volumetric and lesion studies

There are many correlative studies linking brain size to cog-
nitive ability, environment and/or ecology (e.g. Pike et al. 
2018). Studies across mammals and birds have shown that 
overall brain size and cognitive abilities usually correlate 
positively (e.g. Reader and Laland 2002; Sol et al. 2005; 
Deaner et al. 2007). Also, closely related species occupy-
ing different niches may feature distinct differences in the 
size of major brain areas, related to differences in cognitive 
abilities (Tebbich and Bshary 2004). For example, higher 
cognitive abilities are required to find food in complex habi-
tats compared to more simple or unstructured habitats. As a 
result, associated brain regions, e.g. the hippocampus (or its 
homologue) are enlarged in species that live and forage in 
complex environments (e.g. Sherry et al. 1989, 1992; Lucas 
et al. 2004). Similarly, brain size in fish may correlate with 
habitat, lifestyle or cognitive capabilities (e.g. Pollen et al. 
2007; Salvanes et al. 2013; Northcutt 1977; Yopak et al. 
2007; Yopak 2012; Pike et al. 2018). In cichlids, studies 
have linked brain complexity, size and volume with ecol-
ogy, lifestyle or behaviour (e.g. Anken and Bourrat 1998; 
Pollen et al. 2007; Pollen and Hofmann 2008; Burmeister 
et al. 2009; Shumway 2010; Gutiérrez-Ibáñez et al. 2011). 
Environmental factors may permanently enhance learning 
abilities of fish (Kotrschal and Taborsky 2010). In guppies, 
a larger overall brain size was positively linked to cognitive 
differences (Kotrschal et al. 2013a,b,2014) and large-brained 
guppy females outperformed small-brained females in a 
reversal task but not in a colour discrimination test (Buechel 
et al. 2018). While these studies provide an important first 
step towards identifying relevant brain regions involved in 
cognitive information processing, correlative evidence is 
prone to errors and usually limited to assessing major brain 
areas as opposed to determining the detailed functioning 
of selected nuclei or smaller areas. Lesion studies, despite 
their own shortcomings (Lomber 1999), provide a more 
comprehensive method of determining structure–function 
relationships.

Pioneering lesion studies have focused on the involve-
ment of the telencephalon but no other structures in cogni-
tive processing (reviewed in Hofmann 2001; see also Savage 
1980; Overmier and Curnow 1969; Overmier and Savage 
1974; Laming and McKinney 1990) and detected impair-
ments following ablation  in some learning and memory 
functions (e.g. avoidance and spatial learning; e.g. Flood 
et al. 1976; Davis and Kassel 1983; Overmier and Hollis 
1983; Rodriguez et al. 2006). Removal of the telencepha-
lon (see Fig. 4b, section E) in teleosts does not seem to be 
as deleterious as in mammals (e.g. Kaas 1987; Hofmann 
2001) and it is likely that cognitive functions are not all 
situated within the telencephalon. However, the only other 
brain structure that has been looked at in some detail in this 

context is the cerebellum (see Fig. 4b, sections J, K). It has 
been implicated in various conditioning tasks (Karamian 
1963; Aronson and Herberman 1960; Álvarez et al. 2002; 
Gómez 2003) as well as avoidance or emotional learning 
(e.g. Kaplan and Aronson 1969; Álvarez et al. 2003; Gómez 
2003, Yoshida et al. 2004; Rodríguez et al. 2005) and spatial 
cognition (Durán et al. 2004; Rodríguez et al. 2005).

A cognitive ability, relevant to most species and quite 
thoroughly investigated in many vertebrate and invertebrate 
species, is spatial cognition, which includes spatial learning 
and memory. Behaviours, such as orientation, navigation, 
migration or homing, depend on spatial cognition (Dodson 
1988; Rajan et al. 2011). Spatial learning is directly con-
nected to spatial memory as it allows an individual to record 
and recall information about its environment and its orien-
tation, for example feeding or nesting locations. For this 
reason, spatial memory and spatial learning are essential 
both for animals that do not change habitat, as well as for 
animals migrating (Wood et al. 2011). In its most complex 
form, spatial cognition entails the ability of an organism to 
acquire a mental representation of the environment, i.e. to 
construct a cognitive spatial map (Glikmann-Johnston et al. 
2015). In a series of studies on the goldfish (Carassius aura-
tus), behavioral and detailed neuroanatomical approaches 
were used complementary to elucidate spatial abilities and 
neuroanatomical correlates (reviewed in Broglio et al. 2011). 
Results indicated that not the telencephalon as a whole, but 
specifically the lateral zone of the dorsal telencephalon (see 
Fig. 4b, sections A–C), considered to be a hippocampus 
homologue, plays a crucial role in complex place learning 
(allocentric orientation) and spatial memory in goldfish (e.g. 
Salas et al. 1996a, b; López et al. 2000; Durán et al. 2008, 
2010; Costa et al. 2011). It was also established that egocen-
tric spatial strategies are unlikely to be processed—at least 
exclusively—in the telencephalon (e.g. Salas et al. 1996a, b; 
López et al. 2000; Rodríguez et al. 2002). Results were con-
tradicted by findings from Saito and Watanabe (2004,2006), 
who claimed impairments in the dorsomedial telencepha-
lon (see Fig. 4b, sections B, C), instead of the dorsolateral 
part, to be responsible for the disruption of spatial abilities 
(for a critical discussion see Rodriguez et al. 2006). More 
recently, similar results to those obtained on the goldfish 
were observed in studies on the spatial abilities of sharks 
and stingrays (Schluessel and Bleckmann 2005, 2012; Fuss 
et al. 2014a, b). In sharks, the dorsomedial pallium, like the 
lateral pallium in teleosts, seems to play a crucial role in 
processing more complex place learning information (Fuss 
et al. 2014a) while not being implicated in the processing 
of egocentric information, i.e. turn procedures (Fuss et al. 
2014b). Accordingly, as in the goldfish, different neural sub-
strates seem to be responsible for different spatial functions 
and mechanisms in sharks. As suggested by Rodriguez et al 
(2006), results indicate that the dorsomedial portion of the 
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pallium in sharks may be comparable to the hippocampus 
of land vertebrates and the lateral pallium of teleosts (Fuss 
et al. 2014a, b). In two blenniid species, sex-specific differ-
ences in regards to spatial demands were found to exist both 
behaviourally and neuronally (Costa et al. 2011). White and 
Brown (2015) tried to correlate volume measurements of 
various brain regions with spatial ability in two species of 
guppies with different ecological needs. Differences were 
found in the size of the telencephalon, the optic tectum 
and the hypothalamus as well as different spatial abilities 
between the two species.

 Very few studies are available assessing the involvement 
of neural substrates in cognitive behaviours other than spa-
tial orientation. In goldfish, avoidance learning paradigms 
were investigated and the medial zone of the dorsal telen-
cephalon in teleosts found to perform similar functions to the 
pallial amygdala of land vertebrates (reviewed in Rodriguez 

et al. 2006; Portavella and Vargas 2005; Portavella et al. 
2002; Broglio et al. 2011). Similar results were observed in 
juvenile bamboo sharks (Schwarze et al. 2013).

Table 1 gives an overview of the most relevant lesion 
studies assessing neural structures in fish in a cognitive 
context.

Lesion studies, where parts of the brain are ablated, can 
help researchers to identify the neural substrates involved 
in cognitive information processing by testing what animals 
can do prior to and following surgery. The most obvious 
shortcoming of this technique is that lesions are hard, if not 
impossible to place without damaging non-target tissue ‘on 
route’ to the target destination. While electrodes of micro-
manipulators are extremely fine, the extent of damage cre-
ated is still difficult to estimate. Additional problems are to 
actually ‘find’ the correct target area, finding the same area 
repetitively in different individuals (also of varying sizes), 

Table 1   Overview of studies combining behavioral and neuroanatomical studies in fish

Note that most studies have tried to look for spatial orientation correlates
*Not cognition studies per se, but studies of behaviors that include some cognitive aspects
a The medial pallium in elasmobranchs corresponds to the lateral zone of the pallium in teleosts due to different folding events during embryo-
genesis. We attempted to remove the medial pallium; however, as it was difficult to target almost the entire pallium was removed in most indi-
viduals

Brain region Behavior Author

Lateral zone of pallium Spatial orientation Salas et al. (1996a, b)
Dorsolateral telencephalon Spatial orientation Vargas et al. (2000)
Lateral zone of pallium Spatial orientation López et al. (2000), Durán (2004), Broglio et al. 

(2005)
Dorsomedial telencephalon Spatial orientation Saito and Watanabe (2004,2006)
Lateral pallium Encoding spatial information Vargas et al. 2006
Entire telencephalon Spatial orientation Durán et al. (2008)
Dorsolateral ventral telencephalic nuclei Spatial orientation Costa et al. (2011)
Palliuma Spatial orientation Fuss et al. (2014c)
Palliuma Spatial orientation Fuss et al. (2014d)
Telencephalon,hypothalamus, optic tectum Spatial orientation White and Brown (2015)
Cerebellum Spatial orientation Durán et al. (2004), Rodríguez et al. (2005)
Medial zone of pallium Emotional memory/avoidance learning Portavella and Vargas (2005), Portavella et al. 

(2002, 2004), Durán (2004)
Telencephalon Avoidance learning Schwarze et al. (2013), Overmier and Flood (1969), 

Overmier and Hollis (1990)
Telencephalon Conditioning tasks and habituation Savage (1980), Overmier and Curnow (1969), Over-

mier and Savage (1974), Laming and McKinney 
(1990)

Telencephalon, optic tectum, cerebellum, dorsal 
medulla, hypothalamus and olfactory bulb

Reversal learning/spatial learning Fong et al. (2019)

Optic tectum, olfactory bulbs Discrimination tasks Pike et al. (2018)
Cerebellum Conditioning tasks Karamian (1963), Aronson and Herberman (1960), 

Álvarez et al. (2002), Gómez (2003)
Cerebellum Emotional learning Kaplan and Aronson (1967), Aovarez et al. (2003), 

Gómez (2003), Yoshida et al. (2004), Rodríguez 
et al. (2005)

‘Nuclei of the conserved social behavior network’ Social hierarchy* Maruska et al. (2013)
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destroying a significant portion of a relevant area and ren-
dering it unfunctional in the process, and making sure that 
the lesioned area is in fact responsible for the processing of 
a particular information as opposed to simply being part of 
a relevant pathway in the information transfer. Last but not 
least, one always has to consider further surgery effects, such 
as causing motivational, sensory or motor impairments that 
keep animals from performing at the same level as prior to 
surgery. For example, damaging the target area could cause 
a hyperactivation or hyperinactivation of other brain regions 
that, under normal conditions, are activated or inhibited by 
the damaged region (Fuster 1989; Damasceno 2010). Some 
of these shortcomings can be overcome using sham-operated 
and control animals, as well as lesioning a larger number 
of individuals (also to overcome intra-specific variation). 
Some, however, cannot be controlled for. Due to this cir-
cumstance, it seems ideal to combine lesion studies with 
an additional method, that has widely been used in recent 
years and from our perspective can make up for some of the 
problems encountered, immediate early gene analyses.

Immediate early gene studies

The study of the expression of immediate early genes (IEGs) 
is a more recent but very promising method to investigate 
and visualize neuronal activity in the brain when investi-
gating substrates underlying synaptic plasticity processes, 
such as long-term potentiation (LTP), long-term depression 
(LTD) and cognitive functions (Minatohara et al. 2016). 
IEGs are cellular genes that are responsive to extracellular 
stimuli, more precisely, they are first response genes whose 
expression is regulated immediately after stimulation. Tran-
scriptional activation of RNA occurs in the nucleus within 
five minutes of stimulation and continues for 15–20 min, 
after which the transcripts are transferred to the cytoplasm 
(Greenberg and Ziff 1984; Greenberg et al. 1985; Guzowski 
et al. 1999). Induction occurs within minutes and is short-
lived; typically, IEG mRNA levels reach their maximum 
30–60 min after stimulation and decline after 2–5 hrs to 
baseline. The protein concentration reaches its maximum 
about 60–90 min after stimulation and disappears within 
four hours of treatment (Curran and Morgan 1995).

Different studies conducted on PC 12 pheochromocytoma 
cells highlighted the involvement of IEGs in neuronal func-
tion (Sheng and Greenberg 1990; Morgan and Curran 1991; 
Curran and Morgan 1995). In conjunction with more recent 
research, these studies demonstrate that IEGs are expressed 
throughout the nervous system and that various types of 
stimulation (such as pharmacological agents, behavioral 
tests, seizures, etc.) can increase their expression (Curran 
and Morgan 1995). In fact, IEG expression is a crucial part 
of a neuron’s response to behaviourally relevant stimuli and 
codes for several classes of proteins displaying different 

functions, such as signalling molecules, postsynaptic pro-
teins, metabolic enzymes, cytoskeletal proteins, growth 
factors or transcription factors (Lanahan and Worley 1998). 
There is also a correlation between a local increase in IEG 
expression and neuronal activity, i.e. IEG expression can 
serve as a marker for neuronal activity. This indicates which 
types of neurons were activated and, above all, in which area 
of the brain the activation took place (Long and Salbaum 
1998). It is estimated that there are about 30–40 different 
IEGs that can be expressed in neurons. Of these, 10–15 
could serve as regulatory genes, i.e. function as transcription 
factors (Lanahan and Worley 1998) capable of regulating 
the expression of target genes (named late-response genes) 
and influencing neuronal physiology (Curran and Morgan 
1987; Curran and Franza 1988; Herdegen and Leah 1998; 
O’Donovan et al. 1999; Tischmeyer and Grimm 1999; Pin-
aud 2004; Pinaud et al. 2005; Gallo et al 2018). Among 
those IEGs that function as transcription factors, the most 
investigated genes for mapping activity in the brain are c-fos 
and egr-1. Both are involved in cell differentiation and prolif-
eration and, most importantly, they serve a crucial function 
in cognitive processes, particularly in learning and memory, 
but also in synaptic plasticity in general (Okuno 2011).

C‑FOS

C-fos, whose induction was the first one among IEGs to 
be shown as activity-dependent (Morgan and Curran 1988; 
Sagar et al. 1988; Gallo et al. 2018) belongs to the Fos fam-
ily and is a protooncogene (Morgan and Curran 1989). It 
encodes the nuclear C-FOS protein, a 62-kDa product which 
undergoes post-translational modifications that mainly con-
sist of serine and threonine phosphorylation (Curran et al. 
1984; Barber and Verma 1987). Furthermore, c-fos can neg-
atively regulate its own expression and this characteristic is 
required for a rapid decline in its expression (Morgan and 
Curran 1991). In neurons, the first detailed studies assessing 
the regulatory mechanisms of IEGs were performed on c-fos 
(Schilling et al. 1991; Sheng et al. 1990; Okuno 2011) and, 
under baseline conditions, there is little or no expression of 
this gene in most neurons (Morgan and Curran 1989; Hoff-
man et al. 1993). The expression of various late-response 
genes involved in different neuronal processes (for example 
growth control or plastic changes) is induced by the activa-
tion of c-fos gene (Sukhatme et al. 1988; Williams et al. 
2000; Bozon et al. 2003; Maddox et al. 2011; Gallo et al. 
2018).

EGR‑1

The gene egr-1 is also known as zif/268, krox-24, TIS8, 
NGFI-A or zenk; it codes for a transcription factor (Egr-1) 
that is a member of a four-gene family of Egr and also plays 
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an important role in neural plasticity during neuronal activa-
tion through sensory stimulation. Egr-1 is a phosphorylated 
protein and it is synthesized in the nucleus, where it remains 
thereafter (Cao et al. 1990). Furthermore, this protein has 
the ability to autoregulate its own expression (D. Gius, X. 
Cao, and V. P. Sukhatme, unpublished, referenced in Cao 
et al. 1990). The Egr-1 expression in the brain is specific 
to neurons and its activity is strongly (but not exclusively) 
regulated by synaptic activity (Worley et al 1991). Egr-1 
expression is continually induced by ongoing synaptic activ-
ity (Burmeister and Fernald 2005) as a consequence of the 
basal physiological synaptic activity (Worley et al. 1991). 
This is unlike other, similar inducible transcription factors 
(such as C-fos), whose expression declines after the initial 
stimulation (Herdegen et al. 1995; Kaczmarek and Chaud-
huri 1997). It is still unclear which are the targets that egr-1 
regulates under physiological stimulation in vivo, but syn-
apsins (Petersohn et al. 1995; Thiel et al. 1994; Burmeister 
and Fernald 2005) and neurofilaments (Mello 2004; Bur-
meister and Fernald 2005) are two likely candidates (Bur-
meister and Fernald 2005).

To investigate the evolutionary conservation of egr-
1, cichlid egr-1 (Astatotilapia burtoni) was cloned by 
Burmeister and Fernald (2005) and its protein sequence 
compared to available representatives of other vertebrate 
groups. They demonstrated that A. burtoni egr-1 shares 
81% sequence similarity with zebrafish (Danio rerio) and 
66% with mouse (Mus musculus) egr-1. This has been the 
only characterization of egr-1 in a vertebrate other than a 
mammal or bird (Burmeister and Fernald 2005). Another 
important discovery coming out of this study showed that 
the egr-1 expression kinetics is similar to the one of mam-
mals (Zangenehpour and Chaudhuri 2002) and birds (Mello 
and Clayton 1994) by reaching its highest expression levels 
30 min after stimulation (Burmeister and Fernald 2005).

The following provides a summary of previous research 
and advances that have successfully used IEGs as markers 
of cognitive processing in fish (see Table 2). 

Choice behaviour, i.e. the ability to make choices and 
perform actions and behaviours as a result of these choices, 
is critical for the survival of all individuals (Lau et  al. 
2011). To test this behaviour in fish, light avoidance, an 
innate choice behaviour, was examined in zebrafish (Lau 
et al. 2011). First, fish were introduced to a light/dark choice 
chamber. After giving them time to explore the environ-
ment, researchers found two distinct groups of animals: one 
composed of animals showing light-avoidance behaviour, 
and a second one that did not. These two different behav-
iours occurred regardless of whether the animals were ini-
tially placed on the dark or the bright side of the cham-
ber. In situ hybridization analyses of the c-fos expression 
were performed and compared between the two groups. 
In the animals exhibiting light-avoidance behaviour, c-fos 

expression was detected in the medial zone of the dorsal 
telencephalic region (see Fig. 4b, sections B, C), potentially 
homologous to the mammalian amygdala. Another increase 
in c-fos expression was found in the dorsal nucleus of the 
ventral telencephalic area, possibly the teleost homologue 
of the mammalian striatum (Rink and Wullimann 2002). 
In the diencephalon, c-fos was detected in the hypothala-
mus and in different nuclei of the dorsal thalamus [anterior 
nucleus, dorsal posterior thalamic nucleus, central posterior 
thalamic nucleus (see Fig. 4b, section E)] and in the preglo-
merular nucleus [the last four nuclei are visually activated 
in the teleost brain (Wullimann 1997)]. Furthermore, c-fos 
expression was detected in the optic tectum (see Fig. 4b, 
sections G–L), in the periventricular grey zone (see Fig. 4b, 
sections E–K) and in the cerebellum (see Fig. 4b, sections 
J, K). In animals that exhibited low or no light-avoidance 
behaviour, the c-fos expression detected in the hypothalamus 
and in the visually related nuclei was similar to that of the 
’avoidance group’ but little c-fos was detected in the medial 
zone of the dorsal telencephalic region (see Fig. 4b, sections 
A–C) and in the dorsal nucleus of the ventral telencephalic 
area. The differential c-fos expression in the medial zone 
of the dorsal telencephalon and in the dorsal nucleus of the 
ventral telencephalon, and consequently the divergent acti-
vation of these regions, within the two groups of fish, led 
researchers to believe that these two regions may be involved 
in a circuitry that determines the performance of the light-
avoidance behaviour. Furthermore, since the dorsal nucleus 
of the ventral telencephalon is “downstream” of the dorsal 
telencephalic region, it seems that the latter could play the 
role of a “choice centre” in this behaviour (Lau et al. 2011).

One of the most important decisions is choosing suitable 
mates or partners. The choice of a male partner by females, 
based on the information about male–male social interac-
tions, was analysed by Desjardins et al. (2010) in A. bur-
toni. The study aimed to investigate specifically, which brain 
regions respond to visual information when choosing a mate. 
The expression of the two IEGs c-fos and egr-1 was analysed 
in the proposed fish homologue of the brain nuclei of SBN 
(social behaviour network) in mammals (which includes the 
medial amygdala, the lateral septum, the preoptic area, the 
anterior hypothalamus and the ventromedial hypothalamus, 
the periaqueductal grey, the dorsolateral telencephalon, the 
cerebellum and the raphe nucleus) (Newman 1999). IEGs 
expression was compared in the brains of gravid females’ 
that, after having chosen a mate, witnessed a fight between 
the males of their choice. Females who had seen their 
respective preferred male win or lose a fight showed differ-
ences in IEG expression in all SBN brain nuclei. Addition-
ally, differences in the level of egr-1 and c-fos expression 
were found in other brain areas. More precisely, females who 
saw their preferred male win, had higher IEG expression 
in the ventromedial hypothalamus and in the preoptic area 
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Table 2   Overview of studies combining behavioral and IEGs studies in fish

Brain region IEGs Behavior Author

Pre-optic area, medial zone of the dorsal telen-
cephalon, ventral subdivision of the lateral zone 
of the dorsal telencephalon

c-fos
egr-1

Social habituation Weitekamp et al. (2017)

Telencephalon, hypothalamus, cerebellum egr-1 Alloparental-care opportunity and submissive 
behavior

Kasper et al. (2018)

Nuclei of social decision-making network 
(SDMN): ventral nucleus of ventral telencepha-
lon, rostral portion of the ventral nucleus of the 
telencephalon, supracomissural nucleus of the 
ventral telencephalon, dorsal part of the ventral 
telencephalon, anterior tuberal nucleus, anterior 
part of the periventricular preoptic nucleus, 
parvocellular division of the magnocellular 
preoptic nucleus, magnocellular division of the 
magnocellular preoptic nucleus, lateral nucleus 
of dorsal telencephalon, granular region, the 
posterior nucleus of the dorsal telencephalon

c-fos Social behavior Field and Maruska (2017)

Telencephalon, optic tectum, cerebellum egr-1
c-fos

Social behavior Sadangi (2012)

Nuclei of social behavior network (SBN): lateral 
part of the dorsal telencephalon, medial part 
of the dorsal telencephalon, ventral nucleus of 
the ventral telencephalon, supracommissural 
nucleus of the ventral telencephalon, preoptic 
area, ventral tuberal nucleus, anterior tuberal 
nucleus, corpus cerebellum

egr-1
c-fos

Social behavior—social hierarchy Maruska et al. (2012)

Telencephalon and hypothalamus egr-1
bdnf

Early social behavior Nyman et al. (2017)

SDMN egr-1
c-fos

Social behavior—aggressive behavior Almeida et al. (2019)

Dorsolateral telencephalon, dorsomedial 
telencephalon, ventral telencephalon, ventral 
hypothalamus, central gray area, pituitary gland, 
nucleus preopticus, anterior tuberal nucleus, 
ventral sopracommissural telencephalon, 
cerebellum

egr-1 Mating behavior Wong et al. (2012)

Telencephalon, optic tectum, hypothalamus, 
pituitary gland, cerebellum, medulla oblongata 
and the anterior part of the spinal cord

c-fos Mating behavior Okuyama et al. (2011)

Whole brain egr-1 Mating behavior Cummings et al. (2008)
Medial part of the dorsal telencephalon, the 

supracommissural nucleus of the ventral tel-
encephalon, the ventral nucleus of the ventral 
telencephalon, the preoptic area

c-fos Social buffering Faustino et al. (2017)

Medial octavo lateralis nucleus, ventro lateral por-
tion of the torus semicircularis, central portion 
of the torus semicircularis, central posterior 
thalamic nucleus, posterior part of the dorsal 
telencephalon

SDMN regions: anterior tuberal nucleus, central 
part of the dorsal telencephalon, granular zone 
of the lateral zone of the dorsal telencephalon, 
magnocellular preoptic nucleus magnocellular 
division, magnocellular preoptic nuclus parvo-
cellular division, periventricular nucleus of the 
posterior tuberculum, caudal subdivision of the 
dorsal part of the ventral telencephalon, supra-
comissural nucleus of the ventral telencephalon, 
ventral portion of the ventral telencephalon

c-fos Social behavior—social interaction Butler and Maruska (2016)
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(see Fig. 4b, section C), known to be involved in reproduc-
tive behaviour. In the lateral septum, the expression of c-fos 
and egr-1 was higher in females seeing their preferred male 
lose. The lateral septum is implicated in the modulation of 
anxiety-like behaviour, indicating that females seeing their 

respective male lose, could have experienced anxiety. In all 
other brain areas, there were no detectable differences in 
egr-1 or c-fos between the two groups of females (Desjardins 
et al. 2010).

Table 2   (continued)

Brain region IEGs Behavior Author

Dorsal telencephalon (lateral, medial, central) egr-1 Social behavior—individual recognition Harvey-Girard et al. (2010)
Anterior preoptic area egr-1 Social behavior—social hierarchy Burmeister et al. (2005)
Nuclei of SBN: lateral part of the dorsal telen-

cephalon, medial part of the dorsal telencepha-
lon, ventral nucleus of the ventral telencepha-
lon, supracommissural nucleus of the ventral 
telencephalon, preoptic area, ventral tuberal 
nucleus, anterior tuberal nucleus, and corpus 
cerebellum

egr-1
c-fos

Social behavior—social hierarchy Maruska et al. (2013)

Forebrain c-fos Social behavior—paternal care O’Connell et al. (2012)
Telencephalon egr-1 Visual discrimination Fuss and Schluessel (2018)
Olfactory bulb c-fos Behaviors evoked by odorants deCarvalho et al. (2013)
Medial zone of the dorsal telencephalic region, 

dorsal nucleus of the ventral telencephalic area 
dorsal thalamus (anterior nucleus, dorsal poste-
rior thalamic nucleus, central posterior thalamic 
nucleus), hypothalamus, preglomerular nucleus, 
optic tectum, periventricular gray zone and in 
cerebellum

c-fos Choice behavior Lau et al (2011)

Social behavior network nuclei: medial amyg-
dala, lateral septum, preoptic area, anterior and 
ventromedial hypothalamus, periaqueductal 
gray, dorsolateral telencephalon, cerebellum and 
raphe nucleus

egr-1
c-fos

Choice behavior Desjardins et al. (2010)

Pre-optic area, lateral septum, anterior and ven-
tromedial hypothalamus, periaqueductal gray, 
dorsomedial and dorsolateral telencephalon, 
cerebellum, raphe nucleus

egr-1
c-fos
bdnf

Spatial cognition Wood et al. (2011)

Telencephalon egr-1 Spatial cognition Rajan et al. (2011)
Dorsomedial telencephalon, dorsolateral telen-

cephalon, preoptic area and cerebellum
egr-1
c-fos

Mirror image fighting Desjardins and Fernald (2010)

SDM network nuclei: three subregions of the 
medial part of the dorsal telencephalon, one 
subregion of the supracommissural nucleus 
of the ventral pallium, the lateral subdivision 
of the lateral part of the dorsal telencephalon, 
parvocellular as well as magnocellular and 
gigantocellular cell groups of the preoptic area

c-fos Social behavior—cooperative behavior Weitekamp and Hofmann (2017)

Medial zone of the dorsal telencephalon, lateral 
zone of the dorsal telencephalon, ventral 
nucleus of the ventral telencephalon

egr-1
c-fos
bdnf
npas4

Emotion-like states Cerqueira et al. (2017)

Central part of the dorsal telencephalon, ventral 
zone of the ventral region of the lateral part 
of the dorsal telencephalon, posterior part of 
the dorsal telencephalon, central part of the 
ventral telencephalon, ventral part of the ventral 
telencephalon, parvocellular and magnocellular 
subnuclei of the preoptic area

c-fos Sensory integration of social signals O’Connell et al. (2013)

Pre-optic area egr-1 Aggressive and reproduction-related behaviours Loveland and Fernald (2017)
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Wood et al. (2011) tested if A. burtoni could be trained 
in a spatial task and assessed if successful execution of the 
task was related to the expression of c-fos, bdnf and egr-1 
in the pre-optic area (see Fig. 4b, section C), lateral septum, 
anterior hypothalamus, ventromedial hypothalamus, periaq-
ueductal grey, dorsomedial telencephalon, cerebellum (see 
Fig. 4b, sections J, K), raphe nucleus and the dorsolateral 
telencephalon (see Fig. 4b, sections A–C) (some of these 
nuclei were also included in the SBN, see above). Fish were 
divided in three groups (learners, non-learners and non-
attempting) based on their performance in the task (finding a 
hole in a clear barrier that separated the tank in two compart-
ments). In the dorsolateral telencephalon of learners, mRNA 
levels of both bdnf and egr-1 were expressed at significantly 
higher levels than in non-attempting and non-learner fish, 
suggesting that the dorsolateral telencephalon may play a 
key role in spatial cognition. The lower activity of IEGs in 
the periaqueductal grey suggests lower stress levels in the 
learners than in non-learners and non-attempting fish. The 
preoptic area, playing a role in the reward and motivation 
pathway, also showed an increase in IEG expression, indicat-
ing increased motivation in learners over the training period. 
Overall, higher levels of IEG activity, a decreased stress 
response, and an increased motivation in learners suggest 
a heightened ability to learning a spatial task. In the brains 
of non-attempting fish, expression of bdnf and egr-1 was 
increased in both the periaqueductal grey and in the dorso-
medial telencephalon, indicating an activation within brain 
areas associated with anxiety and stress. Non-learners also 
exhibited lower levels of bdnf and egr-1 within the dorsolat-
eral telencephalon than learners. Furthermore, non-learners 
also exhibited lower levels of egr-1 in the dorsolateral tel-
encephalon, while featuring “intermediate” expression lev-
els in the periaqueductal grey. In conclusion, learner fish 
showed high levels of activity within the area associated 
with learning and memory (dorsolateral telencephalon), no 
activity in areas associated with fear and stress (dorsomedial 
telencephalon and periaqueductal grey) and some activity 
in the preoptic area, indicative of high motivation (Wood 
et al. 2011).

In the same year, Rajan and colleagues examined 
whether spatial learning induces egr-1 expression in the 
telencephalon (see Fig. 4b, sections A–C) of goldfish. 
Researchers divided a tank in four different compartments 
using three vertical transparent acrylic barriers and trained 
fish to pass through the barriers one by one. When fish 
had successfully accomplished the task, the third barrier 
was replaced by a modified one. Analysis showed that fish 
attempted more often to pass through the first barrier than 
the others, as the task was novel and the solution unknown, 
but already familiar when encountering the second and 
third barrier. Egr-1 expression levels in the telencephalon 
were higher in a fish having mastered to cross the first 

barrier than in a resting control. However, the level of 
egr-1 expression decreased again, when fish had learned 
to pass through barriers two and three. When the modi-
fied gate three was introduced, researchers observed an 
increased number of attempts correlating with an increased 
level of egr-1 expression in the telencephalon. In conclu-
sion, the study highlighted an increase in egr-1 expression 
in the telencephalon of C. auratus while exploring a novel 
environment and when learning a new task. As already 
demonstrated in several other studies (Burgess et al. 2001; 
Vargas et al. 2004, 2006), goldfish can encode both non-
geometric and geometric information and encode the goal 
location using geometrical clues (Bingman and Mench 
1990; Salas et al. 1996a, b; Durán et al. 2008). In conclu-
sion, fish needed to encode new geometric information 
due to the introduction of the modified third gate (Rajan 
et al. 2011).

An interesting question is whether animals possess self-
awareness, such as recognizing themselves in a mirror (for 
a recent behavioural study see Kohda et al. 2019). In par-
ticular, since fish cannot self-recognize, Desjardins and Fer-
nald (2010) asked whether fish could distinguish between 
fighting a mirror image and fighting a real fish. They used 
qRT-PCR (Quantitative Reverse Transcription Polymerase 
Chain Reaction) to measure mRNA expression of egr-1 and 
c-fos in four brain regions of A. burtoni, i.e. the dorsomedial 
telencephalon, the dorsolateral telencephalon (see Fig. 4b, 
sections A–C), the preoptic area (see Fig. 4b, section C) 
and the cerebellum (see Fig. 4b, sections J, K). Fish were 
divided in three groups: (1) fish subjected to fighting with 
a conspecific male across a clear barrier (opponent group), 
(2) fish subjected to fighting with a mirror image (mirror 
group) or (3) fish without an opponent (control). No differ-
ences in aggression levels were found between ‘opponent’ 
and ‘mirror’ males, but ‘mirror fights’ and ‘opponent fights’ 
had different effects on the brain. ‘Mirror’ males had higher 
levels of egr-1 expression in the dorsolateral telencepha-
lon than ‘opponent’ males or controls, while c-fos expres-
sion was significantly higher in ‘opponent’ males, than in 
‘mirror’ or control males. Furthermore, ‘mirror’ males had 
much higher egr-1 and c-fos expression levels in the dor-
somedial telencephalon (a potential amygdala homologue) 
than ‘opponent’ males or controls. This suggests that fish 
may experience fear when fighting their mirror image. In 
the cerebellum, there were no differences in egr-1 or c-fos 
expression among any of the males. Overall, males fighting 
an opponent through a clear barrier or fighting their mirror 
image showed similar behaviour and similar gene expression 
in the pre-optic area and in the cerebellum but different gene 
expression in the dorsolateral and dorsomedial telencepha-
lon. To explain the increase of egr-1 activity in the dorsolat-
eral telencephalon in ‘mirror’ males, two hypotheses were 
formulated. The first one assumes that in the dorsolateral 



936	 Animal Cognition (2021) 24:923–946

1 3

telencephalon egr-1 may operate as a transcription factor for 
genes involved in stress responses (for example, glucocor-
ticoid) (Bannerman et al. 1995), indicating the encoding of 
“stress-related spatial information” (Desjardins and Fernald 
2010). It was rejected though, as there was a simultaneous 
increase of c-fos expression in the dorsolateral telencephalon 
in ‘opponent’ males rather than in ‘mirror’ males. The sec-
ond, more likely hypothesis assumes that the mirror image 
represents “a perfectly size matched opponent”, possibly 
inducing fear in A. burtoni males by not reacting in familiar 
ways (Desjardins and Fernald 2010).

Both inter- and intra-specific cooperative behaviours are 
common among animals (Dugatkin 1997; Sachs et al. 2004), 
i.e. two or more individuals may act together to achieve a 
goal that each individual cannot achieve independently 
(Taborsky 2007; Brosnan and de Waal 2002). Weitekamp 
and Hofmann (2017) examined the immunohistochemical 
expression of c-fos in the social decision-making (SDM) net-
work, known to be involved in reward processing and in the 
integration of salient stimuli across vertebrates (O’Connell 
and Hofmann 2011, 2012; Weitekamp and Hofmann 2017), 
in A. burtoni, during cooperative territory defence behav-
iour (Hofmann 2003). This behaviour refers to a territorial 
male cooperating with another male to defend his territory 
from an intruder. This confers an advantage, as renegotiat-
ing boundaries usually is more expensive than cooperating 
with a neighbour (Getty 1987). The aim of the study was to 
determine how neural activation of the SDM network causes 
variation in cooperation with neighbours and residents and 
to examine whether the neural activation in specific nodes 
of SDM network is associated with the specific role indi-
viduals play in a cooperative context. C-fos expression was 
analysed in three subregions of the medial part of the dorsal 
telencephalon (potentially homologous to the mammalian 
basolateral amygdala), one subregion of the supracommis-
sural nucleus of the ventral pallium (see Fig. 4b, section 
C) (potentially homologous to the medial amygdala/bed 
nucleus of the stria terminalis of mammals), in the lateral 
subdivision of the lateral part of the dorsal telencephalon 
(potentially homologous to the hippocampus) (see Fig. 4b, 
sections A–C), in the parvocellular (potentially homologous 
to the paraventricular nucleus) as well as magnocellular and 
gigantocellular cell groups (potentially homologous to the 
supraoptic nucleus (Moore and Lowry 1998; O’Connell and 
Hofmann 2011) of the preoptic area (see Fig. 4b, section 
C). Furthermore, the role of dopamine was assessed by co-
labeling c-fos with tyrosine hydroxylase (TH), a marker of 
dopaminergic cells (O’Connell et al. 2011) to determine if 
there was an increase in activity in reward-related regions 
and if this increase was led by cooperative behaviour. To 
analyse how cooperative behaviour is correlated with neu-
ral activity in SDM networks, the researchers calculated 
the Engagement Index (EI), a measure of “how likely an 

individual is to engage in cooperative defence independent 
of its own size or the size of the intruder” (Weitekamp and 
Hofmann 2017). Results indicate that in neighbours, EI is 
associated with aggressive displays towards the intruder and, 
with the increase of EI, c-fos expression decreased in one 
subregion of the medial part of the dorsal telencephalon and 
in a magnocellular cell group. EI was also correlated with 
c-fos induction in dopaminergic neurons of both magnocel-
lular and parvocellular cells groups. The magnocellular cell 
group is considered a potentially homologous structure to 
the supraotic nucleus which, in mammals, produces oxy-
tocin (OT) involved in behaviour and social cognition (Ross 
and Young 2009). In the same way, the magnocellular cell 
group of A. burtoni contains isotocin (OT homolog) neurons 
(Huffman et al. 2012) that can mediate cooperative behav-
iour and can cause the increase of neural activity meas-
ured (Weitekamp and Hofmann 2017). In residents, EI was 
associated with an aggressive display towards the intruder; 
there was no up-regulation of any IEGs in any brain region 
assessed. Furthermore, having demonstrated that the resi-
dent modulates his aggression towards the intruder based 
on the behaviour of the neighbour, researchers also dem-
onstrated that there was a negative association between the 
c-fos induction in the lateral part of the dorsal telencepha-
lon of the resident and the neighbour’s aggression directed 
to the intruder. The lateral part of the dorsal telencephalon 
is assumed to be involved in context-dependent decision-
making and social cognition (Rubin et al. 2014). Since there 
is a negative correlation between the aggression from the 
neighbour directed towards the intruder and the neural activ-
ity in the lateral part of the dorsal telencephalon of the resi-
dent, and since the resident modulates its behaviour based 
on its neighbour’s decision, these results suggest that the 
lateral part of the dorsal telencephalon plays a role in this 
modulation of behaviour. In conclusion, partaking of the 
resident male in territorial defence behaviour is based on the 
behaviour and size of its neighbour. Additionally, neighbour 
behaviour is associated with neural activity in the lateral part 
of the dorsal telencephalon in the resident (Weitekamp and 
Hofmann 2017). The neighbour also participates in territo-
rial defence based on the perceived threat of the intruder, 
with a correlated activity in the preoptic area as well as in 
preoptic dopaminergic neurons. These results suggest that, 
during cooperative territory defence, neighbour and resident 
evaluate the presence of an intruder depending on the behav-
ioural role they play, and this role would be associated with 
distinct neural activity in key nodes of the SDM network. 
Furthermore, the reward system may mediate the coopera-
tion in this context (Weitekamp and Hofmann 2017).

The ability of an organism to assess numerical infor-
mation and compare quantities represents an advantage 
for many behaviours, such as foraging, reproduction and 
socializing (Hager and Helfman 1991; Botham and Krause 
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2005; Beran et al. 2013). Although much information about 
numerical abilities has been collected in fish (e.g. Agrillo 
and Bisazza 2018), information about the neural bases 
underling these processes was limited to non-human pri-
mates and corvids (Nieder 2013; Ditz and Nieder 2016). 
Very recently though, brain regions involved in quantity dis-
crimination processes in zebrafish were identified (Messina 
et al. 2020). IEGs expressions of c-fos and egr-1 were ana-
lysed using RT-qPCR in different areas, i.e. the retina, the 
optic tectum (see Fig. 4b, sections G–L), the thalamus (see 
Fig. 4b, section D), the telencephalon (see Fig. 4b, sections 
A–C), the cerebellum (see Fig. 4b, sections J, K) and the 
medulla oblongata. In behavioural tests (please refer to origi-
nal paper for details on testing), it was found that zebrafish 
preferentially chose a novel stimulus when the latter changed 
in numerousness but not in shape or size (Messina et al. 
2020), a finding that agrees with results found for macaques 
(Cantlon and Brannon 2007). However, on a molecular level, 
IEG expression was either influenced by changes in stimulus 
surface area, i.e. stimulus size (retina and optic tectum) or 
numerousness (thalamus and telencephalon). C-fos expres-
sion in the zebrafish retina was positively correlated with 
stimulus surface area, while egr-1 expression in the retina 
was not affected by an increase in surface area but increased 
with a decrease in surface area instead. In the optic tectum 
(see Fig. 4b, sections G–L), c-fos expression decreased with 
an increase, and increased with a decrease in surface area. 
Egr-1 expression in the tectum increased with a decrease 
in stimulus surface area while an increase had no effect. In 
the thalamus, c-fos expression decreased in fish that were 
habituated to 3 dots and tested with 9 dots, but increased in 
fish habituated to 9 dots and tested with 3 dots. The results 
for egr-1 expression were similar but not statistically sig-
nificant. In the telencephalon, egr-1 and c-fos expressions 
decreased with an increase in numerosity and vice versa. 
In the cerebellum, only a change in surface area affected 
egr-1 expression, while no changes in c-fos expression were 
observed regardless of testing scenario. In the medulla 
oblongata, there was no clear pattern of IEG expression 
(Messina et al. 2020).

The impulse of organisms to socialize and approach indi-
viduals of their own species, the so-called ‘social preference 
behaviour’ has been found in a variety of species, including 
humans and zebrafish (Sloan Wilson et al. 1994). However, 
as in other social species, a small part of a normally raised 
zebrafish population will have fewer social preferences than 
most other individuals or may even be  aversive to social 
cues, i.e. exhibit a type of ‘loner’ behaviour (Sloan Wilson 
et al. 1994; Dreosti et al. 2015). Recently, it was tested how 
brain activity and behaviour are affected by social isolation 
(Tunbak et al. 2020) and compared between such ‘loner’ fish 
(anti-social fish found in the normal population) and fish 
that were simply deprived of social contact, termed ‘lonely’ 

fish. Fish (‘loners’ and ‘lonely’ fish and controls) were 
subdivided in additional experimental and control groups 
[please refer to original paper by Tunbak et al. (2020)]. 
Whole-brain two-photon imaging of c-fos expression was 
performed, focusing on brain structures implicated in the 
SBN (Social Behaviour Network), (O’Connell and Hofmann 
2011). The average activity map for each rearing/sociality 
group was then compared to the average activity map of a 
sibling fish, raised under similar conditions and tested for 
30 min without social cues. There were two areas where sig-
nificant differences were found, i.e. the caudal hypothalamus 
and the preoptic area (see Fig. 4b, section C), highlighting 
their roles in social preference behaviour. Furthermore, c-fos 
brain maps of control and isolated fish not exposed to social 
clues during the experiment were compared. There was an 
increase in activity in the optic tectum (see Fig. 4b, sec-
tions G–L) as well as in the posterior tuberal nucleus. These 
structures are known to be involved in visual processing and 
in stress responses, respectively (McDowell et al. 2004; Ziv 
et al. 2013; Wee et al. 2019). Results found suggest that 
isolation increases visual sensitivity (activity changes in the 
optic tectum), as well as increased activity in the posterior 
tuberal nucleus (Tunbak et al. 2020). Overall, there were sig-
nificant differences regarding neural activity in brain areas 
linked to social behaviour, social cue processing, and anxiety 
or stress between the groups. Short isolation increases the 
sensitivity to social stimuli, but the increased sensitivity to 
social stimuli leads to an increase of anxiety and stress levels 
if the isolation is prolonged. Social preference in ‘lonely’ 
fish could be restored by an anxiolytic drug that acts on the 
monoaminergic system, i.e. by reducing serotonin levels.

The expression of IEGs can be induced not only by cogni-
tive processes, but also by a variety of other factors includ-
ing pharmacological stimulation. For example, the expo-
sure of zebrafish larvae (Danio rerio) to pentylenetetrazole 
(PTZ, a common convulsant agent) induced the expression 
of c-fos in the optic tectum (see Fig. 4b, sections D–I) and 
cerebellum (see Fig. 4b, sections J, K) as well as behavioural 
changes ending up in clonus-like convulsions (Baraban et al. 
2005). Similarly, the injection of kainic acid (a glutamate 
receptor agonist) in A. burtoni altered egr-1 expression in 
different regions of the diencephalon (including the anterior 
part of parvocellular preoptic nucleus, magnocellular preop-
tic nuclei, and the anterior nucleus of the thalamus) in the 
olfactory bulbs (see Fig. 4b, section A), the ventral nucleus 
of the ventral telencephalon, the central and lateral zone of 
the dorsal telencephalon (see Fig. 4b, sections A–C), and 
in the optic tectum (see Fig. 4b, sections D–I) (Burmeister 
et al. 2005). An interesting study combining pharmacologi-
cal stimulation, IEGs expression and motivational behaviour 
showed that the administration of d-amphetamine increased 
the expression of c-fos in the lateral zone and the medial 
zone of the adult zebrafish telencephalon and that the lateral 
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zone of the telencephalon is involved during drug-seeking 
behaviour (von Trotha et al. 2014). Other studies combining 
pharmacological stimulation and IEGs expression were con-
ducted on rainbow trout (Oncorhynchus mykiss) (Matsuoka 
et al. 1998) and zebrafish (Danio rerio) (Ruhl et al. 2017).

Similar to lesion studies, Immediate Early Gene Analy-
ses have their own shortcomings. First, one has to identify 
appropriate genes for the species and task in question and 
establish exact protocols, which can vary considerably 
between species. Depending on baseline gene expression 
levels and intra-specific variation, it may be very difficult 
to quantify training (learning) effects and clearly separate 
these effects from other, potentially confounding factors not 
closely related to the treatment/stimulus of interest, such as 
changes in motivation or stress between experimental groups 
and controls. A solution to this problem may be found in 
in vivo imaging or optogenetics studies. Another field for 
future research may be provided using knock-out mutants. 
In mice, it has already been shown that specific knock-out 
mutants may lack memory for socially relevant odors, while 
retaining spatial memory and the ability to smell in general 
(Wersinger et al. 2004).

In vivo imaging techniques allow behaviour to be linked 
to neural substrates activated in live animals. In the last few 
years, zebrafish and its larvae have proven to be a suitable 
model system to perform such in vivo imaging studies, espe-
cially for analysing whole-brain activity (Portugues et al. 
2014; Preuss et al. 2014). For instance, Preuss et al. (2014) 
used calcium imaging to analyse how the visual system of 
zebrafish detects and categorizes moving objects. To select 
appropriate responses, such as approach or escape behav-
iour, knowing the size of an object is critical. Results show, 
that the tectum categorizes visual targets on the basis of reti-
nally computed size information. Calcium imaging was also 
used by Temizer et al. (2015) to analyse how the visual sys-
tem extracts information about a looming-stimulus feature, 
triggering escape behaviour in zebrafish. There are three 
areas, including the optic tectum (see Fig. 4b, sections G–L), 
that respond selectively to features of looming stimuli. Fur-
thermore, through targeted laser ablations, researches also 
demonstrated that, to trigger the looming-escape behaviour, 
the optic tectum plays a critic role (Temizer et al. 2015). 
Using whole-brain functional imaging, it was analysed 
and identified how the zebrafish larvae brain collects and 
implements sensory information over different time scales 
to select appropriate behaviours (Bahl and Engert 2020; 
Dragomir et al. 2020). Through random dot motion stimuli, 
an ‘optomotor response’ was invoked, an innate behaviour 
to follow the direction of the perceived motion. During the 
decision-making process, neuronal clusters in the midbrain 
and hindbrain were activated. In the midbrain, including the 
pretectum, and in the medial parts of the reticular forma-
tion in the anterior hindbrain, there was a concentration of 

neurons encoding momentary sensory information, whereas 
in the lateral parts of the reticular formation, the dorsal raphe 
nucleus and the caudal interpeduncular nucleus, the dorsal 
part of the pretectum, the dorsal thalamus (see Fig. 4b, sec-
tion D), the torus longitudinalis (see Fig. 4b, sections E, F) 
and the habenula (see Fig. 4b, section D) were neurons that 
integrated sensory evidence (Dragomir et al. 2020; Bahl and 
Engert 2020).

Last but not least, another technique worth mentioning 
is optogenetics, which refers to the ability to control and 
observe cellular activity through the use of light-sensitive 
proteins (Rost et al. 2017). It was first used to describe 
genetically targeted photoreceptor expression in neurons for 
their selective activation or inhibition with light (Deisseroth 
et al. 2006) and later extended to include other photosensi-
tive proteins (Dugué et al. 2012; Miesenböck 2009). It is not 
difficult to understand how this technique, over the last few 
decades, has revolutionized the study of neuronal activity 
(Scanziani and Häusser 2009). It allows to perform an exper-
iment within a specific time window and to control neuronal 
activity with a very high spatial–temporal resolution (Rost 
et al. 2017). One can manipulate neurons to verify how the 
manipulation alters brain circuits and changes behaviour 
accordingly (Rost et al. 2017). For example, the optoge-
netic activation of a class of interneurons in zebrafish spinal 
cord is sufficient to produce a coordinated swimming pattern 
without sensory stimuli or input from higher brain struc-
tures, thus representing the excitatory unit of the locomotor 
circuitry in the fish (Ljunggren et al. 2014). Optogenetic 
activation of the left-dorsal habenula (see Fig. 4b, section 
D) in eye-removed zebrafish larvae triggers innate light-pref-
erence behaviour in zebrafish larvae (Zhang et al. 2017)., 
This behaviour is critical for survival and highly conserved 
(Crozier and Pincus 1927; Gong et al. 2010; Steenbergen 
et al. 2011; Wang et al. 2014; Ward et al. 2008; Yamanaka 
et al. 2013; Zhang et al. 2017).

Conclusion

In this review, the currently available information about 
the neural substrates involved in cognitive information pro-
cessing in fish is summarized, giving a roadmap for future 
research. IEG and lesion studies have proven to be powerful 
and potentially complementary methods, allowing identifi-
cation of brain areas underlying several cognitive aspects, 
specifically if used in combination. Optogenetics and in vivo 
studies may further complement these techniques. Scientific 
research in this field is still in the early stages and many 
interesting questions remain unanswered. While a lot is 
known about the fish brain in general, specific functions of 
many brain regions are still unknown or have only partially 



939Animal Cognition (2021) 24:923–946	

1 3

been exposed, specifically in regards to cognitive abilities. 
Lastly, both the neuroanatomy and the behaviour involved 
in cognitive processes have only been studied in a few rep-
resentatives of the more than 33,000 extant fish species. In 
the future, hopefully more scientific endeavours will aim to 
address cognition in fish using a more doverse range of spe-
cies and a more holistic approach, i.e. by not only asking 
whether or not an animal can perform a cognitive task, but 
also by trying to discover what neural substrates are involved 
in the processing of such a task using several if not all of the 
methods currently available.
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