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Deep neural networks (DNNs) used for brain–computer interface (BCI) classification are

commonly expected to learn general features when trained across a variety of contexts,

such that these features could be fine-tuned to specific contexts. While some success is

found in such an approach, we suggest that this interpretation is limited and an alternative

would better leverage the newly (publicly) available massive electroencephalography

(EEG) datasets. We consider how to adapt techniques and architectures used for

language modeling (LM) that appear capable of ingesting awesome amounts of data

toward the development of encephalography modeling with DNNs in the same vein.

We specifically adapt an approach effectively used for automatic speech recognition,

which similarly (to LMs) uses a self-supervised training objective to learn compressed

representations of raw data signals. After adaptation to EEG, we find that a single

pre-trainedmodel is capable of modeling completely novel raw EEG sequences recorded

with differing hardware, and different subjects performing different tasks. Furthermore,

both the internal representations of this model and the entire architecture can be

fine-tuned to a variety of downstream BCI and EEG classification tasks, outperforming

prior work in more task-specific (sleep stage classification) self-supervision.

Keywords: brain computer interface, deep learning - artificial neural network, transformers, semi-supervised

learning, contrastive learning, convolutional neural network, sequence modeling

1. INTRODUCTION

To classify raw electroencephalography (EEG) using deep neural network models (DNNs), these
models need to both develop useful features from EEG signals and subsequently classify those
features. This frames both the promise and the challenge of using DNNs for supervised EEG
classification. On the one hand, it promises to almost entirely circumvent the need for feature
engineering, but on the other hand, both feature discovery and classification need to be learned
from a limited1 supply of (relevant) high-dimensional data. A paradigmatic way in which we
observe this challenge is with brain–computer interface (BCI) applications2 (Lotte et al., 2018; Roy
et al., 2019; Kostas and Rudzicz, 2020b). Shallower neural network models have tended to be more

1Consider the difficulty of collecting and labeling 100 more BCI trials as compared to the same for 100 more images.
2Though we believe that it is likely that a similar tendency to what we characterize herein holds for most applications of DNNs

outside of their core artificial intelligence applications.
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effective classifiers than their deeper counterparts in BCI
(markedly so when trained independently for each user)
(Schirrmeister et al., 2017; Lawhern et al., 2018; Lotte et al.,
2018; Roy et al., 2019; Kostas and Rudzicz, 2020b). With
these shallower networks, the range of learnable features is
relatively limited. By design, they employ constrained linear
operations, and a limited few include non-linear activations
between subsequent layers (Kostas and Rudzicz, 2020b), an
otherwise crucial feature of DNN complexity. In prior work,
we observed that if some inter-personal variability had been
adjusted, the performance of shallower models more quickly
saturated to lower performance levels as compared to a deeper
network alternative (Kostas and Rudzicz, 2020b), suggesting that
more complex raw-BCI-trial features could be developed using
deeper neural networks when using training data that was more
consistent. Understood differently, overcoming the limitations of
shallower networks in favor of deeper DNNs that could surpass
feature engineering approaches likely requires addressing the
large variability between different contexts.

A natural framework to understand this problem is transfer
learning (TL), which is an area of machine learning that aims
to leverage knowledge learned from one context such that it
may be useful in a different one. Consider a supervised learning
problem, which consists of first, a domain D = {X , P(X)}, itself
a representation of a feature space X (e.g., the set of all possible
raw EEG recordings of a certain length) and the probability P(X)
of observing a particular configuration of features (x ∈ X, e.g.,
a particular observation of a raw EEG recording). Second, a
task T = {Y , f (x)}, a representation of the possible labels for a
particular task, and a mapping f :X → Y that maps individual
instances to the correct labels. TL means to break down a
problem into source and target problems, withDS 6= DT (and/)or
TS 6= TT .

Evidence abounds in BCI and EEG generally that differences
in domain are a critical challenge. For example, under the
sensory motor rhythm (SMR) BCI paradigm, different subjects
exhibit extremely different capacities at performing this task,
and even different sessions from the same users can exhibit
enough variation that classifiers trained in one session are ill-
suited to the next (Vidaurre and Blankertz, 2010; Ahn and Jun,
2015; Sannelli et al., 2019). This indicates that (at least for the
feature representations being considered) the domain of each
person and even session differs. Beyond these inter- and intra-
personal variations, different features are relevant for different
BCI tasks. Hand-selected features (sets possibly pruned later
on) are also typically distinct under different BCI paradigms,
as different features better discriminate different tasks3 (Lotte
et al., 2018), e.g., P300 vs. SMR. Thus, an explicit imposition
of difference in domain is imposed between different BCI task
paradigms (as their feature spaces are distinct, e.g., XSMR 6=

XP300), which to us implies that it is fair to expect that this
is indicative of strong differences in domain (and of course

3While this is typical, some procedures, like covariance-based Riemannian

classification schemes, do not necessarily need different features for different tasks

(Lotte et al., 2018; Zanini et al., 2018). These are a very interesting exception to the

argument we develop.

task) when considering raw data. In other words, the very
effort of selecting different features for different tasks (rather
than only changing classifier) is recognition of a difference in
domain. Furthermore, we have found in previous work that the
different domains represented by particular individuals seem to
be readily4 identifiable from arbitrary raw sequences of EEG
using DNNs (Kostas and Rudzicz, 2020a). In summary, a DNN
trained with a certain set of contexts (e.g., subjects), intent
on transferable performance to novel contexts (e.g., an unseen
subject), is required to develop some universal features and/or
classifier for possible novel target domains from the sources it
was prepared with. Some have argued that this universality is
achievable through the selection of the right DNN, or DNN
layers (Cimtay and Ekmekcioglu, 2020; Zhang et al., 2020a), but
through a questioning of the apparent ideal approaches to TL in
the wider DNN literature (presented in section 1.1), we argue that
the development of such universal features requires developing
pre-training procedures that transfer from general tasks to specific
ones instead.

The interest in these universal, or invariant features are
not however limited to better classification performance, but
may be of wider importance. While it may be difficult to
determine within a DNN when “features” start and “classifier”
begins, in applications such as computer vision there is a clear
understanding that nearly all transferrable DNNs have tended
to learn “low-level” features in earlier layers (e.g., edge-detector-
like primitives) (Krizhevsky et al., 2012; Yosinski et al., 2015;
Raghu et al., 2019). The promise of some such transferable early
layers or operations that are easily extended to any subject,
session, or task may open valuable lines of inquiry, or novel
explicit (rather than implicitly learned) methods (say if these
early layers do or do not correspond to existing methodologies,
respectively) of analysis. Importantly, the determination of which
“low-level” features DNNs developed in computer vision was
revealed through models that had transferable performance from
general to specific tasks (Yosinski et al., 2015; Raghu et al., 2019).

In this work, we argue that self-supervised sequence learning
is such a general task. It would be an effective approach for
developing and deploying more complex and universal DNNs
in BCI and in potentially wider EEG-based analysis. We present
a methodology that can learn from many people, sessions, and
tasks using unlabeled data; in other words, it samples the more
general distribution of EEG data. Thus, we attempt to learnDEEG

with self-descriptive features, with the goal that they exhibit little
variability across typical context boundaries (invariant between
expected domains) like dataset and subjects. More specifically,
we investigate techniques inspired by language modeling (LM)
that have found recent success in self-supervised end-to-end
speech recognition and image recognition in an effort to develop
encephalography models (EM). We first begin by investigating
fully supervised transfer learning (which has been frequently
looked to as an EEG/BCI TL solution), finding inconsistency
in the extension of computer vision-style pre-training to BCI

4With a strong latent representation, a nearest-neighbors labeling is sufficient to be

nearly 100% accurate for some datasets, despite being recordings made on different

hardware (Kostas and Rudzicz, 2020a).
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(and by extension the data domain of EEG). We then evaluate
a simple adaptation of previous work in self-supervised speech
recognition called wav2vec 2.0 (Baevski et al., 2020) to EEG.
With this framework, arbitrary EEG segments are encoded as
a sequence of learned vectors we call BErt-inspired Neural
Data Representations (or “BENDR”). We ask whether BENDR
are transferable to unseen EEG datasets recorded from unseen
subjects, different hardware, and different tasks, and how
generally suitable BENDR are (both as-is or fine-tuned) to a
battery of downstream EEG classification tasks with respect to the
same architecture without first being trained with more general
EEG data (i.e., “pre-training”).

1.1. Pre-training With DNNs
For inspiration on tackling DNN transfer learning in BCI,
one can look to other successful approaches, starting with the
modern deep learning (DL) “revolution,” which was ushered in
on the back of computer vision and image recognition (LeCun
et al., 2015; Sejnowski, 2020). The successes of DL in these
applications have stemmed from a lineage of massive labeled
datasets (LeCun et al., 2015), such as the ImageNet dataset
(Deng et al., 2009). These datasets were (and are) used to train
deep convolutional neural networks, often one of the variants
or progeny of ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017). Crucially, these are labeled datasets, featuring—
especially in the case of ImageNet—an enormous number of
unique possible classification labels (or equivalently targets, with
1000 being common when using ImageNet5, but more are
possible6). Leveraging labeled data (especially for a singular
domain such as a single subject, session and task) of a similar
scale in BCI is impractical but, despite this, a sizeable amount
of prior work tries to fashion a transfer learning strategy after
the successes of ImageNet “pre-training.” These take the form
of transferring knowledge from a network pre-trained with more
data, typically more subjects, to a target domain with less data,
typically a single subject (Lin and Jung, 2017; Dose et al., 2018;
Schwemmer et al., 2018; Fahimi et al., 2019; Xu et al., 2019;
Cimtay and Ekmekcioglu, 2020; Kostas and Rudzicz, 2020b;
Zhang et al., 2020a), with some work transferring between entire
datasets of the same paradigm, rather than subjects (Ditthapron
et al., 2019). On the surface, these embody a general-to-specific
supervised transfer learning scheme reminiscent of ImageNet
pre-training where models trained on an ImageNet problem
are adapted to a novel (but related) application. However, these
particular framings lack the label diversity when pre-training
with ImageNet. In other words, a narrow set of labels are used
to pre-train a model, and these simply overlap with the target
context, i.e., YS = YT . This approach is in fact distinct from
the approach taken as inspiration where YS 6= YT (or possibly
YS ⊂ YT). We remain unaware of any work that pre-trains a
DNN using a wide gamut of BCI-relevant targets in the services
of amore narrow target set, as would be more analogous to using
ImageNet as pre-training toward more specific computer vision

5image-net.org/challenges/LSVRC/2012/
6https://www.image-net.org/index.php

tasks7. This is noteworthy, as this is what makes ImageNet a
general task. Evidence suggests that pre-training label diversity
is important for effective ImageNet transfer learning (Huh et al.,
2016), though an excess could be detrimental (Huh et al., 2016;
Ngiam et al., 2018). Furthermore, this general task appears to be
responsible for developing the transferable early layers (Raghu
et al., 2019; Neyshabur et al., 2020) that would seem to embody
the desired goal of overcoming “hand-crafted” or developing
“invariant” features, and partially appear to be learning data
statistics (Neyshabur et al., 2020) [i.e., P(X); recall this as one
aspect of a domain for a supervised learning problem, the other
is the feature representation]. More fundamentally, however, this
pre-training paradigm has begun to be questioned altogether,
with some work finding that it does not necessarily improve
downstream performance, where commonly it has been assumed
that it should (e.g., in medical images or object localization;
though it speeds up training considerably) (Ngiam et al., 2018; He
et al., 2019; Kornblith et al., 2019; Raghu et al., 2019).

1.2. Are There Alternatives?
What has begun to emerge as a potential alternative in
computer vision—and markedly so when there is limited labeled
downstream data—is self-supervised learning (Chen et al., 2016;
van den Oord et al., 2018; Grill et al., 2020; Hénaff, 2020)8. These
works are inspired by the recent success in natural language
processing (NLP) using LMs, which can be used to greatly
affect the transfer learning, but also for few-shot and zero-shot
learning (Brown et al., 2020; Raffel et al., 2020). These models are
understood to work by making a very general model of language
and appear even immediately capable of performing tasks they
were not explicitly trained to accomplish. We propose that DNN
transfer learning in BCI and neuroimaging analysis generally
could follow a similar line, with encephalography models (EM) in
place of LMs. The important question being how best to construct
such an EM so that it learns features that are general enough, while
remaining usable for any analysis task?

To our knowledge, the most similar prior work to this line
of inquiry has been the approaches developed for (EEG) self-
supervised sleep stage classification (SSC) through contrastive
learning (Banville et al., 2019). Contrastive learning is a
more particular, yet generally applicable training process that
consists of identifying positive representations from a set that
also includes incorrect or negative distractor representations
(Arora et al., 2019). Banville et al. proposed two potential
contrastive learning tasks—a “relative positioning” task and
an extension they termed “temporal shuffling” (Banville et al.,
2019). Underlying both tasks is the notion that neighboring

7It is also worth noting that our own prior work does not consider or identify this.
8Terminology here can be somewhat fuzzy. What is meant by self-supervision is a

supervision-like task that requires domain-relevant understanding in some sense.

Sometimes, “semi-supervised” is used instead, as it is often also a semi-supervised

procedure (Chen et al., 2016), since the task is learned in an unsupervised fashion

first and then classic supervised learning is used with labels. Typically, though,

semi-supervision involves inferring labels for unlabeled data during training.

Instead, self-supervision is loosely a particular case of representation learning,

which is not historically uncommon in BCI (Zhang et al., 2020b). Though this

work is different given that typically the loss is domain or data agnostic.
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representations share a label. The representations themselves
are a learned mapping (in their case, a convolutional neural
network, but ostensibly arbitrary) of raw EEG time-windows
to a feature vector. This assumption of similar neighboring
labels is fair for SSC, where sleep stages change slowly, and
is generally reasonable for continuous problems, where some
notion of smoothness can be assumed. Their proposed “relative
positioning” task is a binary classification problem distinguishing
whether a pair of representations are within a local or positive
window τpos, or outside a long-range or negative window τneg
(when τneg > τpos, those falling within τneg but outside τpos are
ignored). Their alternative “temporal shuffling” method adds a
third window or representation with which to contrast that is
within τpos of one (arbitrary) window called the “anchor,” and
again learns the representations through a binary classification
task. In this case, the classification determines whether the
three representations are ordered sequentially, or are out of
order. Downstream (loose terminology used to mean the step
after pre-training when a model is leveraged and evaluated for
a particular task), both contrastive learning tasks ultimately
improved SSC classification performance over the same network
trained in a fully supervised manner from scratch (with randomly
initialized weights rather than those that accomplish the self-
supervised task) and their results further agree with the common
finding that self-supervision appears distinctly better with limited
fine-tuning9 data (Brown et al., 2020; Chen et al., 2020).
Furthermore, self-supervised pre-training also outperformed an
autoencoder-based pretraining, an alternative and historically
common pretraining option where a network is pretrained to
reconstruct its original input. “Relative positioning” performed
better on average (and no statistical significance expressed) when
compared to its counterpart, but a linear classification of simple
hand-crafted features was still highest performing overall. These
results demonstrate the promise of self-supervised learning with
DNNs for EEG over a supervised approach, but contextualize
them as early in development. This is perhaps best seen by
considering the lengths of the time windows (τpos and τneg).
The shortest windows employed in this particular investigation
were 2 min for τpos and τneg , which seems prohibitively long for
most immediate applications outside of SSC. As it is assumed
that representations within τpos are similarly labeled, it may be
difficult to expand the use of this technique to time scales closer
to that of say, a BCI trial (across any paradigm), which tend
to be no more than several seconds at most. In this work, we
focus our efforts on adapting a relevant strategy from the wider
ML literature that could develop features on smaller time scales
effective for BCI trials as well as time scales appropriate for SSC.

Returning to a consideration of how one might adapt LM pre-
training to EM, the masked language model (MLM) is a slight
variation on the typical LM that has been essential to the success
of recent LMs like BERT (Devlin et al., 2019) and its lineage
(Raffel et al., 2020) of similar models. Where a LM estimates
the probability of encountering a language token (a word or

9As is perhaps obvious in the name, though potentially misleading. Fine-tuning

is the process of further training on a reserved portion of a target dataset, unless

stated otherwise, this is typically through standard supervised training.

sub-word Aroca-Ouellette and Rudzicz, 2020) given previous
(or, in some cases, also subsequent) tokens, a MLM scheme
instead learns to reconstruct language token(s) given surrounding
context (fashioned after the Cloze task). This family of models
may deploy a variety of auxiliary tasks (Aroca-Ouellette and
Rudzicz, 2020) for transfer learning capabilities, but the task
currently at the heart of this family is as follows: given a sequence
of N tokens t1, . . . tN , and a subset of token indexes Im, for each
token index i ∈ Im, tokens are masked with somemaskM so that:

qi =

{

M; i ∈ Im

ti; otherwise
,∀i ∈ N (1)

A transformer encoder (Vaswani et al., 2017; Devlin et al.,
2019) then reconstructs the original sequence of tokens from the
masked sequence [ti and qi,∀i ∈ N, respectively, in Equation (1)].
M could be a single learned token (Baevski et al., 2020), or in
the case of BERT: 80% of the time a fixed [MASK] token, 10%
a random token or 10% the original token (with 15% of tokens
masked within each sequence) (Devlin et al., 2019).

Could an EM be developed in this vein, using say, individual
samples rather than tokens (i.e., could a direct application of
the above be done with raw EEG)? Unfortunately, the highly
correlated nature of neighboring samples in EEG (or most
other continuous data for that matter) is not conducive to
this approach. The likely result would be that, instead of an
EM, a method for interpolation would be learned, the model
would simply learn how to average neighboring samples, as has
been argued in similar work in self-supervised learning with
speech (Jiang et al., 2020). In other words, the smoothness
of these data would make it hard to produce general features
simply through recovering missing individual samples. Masking
a contiguous span of tokens instead, which is beneficial in
NLP (Joshi et al., 2020; Raffel et al., 2020), could avoid simply
learning to interpolate missing samples, but the reconstruction
of time-series data is difficult, due to the challenge (among
other things) of capturing the degree of error in time (within
contiguous sequences) (Rivest and Kohar, 2020). The losses
used for such reconstruction, commonly mean squared error
(or mean absolute error), erroneously assume independence in
the error between elements in the series, causing inappropriate
error signals when (among other things) simply shifting a
reconstruction in time (Rivest and Kohar, 2020).

Contrastive predictive coding (CPC), is a particular
contrastive learning approach that is intended for sequence
learning. With CPC, the correct learned representation for a
particular sequence offset is predicted relative to distractor
representations, typically those of other positions in the
same sequence (van den Oord et al., 2018). What is notable
about this is that it is not as susceptible to degeneration
into interpolation, nor is it similarly affected by the issues of
time-series reconstruction (van den Oord et al., 2018). This
task enables learning both a good feature representation and
an understanding of the sequence of data by modeling the
progression of the representations, learned with a single loss
function. Indeed, the RP and TS tasks discussed above for SSC
can be understood as special cases of the more general CPC,
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though performance appears largely similar when comparing all
three (Banville et al., 2020).

Prior work in self-supervised speech recognition has begun to
synthesize parts of CPC and MLM to produce methodologies
for self-learning with raw waveforms (van den Oord et al.,
2018; Baevski and Mohamed, 2020; Baevski et al., 2020;
Chung et al., 2020; Jiang et al., 2020). In our work, we
adapt one of these approaches called wav2vec 2.0 (Baevski
et al., 2020) (its particular formulation is detailed in section
2.4.1) to EEG. We consider how efficient the approach is at
developing representations (BENDR), and how general these
and the accompanying sequence model are across multiple task
paradigms/datasets (not seen during pre-training) and across
the subjects that constitute them. Since interestingly, both the
representations alone (Chen et al., 2020), and the addition of the
sequence model (Baevski et al., 2020) have proven potentially
useful for supervised fine-tuning after pre-training, we then
characterize a variety of “fine-tuning” approaches “downstream.”
In other words, finally, we compare which aspect of our overall
scheme is best leveraged and how toward classifying a variety of
publicly available EEG classification task datasets.

2. MATERIALS AND METHODS

All experiments are implemented using the deep neural networks
for neurophyisiology (DN3) library10. The source code and pre-
trained BENDR models can be found at https://github.com/
SPOClab-ca/BENDR.

2.1. Datasets
2.1.1. Pre-training

We intend to learn our proposed general task across a large
number of typically confounding domains, which means the
ideal pre-training dataset for our purposes would feature many
subjects, each recorded over many sessions. These sessions
would also ideally be distributed across large time scales and
consist of a variety of performed tasks. In other words, the
pre-training dataset should consist of a representative sample
of EEG data. This also means that these data should include
multiple different recording hardware and configurations. The
closest publicly accessible dataset, to our current knowledge, was
the Temple University Hospital EEGCorpus (TUEG) (Obeid and
Picone, 2016). It consists of clinical recordings using a mostly
conventional recording configuration (monopolar electrodes in a
10–20 configuration) of over 10,000 people, some with recording
sessions separated by as much as 8 months apart. The subjects
were 51% female, and ages range from under 1 years old to
over 90 (Obeid and Picone, 2016). We focused specifically
on versions 1.1 and 1.2 of this dataset which amounted to
approximately 1.5 TB of European-data-format (EDF) EEG
recordings before preprocessing.

2.1.2. Downstream

To investigate the practical utility of the learned representations,
we compiled a non-exhaustive battery of publicly accessible EEG

10https://github.com/SPOClab-ca/dn3

data classification tasks—or downstream tasks—summarized in
Table 1. Most of these were BCI task datasets, which could readily
be compared to previous work with DNNs trained without any
additional unlabeled data (Lawhern et al., 2018; Kostas and
Rudzicz, 2020b). We also included one of the SSC tasks used by
Banville et al. (2019) in their work on sleep stage self-supervision
described above, for comparison. This particular dataset afforded
some further insight into generality, as BCI data are typically
classified in the context of particular trials or events, and SSC is
a more continuous problem, requiring that large spans of time
are labeled with the particular sleep stage a subject is undergoing.
These segments are distinctly longer than the BCI trials we
considered in the remaining battery (an order of magnitude
difference in our case when compared to the largest BCI task
sequence length), and are distinctly closer in length to the way the
pre-training task is formulated (see section 2.4.1). We specifically
segmented these sequences into periods of 30 s to be classified
into 5 sleep stages as in prior work (Banville et al., 2019; Mousavi
et al., 2019). Another potentially notable difference with the SSC
dataset was the scale of available labels, which seems to have
enabled prior work to consider deeper andmore complex models
(Mousavi et al., 2019).

2.2. Preprocessing
The focus of the preprocessing stage was to create a maximally
consistent representation of EEG sequences across datasets
(which implied differences in hardware), so that a pre-trained
network was well suited to the downstream tasks. More or less,
this amounted to modifying downstream datasets to match the
configuration of the pre-training dataset. The first aspect of
this was to remove spurious differences in channel amplitude.
Each sequence gathered for training was linearly scaled and
shifted (a weight and offset for each sequence adjusts every
sample in the sequence) so that the maximum and minimum
values within each sequence equal 1 and −1, respectively. To
account for the lost relative (to the entire dataset) amplitude
information, a single channel was added with the constant

value max(si)−min(si)
max(Sds)−min(Sds)

, where Sds is the set of all samples in

the dataset and si ⊂ Sds is a particular sub-sequence (i.e.,
trial). We additionally addressed the differences in sampling
frequency and electrode sets of the different dataset. Our
solutions to these problems were similarly minimalist and
were achieved using standard features in DN3 (Kostas and
Rudzicz, 2020a). Specifically, we over- or undersampled (by
whole multiples, for lower and higher sampling frequencies,
respectfully) to get nearest to the target sampling frequency
of 256 Hz. Then, nearest-neighbor interpolation was used to
obtain the precise frequency (as was done in prior work
Kostas and Rudzicz, 2020a). Additionally, the P300 dataset
was low-pass filtered below 120 Hz to avoid aliasing due
to its higher sampling rate (and associated higher original
low-pass filter). Furthermore, the SSC dataset featured two
bi-polar electrodes: FPz-Cz and Pz-Oz, which were simply
mapped to FPz and Pz, respectively. The TUEG dataset itself
featured some higher sampling rate signals; we included those
with low-pass filters that did not violate the Nyquist criterion
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TABLE 1 | Summary of downstream dataset battery and number of cross-validation folds used.

Dataset Paradigm sfreq. Hz # Ch. Subjects Targets Folds

MMI Goldberger et al. (2000), Schalk et al. (2004) MI (L/R) 160 64 105 2 5

BCIC Tangermann et al. (2012) MI (L/R/F/T) 250 22 9 4 9

ERN Margaux et al. (2012) Error related negativity 200 56 26 (10) 2 4

P300 Goldberger et al. (2000), Citi et al. (2010, 2014) Donchin speller 2,048 64 9 2 9

SSC Goldberger et al. (2000), Kemp et al. (2000, 2018) Sleep Staging 100 2 83 5 10

Cross-validation splits were in a leave-multiple-subjects-out configuration if Folds < Subjects, or leave-one-subject-out if Folds = Subjects (as in prior work Kostas and Rudzicz, 2020b).

The ERN dataset was featured in an online competition11 which featured 10 held-out test subjects (not used during training), which we used as a test dataset for all four validation splits

of this dataset.

TABLE 2 | Performances of downstream datasets.

Dataset Start (s) Length (s) Metric Best Model config.

MMI 0 6 BAC 86.7 Linear (2.)

BCIC –2 6 Accuracy 42.6 Linear (2.)

ERN –0.7 2 AUROC 0.65 Linear (2.)

SSC 0 30 BAC 0.72 Linear (2.)

P300 –0.7 2 AUROC 0.72 BENDR (1.)

Start and length refer to length of trials and start with respect to event markers in seconds. Best performance specifies average performance across all subjects (and therefore folds) for

best performing model configuration. BAC: class balanced accuracy; AUROC: area under the receiver operating characteristic curve. Model configurations are numbered in accordance

with the list presented in section 2.4.2.

(and subsequently re-sampled them as above), and ignored
the rest.

A reduced subset of the Deep1010 channel mapping from
DN3 (Kostas and Rudzicz, 2020a) was used throughout. This
ensured that particular channels were mapped to a consistent
index for each loaded trial. The original mapping was designed
to be more inclusive, and thus assumed up to 77 possible EEG
electrodes. In the interest of minimizing unnecessary electrodes
for an already high-dimensional problem, we focused on the 19
EEG channels of the unambiguously illustrated 10/20 channel set
(UI 10/20) (Jurcak et al., 2007), as the TUEG dataset recordings
were done using a roughly 10/20 channel scheme. We simply
ignored reference electrodes, electro-oculograms, and any other
auxiliary channels. When also accounting for the additional
relative amplitude channel described above, every sequence
from every dataset used 20 channels. All surplus channels were
ignored, and missing channels set to 0.

During pre-training, we extracted sequences of 60 s (every
60 s) from each usable sequence, which amounted to 15, 360
samples per subsequence. We observed in early testing that there
was better performance with larger sequences (see Figure 4 for
more). As can be seen in Table 2, the downstream datasets all
classified sequence lengths shorter than this, but the architecture
we employed (see section 2.3) was ostensibly agnostic to sequence
length (see section 4 for caveats).

2.3. Model Architecture
The model architecture displayed in Figure 1 closely follows that
of wav2vec 2.0 (Baevski et al., 2020) and is composed of two

11https://www.kaggle.com/c/inria-bci-challenge

stages. A first stage takes raw data and dramatically downsamples
it to a new sequence of vectors using a stack of short-receptive
field 1D convolutions. The product of this stage is what we call
BENDR (specifically in our case, when trained with EEG). A
second stage uses a transformer encoder (Vaswani et al., 2017)
(layered, multi-head self-attention) to map BENDR to some new
sequence that embodies the target task.

Raw data are downsampled through the stride (number of
skipped samples) of each convolution block in the first stage
(rather than pooling, which would require greater memory
requirements). Each of our convolution blocks composed of the
sequence: 1D convolution, GroupNorm (Wu and He, 2020),
and GELU activation (Hendrycks and Gimpel, 2016). Our own
encoder features six sequential blocks, each with receptive fields
of 2, except for the first block, which has 3. Strides match the
length of the receptive field for each block. Thus, the effective
sampling frequency of BENDR is 96 times smaller (≈ 2.67
Hz) than the original sampling frequency (256 Hz). Each block
consists of 512 filters, meaning each resulting vector has a length
of 512.

The transformer follows the standard implementation of
Vaswani et al. (2017), but with internal batch normalization
layers removed and with an accompanying weight initialization
scheme known as T-Fixup (Huang et al., 2020). Our particular
transformer architecture uses 8 layers, with 8 heads, model
dimension of 1536 and an internal feed-forward dimension
of 3076. As with wav2vec 2.0, we use GELU activations
(Hendrycks and Gimpel, 2016) in the transformer, and
additionally include LayerDrop (Fan et al., 2019) and Dropout
at probabilities 0.01 and 0.15, respectively, during pre-training
but neither during fine-tuning. We represent position using an
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additive (grouped) convolution layer (Mohamed et al., 2019;
Baevski et al., 2020) with a receptive field of 25 and 16 groups
before the input to the transformer. This allows the entire
architecture to be sequence-length independent, although it may
come at the expense of not properly understanding position for
short sequences.

Originally, the downstream target of the wav2vec 2.0
process was a speech recognition sequence (it was fine-tuned on
a sequence of characters or phonemes) (Baevski et al., 2020).
Instead, here the entire sequence is classified. To do this using a
transformer, we adopt the common practice (Devlin et al., 2019)
of feeding a fixed token (a.k.a. [CLS] in the case of BERT or, in
our case, a vector filled with an arbitrary value distinct from the
input signal range, in this case: −5) as the first sequence input
(prepended to BENDR). The transformer output of this initial
position was not modified during pre-training, and only used for
downstream tasks.

The most fundamental differences in our work as compared
to that of the speech-specific architecture that inspired it are
as follows: (1) we do not quantize BENDR for creating pre-
training targets, and (2) we have many incoming channels. In
wav2vec 2.0, a single channel of raw audio was used. While
a good deal of evidence (Schirrmeister et al., 2017; Chambon
et al., 2018; Lawhern et al., 2018; Lotte et al., 2018; Kostas et al.,
2019; Kostas and Rudzicz, 2020b) supports the advantage of
temporally focused stages (no EEG channel mixing) separate
from a stage (or more) that integrates channels, we elected to
preserve the 1D convolutions of the original work to minimize
any additional confound and to reduce complexity (compute and

memory utilization ∝ Nfilters with 2D rather than∝
Nfilters

NEEG
for 1D

convolutions). This seemed fair, as there is also evidence that 1D
convolutions are effective feature extractors for EEG, particularly
with large amounts of data (Gemein et al., 2020; Kostas and
Rudzicz, 2020a). Notably, wav2vec 2.0 downsampled raw
audio signals by a much larger factor (320) than our own scheme,
but speech information is localized at much higher frequencies
than encephalographic data are expected to be. The new effective
sampling rate of BENDR is ≈ 2.67 Hz, or a feature-window (no
overlap) of≈ 375ms. We selected this downsampling factor as it
remained stable (i.e., it did not degenerate to an infinite loss, or
simply memorize everything immediately) during training.

2.4. Training and Evaluation
We used the Adam (Kingma and Ba, 2015) optimizer throughout
training (during pre-training and fine-tuning with downstream
data), with weight decay set to 0.01. We additionally used a
cosine learning rate decay with linear warm-up for 5 and 10%
of total training steps (batches) for pre-training and fine-tuning,
respectively. The peak learning rate itself varied by dataset; this
and other variable hyperparameters are further documented in
Appendix A.

2.4.1. Pre-training

The pre-training procedure largely follows wav2vec 2.0 but
we make some notable hyperparameter changes documented
below. The procedure itself is as follows: first, the convolutional
stage of the overall architecture develops a sequence of

representations (in our case BENDR) that summarizes the
original input. An input token is prepended to this sequence (a
BENDR-lengthed vector filled with−5), and contiguous spans of
the remaining sequence are masked. This modified sequence is
provided as input to the transformer stage, which is expected to
develop outputs that are most similar to the un-masked input at
a position t. Specifically, we use the self-supervised loss function
for a masked token localized at t:

L = −log
exp(cossim(ct , bt))/κ

∑

bi∈BD
exp(cossim(ct , bi))/κ

(2)

where ct is the output of the transformer at position t, bi is the
(original/un-masked) BENDR vector at some offset i, and BD is a
set of 20 uniformly selected distractors/negatives from the same
sequence, plus bt . We use the cosine similarity cossim(x, y) =

xTy/(|x||y|) function to determine how similar vectors are, and
the sensitivity of this is adjusted by a temperature factor κ , set
to 0.1. This loss is expected to operate by adjusting the output of
the transformer at position t to be most similar to the encoded
representation at t, despite that this input to the transformer is
masked. This means the transformer must learn a general enough
model of BENDR (not EEG per se) such that the entire sequence
of BENDR can characterize position t well. We also add the
mean squared activation of the BENDR to the loss to keep
the activations from growing too large, as was similarly done
previously (Baevski et al., 2020), but we set the weight of this
additional term to 1 (rather than 10).

Contiguous sequences of 10 BENDR are masked before input
to the transformer with probability pmask = 0.065, such that, for
each sample, the likelihood of being the beginning of a contiguous
section was pmask, and overlap is allowed. We learn a single mask
vector during pre-training of the same length as each BENDR
vector, and use this as the transformer input to masked positions;
masking is done by replacing a masked BENDR with a learned
vector. The number of negatives/distractors was set to 20 and
uniformly sampled from the same sequence as the masked vector,
i.e., negatives do not cross trials or sequences.

To evaluate how generalizable the sequence model and
vectors were to unseen data after pre-training, we evaluated
the contrastive task, expressed as the transformer accuracy
in constructing ct to be most similar to bt rather than the
distractors/negatives, with respect to unseen data (in this case
the downstream datasets). Note here that no further training
or any evaluation with respect to downstream task labels was
performed. This was done to evaluate the variability of the
representations after pre-training. During this evaluation step, we
masked half the amount expected during training, but did so such
that masked spans were evenly spaced through the sequence (so
that there were no overlapping sequences, and sufficient context
was available). That is, for a sequence length of NS, we masked
0.5 × NS × pmask = Nm contiguous sequences (of 10), and

spaced them every
⌊

NS
Nm

⌋

steps (starting at the first sample).

NS first remained at 15, 360 (60 s as in training, no overlap
between subsequent sequence representations) for all datasets
except P300, where sessions were too short and instead 5, 120
(20s) was used. We then evaluated the change in performance
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FIGURE 1 | The overall architecture used to construct BENDR. Loss L is calculated for a masked BErt-inspired Neural Data Representations (BENDR) bt (after

masking, it is replaced by the learned mask M), itself produced from the original raw EEG (bottom) via a progression of convolution stages. The transformer encoder

attempts to produce ct to be more similar to bt (despite that it is masked) than it is to a random sampling of over BENDR.

across the downstream datasets, excluding P300, as NS varied
from 20 to 60 s.

2.4.2. Downstream Fine-Tuning

Ultimately, our aims for subject-, session-, and dataset-
generalizable representations were not simply to accurately select
for the correct input (what was evaluated of the pre-training
BENDR and sequence model), but with the intent that these
representations (BENDR)—and potentially the sequence model
itself—could be effectively transferred to specific and arbitrary
tasks. We considered six different variations of TL across the
battery of downstream EEG classification tasks (classification
tasks listed in Table 1):

1. Add a new linear layer with softmax activation (classification
layer) to the first (recall this position was pre-pended with
an input value of −5 to the BENDR) output token of
the transformer. Then, fine-tune the entire model (continue
training the pre-trained model and start training the new
layer) to classify the downstream targets using the output of
this layer (ignoring the remaining sequence outputs) (shown
in Figure 2.1).

2. Ignore the pre-trained transformer entirely, and use only the
pre-trained convolutional stage (i.e., only use the BENDR).
Create a consistent-length representation by dividing the
BENDR into four contiguous sub-sequences, average each
sub-sequence and concatenate them12. Add a new linear layer
with softmax activation to classify the downstream targets

12The selection of four here was arbitrary.

with respect to this concatenated vector of averaged BENDRs
(shown in Figure 2.2).

3. The same as Figure 2.1, but perform no pre-training; start
with a randomly initialized DNN, as shown in Figure 2.3.

4. The same as Figure 2.1, but keep the BENDR (convolutional
stage) fixed and continue training the transformer (and start
training the new classification layer) to classify downstream
targets, as shown in Figure 2.4.

5. The same as Figure 2.2, but perform no pre-training; start
with randomly initialized convolution stage, as shown in
Figure 2.5.

6. The same as Figure 2.2, but keep the first stage weights
fixed and train only the new classification layer, as shown in
Figure 2.6.

Figure 2 provides some illustration of each variation, where the
respective indexed subfigures correspond to the list numbers
above. These were considered so that we could speak to the effect
each stage had on downstream performance, at least to some
degree. We were interested in (1) determining whether the new
sequence representation (BENDR) contained valuable features
as-is (as they appear to be for speech Baevski et al., 2020) or if they
required specific adaptation, and (2) whether the sequence model
learned characteristics of the BENDR that were informative to
the classification task. Finally, ignoring pre-training all-together,
of course, was to examine how effective the network would be at
learning the task otherwise, without the general pre-training task.

At this stage, we also included the sequence regularization
proposed by wav2vec 2.0 (Baevski et al., 2020), although
we adjusted it for our more varied trial lengths. That is, in
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FIGURE 2 | Six different permutations of the model architecture were trained with conventional fully supervised training (in a leave-one/multi-subject-out fashion, see

Table 1) for each downstream task. Indicated here is the portion of the overall architectures used (see Figure 1), and how pre-training model weights were leveraged

for a four-way classification task (rectangle with four circles in it). Four tasks (left half) leveraged model weights that were first developed through pre-training. All yellow

modules here indicate randomly initialized weights. Color that progresses in intensity (from pre-training to downstream) indicates further training, while added bars

indicate weights that were kept unchanged during that training stage.

all 6 fine-tuning configurations, contiguous sections of 10% of
the entire BENDR of a trial were masked with the mask token

learned during pre-training (not changed after pre-training) at a
probability of 0.01. In other words, this was the likelihood of a

sample being the beginning of a contiguous masked section, as in

pre-training. Additionally across the BENDR (throughout each
vector in the sequence), a similar procedure dropped features to

0, where contiguous sections of 10% of the channels (51) were
dropped with a probability of 0.005.

The P300, ERN, and SSC datasets all had imbalanced class
distributions; during training, we adjusted for these imbalances
by undersampling points uniformly of the more frequent classes

with replacement so that the number of samples drawn—per
epoch—of each class was equal to the number of examples of

the least frequent target class. As the test conditions then were

imbalanced, test performance was evaluated using metrics that

accounted for this, and followed previous work (Baevski et al.,

2020; Kostas and Rudzicz, 2020b).Metrics are specified by dataset

in Table 2.

3. RESULTS

3.1. Pre-training Generalization
Figure 3 shows how accurate the transformer stage is at
producing an appropriately similar BENDR. There are two
key observations in this figure, the first is that there is little
variability across the first four datasets, and within each of the
five datasets. The latter point implies that this accuracy is not
radically variable across different subjects (though, when fine-
tuning for classification, this variability returns; see Figure 5).
This could be because (a) the transformer adequately learns a
general model of how BENDR sequences of novel persons and
equipment progressed; (b) the BENDR themselves are invariant
to different people, hardware, and tasks; (c) some combination
of the last two possibilities; or (d) the problem is being solved
via some non-signal characteristics. We return to this question
shortly. The second observation was already alluded: the P300
dataset distinctly under-performs the other downstream datasets.
However, this coincided with the shortest evaluation sequence.
Looking at Figure 4, we see that all five datasets have consistently
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FIGURE 3 | Violin plot (inner lines for quartile divisions) of test subject-wise accuracy for each downstream dataset. Specifically, accuracy of the sequence model

(transformer stage) at creating a representation that is closest to the correct representation at masked sequence positions. The P300 dataset is distinctly lower

performing (note the adjusted Y-axis) than the remaining datasets, though this was likely due to its shorter evaluation context (see Figure 4). Nonetheless, there is

minimal test subject-wise variation, particularly when compared to classifier performance generally.

similar performance when evaluated with 20 s of data, so the dip
in P300 performance of Figure 3 seems less remarkable. Taken
together, Figures 3, 4 clearly indicate that a longer evaluation
context makes the contrastive task easier. This suggests that the
contrastive task is, in fact, solved by learning signal-relevant
features, rather than somemore crude solution like interpolation,
or by simply creating a sequence of recognizable position
representations (both of which have no reason to exhibit this
dependence on sequence length). We believe that the most likely
explanation for the rise in performance with more context is
that local representations are more difficult distractors, implying
that the new effective sampling rate remains too high (and
there is still redundant information encoded in local BENDR).
Notwithstanding, there is a strong uniformity of performance
across datasets and subjects (in both Figures 3, 4), meaning
this scheme develops features (whether through the transformer
itself, or the BENDR) that generalize to novel subjects, hardware,
and tasks, though their applicability to downstream contexts
remains to be seen.

3.2. Downstream Fine-Tuning
Figure 5 and Table 2 present a picture of how effectively BENDR
could be adapted to specific tasks. Overall, the fine-tuned linear
classification (the downstream configuration in Figure 2.2) that
bypassed the transformer entirely after pre-training was highest
performing four out of five times, although using the transformer
for classification (Figure 2.1) performed consistently similarly
(confidence intervals always overlapped), and surpassed the
bypassed transformer (Figure 2.2) with the P300 dataset (and
was highest performing for this dataset). Deploying the full
network (initial stage and transformer) without pre-training was

FIGURE 4 | Contrastive accuracy vs. evaluation length in seconds (x-axis

logarithmic). Performance is distinctly similar for all datasets, rising for longer

sequences. We suggest that this implies that samples that are further apart are

easier to distinguish between than neighboring samples. Thus, while

BErt-inspired Neural Data Representations (BENDR) encode local signal

characteristics well, there is redundancy.

generally ineffective, though this was not the case with the SSC
dataset, which may have been due to the larger amount of
data available for fully supervised learning. In fact, for both the
full and linear model architectures trained with the SSC data,
fine-tuning the pre-trained model is mostly on par with the
fully supervised counterpart. Considering our results with the
SSC data relative to those of Banville et al. (2019) proposed
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FIGURE 5 | Performance of all downstream datasets for each of the six model configurations considered. Metrics vary by dataset, see Table 2. Metrics were

normalized to range from chance (0) to perfect (1). Individual translucent points are performances of single subjects (within each test fold), solid diamonds indicate

mean performance across all subjects/folds, with surrounding bars showing 0.95 confidence intervals using n = 1000 bootstrap sampling. The discretized pattern of

the MMI dataset is due to the limited trials per subject, which resulted in limited distribution of performance levels. Notably here, (1) or (2) was consistently among the

best performing, yet both remained within the confidence levels of each other and aside from a few cases with the ERN dataset did not result in subject performances

that were worse than chance. (3) and especially (4) and (6) often stayed marginally above chance, indicating that the pre-trained features were not sufficient without

further training. The randomly initialized average-pooled BENDR with linear classifier (5) also performed well, though less consistently, suggesting pre-training was

needed for consistent performance. Model configurations are numbered in accordance with the list presented in section 2.4.2.

contrastive learning for sleep staging (described in section 1.1),
their reported results show that the fine-tuned variants of our
own model (1 and 2) achieved a higher mean balanced accuracy
relative to their two proposed schemes. Taken in concert with
our own approach’s wider applicability and more fine-grained
temporal feature development, we believe this demonstrates that
ours is a promising alternative. Interestingly, with and without
pre-training (Figure 2.2, 2.5) achieved similar performance to
Banville et al.’s fully supervised results (where our configurations
and their architecture employ similar 1D convolution-based
schemes), which is notable as with this dataset, both their
“temporal-shuffling” and “relative-positioning” tasks under-
performed this full supervision performance level (though we
cannot speak to statistical significance of this comparison).

Our fine-tuned approaches similarly appear reasonably
competitive with prior work on the MMI dataset (Dose et al.,
2018; Kostas and Rudzicz, 2020b), particularly when considering
that only 19 channels (rather than the full set of 64) were
being used. Outside of the MMI and SSC dataset, remaining
results are not competitive with more targeted solutions (Kostas
and Rudzicz, 2020b). Whenever pre-training was not used,
despite heavy regularization (and the very low learning rates)
the randomly initialized parameters were consistently prone to
overfitting, all the more so with the full model architecture.
Conversely, the pre-trained networks were slow to fit to the
downstream training data (under the exact same training scheme

for fine-tuning). Despite that these results were not necessarily
state of the art, this single pre-training scheme nonetheless shows
a breadth of transferability that is apparently unique, and aside
from the SSC dataset, consistently here outperforms the fully
supervised counterparts.

4. DISCUSSION

We are unaware of any prior work assessing transformer-
based (Vaswani et al., 2017) DNNs with EEG data (raw or
otherwise). This is perhaps consistent with the ineffectiveness
we observed with the randomly initialized full architecture
(Figure 2.3) and could imply that effective use of this powerful
emerging architecture requires pre-training (or at least enough
data, given the better looking SSC performance). This may be
due to the large number of parameters that these models require,
making training difficult without sufficient hardware resources.
The total number of parameters trained in configuration (1) is
over one billion parameters. Future work should continue to
evaluate this architecture, particularly as it appears to be more
widely applicable than the NLP applications it was originally
proposed for (Baevski et al., 2020; Dosovitskiy et al., 2020).

We believe that our approach can be improved through
adjusting the neural network architecture and pre-training
configuration such that it becomes more data-domain (EEG)
appropriate. Future work will prioritize effective integration of
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spatial information, likely by better isolating temporal and spatial
operations. Evaluation using large downstream datasets that
also feature many channels, such as the Montreal Archive of
Sleep Studies (MASS)13 will be considered. Though available for
public access at the time of writing, these data were unavailable
while experiments were prepared and conducted. Prior work
shows that DNN approaches effective for EEG leverage spatial
information (Chambon et al., 2018), and it is presently unclear
to what degree this is the case with BENDR. In terms of data-
appropriate temporal modeling, which we have considered with
relatively more zeal in this work, recall that Figure 4 presents the
possibility that local representations may be retaining redundant
information, further improvements therefore may be found in
better compressing the temporal resolution of BENDR. Future
work will consider larger downsampling factors in the initial
stage, along with longer sequences, balancing the more difficult
problem of summarizing more data (in effect, further data
compression), with the apparent increased effectiveness of the
contrastive task (as observed in Figure 4) on longer sequences.
A small but potentially fruitful avenue for further improvement
includes reconsidering the additive convolutional layer as a
substitute for explicit position encodings, which are in fact
more common (Vaswani et al., 2017; Devlin et al., 2019; Raffel
et al., 2020). Recall that this was originally for two reasons:
wav2vec 2.0 did the same, and we felt it best to limit excessive
changes to the architecture on a first iteration, and also because
it seamlessly supported flexible input lengths. This latter point
comes however, with a trade-off: our particular position encoder
had a receptive field of 25 (stride of 1), which means a little
over 9 s of input. While it seems that convolutional position
encodings offer better performance (Mohamed et al., 2019),
this input width exceeded the entire length of all but the sleep
classification task (the length we chose was optimized for pre-
training behavior).

After considering these possible avenues for improving
BENDR, we still do not fully discount the validity of some of
the transfer learning paths we appear to exclude above in our
introduction. We will reconsider these paths in future work.
Particularly, given the success we had in crossing boundaries of
hardware in this work, and in prior work (Kostas and Rudzicz,
2020a), it may be possible to construct an aggregate dataset
featuring a variety of EEG classification tasks toward better
ImageNet-like pre-training. The construction of a more coherent
label set that crosses several BCI paradigms would no doubt
be a significant effort (e.g., problems may include: is a rest
period before one task paradigm the same as rest before another?
What about wakeful periods in sleep?). This would no doubt be
imbalanced; the labels would be distributed in a long-tailed or
Zipfian distribution that would likely require well thought-out
adjustment (Cao et al., 2019; Tang et al., 2020).13 Furthermore,
the value of ImageNet pre-training seems to be localized to
very early layers and the internalization of domain-relevant data
statistics (Raghu et al., 2019; Neyshabur et al., 2020). Future
work could look into which of these may be leveraged with a
new aggregate (multiple subjects and tasks) pre-training, or the
common subject-specific fine-tuning. This may provide insight

13http://massdb.herokuapp.com/en/

into better weight initialization, or integration of explicit early
layers similar to Raghu et al. (2019) (one could also argue
that SincNet layers Ravanelli and Bengio, 2018 are some such
layers that could factor here). Additionally, as temporally minded
reconstruction losses continue to develop (Rivest and Kohar,
2020), reconsidering the effectiveness of signal reconstruction
as a pre-training objective (and/or regularization) is warranted,
whether this is within an MLM-like scheme similar to BENDR,
or a seq2seq model (Graves, 2012).

5. CONCLUSION

We have proposed MLM-like training as a self-supervised pre-
training step for BCI/EEG DNNs. This is in the interest of
diversifying the investigations into successful transfer learning
schemes for DNNs applied to BCI and EEG with possible
applicability to neuroimaging more generally. While previous
approaches fashioned DNN transfer learning after ImageNet pre-
training, we find this approach inadequate as there is limited
applicable data availability and it is questionably analogous to
its forebear. While our proposed alternative might similarly
suffer from this latter point to some degree (the most distinct
MLM success is with discrete sequences, not continuous
ones), it is more conducive to leveraging potentially immense
amounts of unlabeled data, it is not limited to long-term
feature developments as with previous proposals, and it seems
to produce representations equally suited to different users
and sessions, which is a problem previous work appears less
suited to solving. In summary, we see strong paths for the
effective deployment of powerful computation and massive
data scales with EEG and BCI. Effective solutions in these
specific applications could help drive application and analysis
solutions in neuroimaging and perhaps physiological signal
analysis generally.
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APPENDIX

Downstream hyperparameters

TABLE A1 | Hyperparameters that varied between datasets, and these were not

changed between different model configurations (see list in section 2.4.2).

Dataset Batch Size Epochs Learning Rate

MMI 4 7 1× 10−5

BCIC 60 15 5× 10−5

ERN 32 15 1× 10−5

P300 80 20 1× 10−5

SSC 64 40 5× 10−5
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