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Abstract: Abl1 kinase has important biological roles. The Bcr-Abl1 fusion protein creates undesired
kinase activity and is pathogenic in 95% of chronic myeloid leukemia (CML) and 30% of acute
lymphoblastic leukemia (ALL) patients. Targeted therapies to these diseases are tyrosine kinase
inhibitors. The extent of a tyrosine kinase inhibitor’s targets determines the degree of biologic
effects of the agent that may influence the well-being of the patient. This fact is especially true with
tyrosine kinase inhibitor effects on the cardiovascular system. Thirty-one percent of ponatinib-treated
patients, the tyrosine kinase inhibitor with the broadest inhibitory spectrum, have thrombosis
associated with its use. Recent experimental investigations have indicated the mechanisms of
ponatinib-associated thrombosis. Further, an antidote to ponatinib is in development by re-purposing
an FDA-approved medication.

Keywords: ponatinib; tyrosine kinase inhibitors; Abl1 kinase; Bcr-Abl1; chronic myelogenous
leukemia; thrombosis; platelet hyperactivity; pioglitazone

1. Introduction

Chronic myeloid leukemia (CML) causes ~4000 deaths annually in the US. As tyrosine kinase
inhibitors (TKI) have been approved to treat CML, the overall survival from this disease has improved
to 70%. With chronic treatment, the CML cancer stem cell constantly mutates, acquiring new resistance
and necessitating new formulations of TKIs. As new compounds are introduced into the field with
broader tyrosine kinase targets, the side-effects of these agents are increasing and have become
problematic for some patients. This review covers the history of CML, the normal function of Abl1
kinase protein, Bcr-Abl1 pathogenesis, TKI development, and cardiovascular, especially thrombosis,
side-effects of the TKIs. In this review, we will focus on prothrombotic effects of the third-generation
TKI, ponatinib. We will discuss its prothrombotic mechanisms and a candidate non-anticoagulant
antidote that could be combined with its use to prevent those thrombotic complications.

2. History of CML Biology and Research

CML is a hematologic stem cell disorder that presents with leukocytosis (i.e., elevated white-
blood-cell count), with a large number and distribution of maturing myeloid progenitor cells (shift-to-
the-left), increased basophils, and an enlarged spleen. It is molecularly identified by recognition of
the Bcr-Abl1 (Breakpoint Cluster Region Protein-Abelson Tyrosine-Protein Kinase 1) fusion gene [1].
In 2016, there were 54,226 people living with CML in the USA [2]. There were about 4000 CML patient
deaths in 2019 [3]. In 2020, 8450 new cases are expected [2]. CML was first reported and recognized in
the 1840s [4,5]. Baikie and Tough described the so-called “Philadelphia (Ph) chromosome” in 1960 [6]
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and it was confirmed by Peter Nowell in 1962 [7] and Janet Rowley et al. in 1973 [8]. In 1986, Klein and
Kleihauer published their characterization of the Bcr rearrangement and translocation of the cellular
Abl1 oncogene in Philadelphia chromosome-positive leukemia [9]. In fact, the constitutively activated
tyrosine kinase activity of the Bcr-Abl1 fusion protein results from Bcr chromosome 9 translocation to
chromosome 22 t(9;22) (q34;q11), so Bcr becomes upstream of Abl1′s exon 2 [10]. This translocation
activates myeloid cell growth and proliferation that signals through multiple oncogenic pathways,
accounting for 95% of CML and 30% of acute lymphoblastic leukemia (ALL) patients [11,12].

Treatment of CML up to 1979 included cytotoxic agents starting with Fowler’s solution of
arsenic, the use of radiation in the 20th century, and then chemotherapy with nitrogen mustard,
hydroxycarbamide, and finally busulfan in the 1960s and 1970s. In 1979, the first identical twin bone
marrow transplants were completed, and in the late 1980s, interferon-α was introduced. In the 1990s,
bone marrow transplantation cured patients with CML. The first published use of a tyrosine kinase
inhibitor (TKI) was in 1998 [13]. TKIs, for example, imatinib, acts as a competitive inhibitor maintaining
closed conformation and precluding ATP binding of Abl1 kinase, thus shutting down the proliferation
stimulus. This class of agents has made a lethal disease into a chronic medical illness.

3. Normal Function of Abl1 Tyrosine Kinases

The human Abl1 gene was first discovered as a Bcr-Abl1 fusion gene in a CML patient by David
Baltimore in 1986 [14]. His laboratory was one of the two groups that identified its kinase activity [15,16],
and characterized a link between the Ableson virus and cellular Abl kinase [17]. Ableson discovered a
murine lympho-sarcoma virus in 1970. The gene Abl1 was named after him [18]. Abl2 or Arg was
identified as a paralog by sequence homology 20 years later [19].

The functions of Abl1 kinase have been depicted in several reviews [20,21]. The structure of Abl1
includes a cap sequence, SH3, SH2, kinase domain, DNA binding domain, G-actin binding domain,
and F-actin binding domain [20]. Myristoyl displacement of the cap sequence by the kinase domain
initiates the releasing of Abl1 from autoinhibition. SH3 and SH2 domains stabilize the auto-inhibitory
inactive state of Abl1 kinase. Tyrosine phosphorylation of Y245, localized in the linker of SH2 and the
kinase domain, and Y412, localized in the activation loop of the kinase domain, are associated with
increased kinase activity. It is unclear if Abl1 kinase has tyrosine phosphorylation gating of its kinase
activity like Src family kinase [21]. Abl1 gets transported into the nucleus to impact transcription
through its DNA binding domain. Its G or F actin binding domains are the direct structural basis for
its role in cell motility and adhesion.

There are 116 Abl1-interacting proteins, 76 of them are substrates of and bind to Abl. Those proteins
are functionally diverse, including adaptors, other kinases, cytoskeletal proteins, transcription factors,
chromatin modifiers, etc. [20]. In addition to its kinase function, Abl1 also functions as an adaptor
(i.e., for cytoskeleton proteins) and an RNA processing factor. Genetically manipulated mouse lines
have demonstrated tissue-specific functions of Abl1 kinase.

Abl1 is an essential gene for viable mammalian life. Abl1 knockout mice have perinatal lethality
with cardiac hyperplasia. They are rescued by the cardiomyocyte-specific installation of Abl1 [22,23].
Abl1 and 2 double knockout mice are embryonically lethal [24]. In myeloid cells, constitutively
active Abl1 kinase as seen in CML leads to cell growth and proliferation. A murine tie2-cre-driven
endothelial cell knockout of Abl1 in an Abl2−/− background dies at late embryonic or perinatal stages
with downregulated endothelial angiopoietin/tie2 signaling, increased endothelial apoptosis, and an
abrupt end to endothelial survival [25]. Thus, in the endothelium, Abl1 kinase is essential for survival
and vascular integrity. In T-cells, Abl1 is important for maintenance of cellular junctions and HEF1 and
GTPase in cell migration. Its influence on cell migration derives from its activation of growth factors
and chemokines, leading to cadherin and integrin movement to regulate cell homeostasis, cytoskeletal
remodeling, and adhesion [26,27]. A conditional knockout of Abl1 in T cells (Lck-Cre) results in
impaired cell-cell interaction and motility [26,28]. Abl1 also regulates tight junctions in endothelial
cells [27]. In smooth muscle, conditional knockout mice with a Sm22-cre have hyper-responsive airways
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in asthma models, suggesting that the gene balances smooth muscle tone [29]. Likewise, in skeletal
muscle, conditional KO mice produced with a MyoD-cre have impaired DNA-damage repair [30].

The abundance of the Abl1 kinase is regulated by ubiquitination [31,32]. In vitro de-ubiquitinase
inhibitor experiments show that the Bcr-Abl1 fusion protein is rapidly modified by Lysine63-linked
ubiquitin polymers [33]. Dephosphorylation of Abl1 Y245 is performed by PTPN12 and PTPN18 [34,35].
PTPN12 knockouts in a Drosophila screening model were observed to be phenotypically resistant
to TKIs used to treat CML [36], whereas other cellular phosphatases like PTPN1 (PTP1B), PTPN6
(SHP-1), and PTPN11 (SHP-2) are substrates of Abl1 kinase. They have been reported to promote
Bcr-Abl1-induced hematologic neoplasia (CML and B cell acute lymphoblastic leukemia (ALL)) by
different groups [37–41].

4. Pathogenic Function of Bcr-Abl1 Kinase Fusion Proteins

Bcr is a serine/threonine kinase with several interaction domains for proteins such as actin, lipids,
and GTP [42–44]. In Bcr-Abl1-positive CML and ALL patients [11,12], Abl1 is a constitutively activated
tyrosine kinase. The upstream location of Bcr to Abl1 kinase is the genesis of activity [10]. Moreover,
different segmental translocations lead to distinct forms of Bcr-Abl1 fusion proteins expression,
which are p185, p210, and p230. P210 is most common, causing CML, while the other two are associated
with neutrophilic leukemia (p230) and ALL (p185), respectively.

It is unclear if Bcr-Abl1 is a somatic (acquired) or germline (inherited) mutation. First, experimental
hybridization of chromosome 9 Bcr with chromosome 22 Abl1 has been done in mice and patient
somatic cells [45]. Second, the incidence of the Bcr-Abl1 fusion gene in healthy people is age-related,
which is 2% (n = 44) in 0–13 years old and 30% (n = 73) in 20–80 years old [46].

Additionally, the Bcr-Abl1 fusion gene is not sufficient for CML development. Some pre-leukemia
somatic mutations, such as epigenetic genes, are required for the transformation [47–50]. There has not
been extensive screening of healthy individuals to determine who carries the Bcr-Abl1 translocation and,
if treating them, makes a difference in outcomes [44]. Alternatively, TKI-targeting Bcr-Abl1 in patients
with CML or ALL have brought responsive patients a close-to-normal life span [1]. The Bcr-Abl1
fusion protein ultimately activates myeloid cell growth and proliferation that signals through multiple
oncogenic pathways [11,51,52].

5. Mutations in Bcr-Abl1 Fusion Protein Have Led to the Development of Several TKIs

As the first small molecule Bcr-Abl1 targeting TKI imatinib became available in 2002, the five-year
survival of the CML patients increased from 20–30% (1989–2001) to 50–90% (2001–2013) [53–60].
TKIs used in CML management, with the exception of asciminib (binds a myristoyl site of the
BCR-ABL1 protein, “locking” BCR-ABL1 into an inactive conformation via a mechanism other than
binding to the kinase ATP-binding site), target the ATP binding pocket in the Abl1 kinase. The ATP
binding pocket is well-conserved among protein kinases. The variabilities in this domain have an
important role in determining the affinity between it and a specific TKI [61,62]. Based on in vitro cell
proliferation assays, a spectrum of targets for each approved human use TKI is known [63]. In the
present report, we extracted these data to prepare a table of targets in vascular biology and platelet
activation for each of the FDA-approved TKIs used to manage CML (Table 1).
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Table 1. Tyrosine kinase inhibitors (TKI) specificity and extent of inhibition.

Imatinib Nilotinib Bosutinib Dasatinib Ponatinib
ABL1 83 98 100 105 101
ABL2 68 95 99 102 100
AKT1 3 11 −5 3 9
AKT2 4 12 −3 6 7
AKT3 4 2 1 5 16
BLK 23 29 84 103 97
BTK −1 45 97 102 95

CDK4/CycD3 3 −4 −7 3 24
CHK1 10 −15 83 11 3
CHK2 6 −12 87 4 96
CSK −2 78 84 104 102

EEF2K −2 6 −7 3 −4
EGFR 4 17 100 102 97

EPHA1 9 61 3 101 97
EPHA4 5 91 86 99 101
EPHB1 7 72 98 100 100

Erk1 −5 3 1 −5 −2
Erk2 −8 1 −4 −7 −7
Erk5 17 −4 3 5 3
FAK 29 3 22 17 −23

FGFR1 −1 −29 79 47 101
FGFR2 3 −67 95 73 100
FGFR3 1 −11 83 34 101
FGFR4 8 −7 3 9 98

FGR 28 55 92 103 101
VEGFR1 5 32 97 39 101
VEGFR2 7 22 101 22 94
VEGFR3 3 17 92 31 101

FLT3 68 60 77 17 99
FRK 9 70 94 100 100
FYN 30 59 95 100 101
HCK 13 73 89 100 98
JAK1 −1 13 −2 9 99
JAK2 0 19 64 68 92
KIT 97 96 23 100 101
LCK 80 90 101 102 103
LYN 76 85 93 100 100

PDGFRα 98 103 77 100 103
PDGFRβ 91 93 95 99 102

SRC 5 23 96 101 102
SYK 16 54 100 69 10
TIE2 0 41 22 16 101
YES 22 44 97 102 101

ZAP70 10 3 76 12 5
These data were extracted and put into the present format from Supplemental Table S6 from Reference [63]. See text
for explanation. The “red” background means higher inhibition; the “green” background means lower inhibition.
A minus number means increased kinase activity.

All the approved TKIs inhibit Abl1 kinase. The first TKI imatinib has the smallest spectrum
of tyrosine kinase targets. Akt, Erk family members, FAK, and CDK4 pathways are spared from
these TKIs, allowing their signaling cascades in tissues. Ponatinib’s universal inhibition on FGFR,
VEGFR, and PDGFR family members suggests that it may have a large effect on the cardiovascular
system as these growth factors influence cell growth, proliferation, angiogenesis, reperfusion, repair,
and hypertrophy and fibrosis. Ponatinib also uniquely inhibits FGFR4 and Tie2. Regarding platelets,
the CSK and CHK family phosphorylate C terminal tyrosines to inhibit Src family kinases’ activity.
Their inhibition may result in activation of Src family kinases (Src, Yes, Fyn, Fgr, Lck, Hck, Blk, Frk,
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and Lyn) [64–66]. Among them, Lyn and Fyn are an important in signaling and regulation of platelets
function [67,68]. However, as Src family kinases have two critical tyrosine sites that have opposite
roles for their kinase activity, the ability of TKI targeting a Src family kinase to activate or inhibit the
enzyme depends on the concentration and specificity of the inhibitor [64,69]. Dose dependency of a
TKI’s effect may allow an agent like ponatinib to activate platelets by manipulating Lyn in the GPVI
activation pathway [64]. It is also worth noting that, in the vessel wall, Tie2 signaling is also critical
for endothelial survival [70]. Ponatinib’s inhibition of Tie2 may lead to vessel wall injury [25]. In one
word, the sum of ponatinib’s inhibition spectrum may result in a prothrombotic phenotype in vivo.
Ponatinib’s association with cardiovascular events, especially clinical and experimental thrombosis,
will be discussed below in Sections 5 and 6.

Another aspect of TKI use is that with treatment, patients develop resistance to the agent.
This resistance is due to the development of new mutations in the Bcr−Abl1 fusion gene. Table 2
is a list of the mutations in Bcr−Abl1 that have been observed with continued TKI treatment [51].
A large number of mutations arose after use of the first−generation TKI imatinib that produces
resistance to the agent. A common feature of those mutations is that they are near or in the imatinib
binding site. There are a large number of mutations at the ATP binding pocket at the SH2 contact,
C−lobe, the activation loop, and a few at gate keeper residues (where ATP accesses the kinase domain
and mediates the conformation change from close to open). Among them, the most resistant is
the T315I mutation that makes the Bcr−Abl1 kinase’s ATP binding pocket inaccessible to imatinib,
nilotinib, bosutinib, and dasatinib. The T315I mutation is estimated to be as high as 19% in the general
population [71–75].

Table 2. TKI−resistant mutations observed in patients with chronic myeloid leukemia (CML).

TKIs Imatinib Nilotinib Bosutinib Dasatinib Ponatinib Asciminib

Binding
conformation closed closed Both Open Closed Myristoyl

pocket

Resistance

T315 Y253
E255 M244
L248 G250
Q252 F317

M351 M355
F359 H396

T315 L248 Y253
E255 F359

T315 V299
L248 G250
E255 F317

T315 V299 F317 E255 A337 W464
P465 V468 I502

These data were extracted from Figure 3 of Reference [11].

Multiple strategies to get around the T315I mutation have been unsuccessful until the agent
ponatinib was developed [76]. A TKI candidate ONO1230 targets Crk, the first substrate of Bcr−Abl1.
It exhibited a 10−fold increased potency compared to imatinib including T315I, but its development
was stopped in preclinical investigations [77]. Second−generation TKIs (dasatinib and nilotinib)
exhibited overall significantly higher and faster rates of complete cytogenetic response and major
molecular responses than imatinib in the clinic trials [78–80]. However, the T315I mutation still blocks
these agents [81,82]. Two newer agents, however, ponatinib and asciminib, are able to target the T315I
mutation (Table 2) [51,76,83].

6. The Use of TKIs in CML and Their Association with Cardiovascular Disease

The observation that ponatinib was not inhibited by the T315I mutation made it a prime agent
for management of patients with this polymorphism and those patients who became resistant to
other TKIs. There have been numerous clinical trials evaluating the efficacy of ponatinib [84–90].
One initial trial of 29 patients reported no thrombotic events recorded during a median follow−up of
12 months [87]. Another study of 37 patients recorded one patient having a vascular adverse event
for a median follow−up of 14.8 months [90]. In a third investigation of 62 patients, 11 of them (18%)
had thrombotic events after a median time of 5.8 months with ponatinib use and a median follow
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up of 26.5 months [89]. However, the five−year follow−up of the pivotal Phase−II Ponatinib Ph+

ALL and CML Evaluation (PACE) trial showed a cumulative 31% of arterial and venous occlusive
events out of 449 ponatinib−treated CML patients. Importantly, the exposure−adjusted incidence of
new arterial occlusive events decreased over time (15.8 and 4.9 per 100 patient−years in year 1 and 5,
respectively) [88]. This pattern of ponatinib inducing thrombosis is confirmed in a thrombosis−focused
CML study [85].

The Evaluation of Ponatinib versus Imatinib in Chronic Myeloid Leukemia (EPIC) study was
a randomized, open−label, phase 3 trial designed to assess the efficacy and safety of ponatinib,
compared to imatinib, in newly diagnosed CML patients from 106 centers in 21 countries. Eleven of
155 ponatinib patients (7%) had occlusive arterial events versus 3 (2%) of 152 patients given imatinib
(p = 0.052) [86]. However, arterial occlusive events in 6 of the 11 ponatinib−treated patients and 1 of
the 152 imatinib−treated patients (p = 0.010) were considered serious. Consequently, this Phase−III
EPIC study was terminated prematurely due to concern for safety [86,91].

The cardiovascular events associated with TKI use was not initially appreciated by the
CML−treating physicians. The ponatinib findings prompted investigators to do similar analysis
on other populations of treated CML patients. Several reviews have summarized the vascular toxicity
of TKI therapy [92,93]. Recently, an FDA analysis of the adverse event reporting system database
showed that among 64,232 reported cardiovascular events of cancer patients, 2678 of them are CML
patients managed with TKIs. The cardiovascular effects of the TKI used to treat CML were analyzed
and are summarized in Table 3 [94]. Determined by the odds ratio, nilotinib treatment is associated with
cardiac arrhythmias. Cardiac failure is associated with nilotinib, dasatinib, bosutinib, and ponatinib.
Embolic and thrombotic events occur in both nilotinib and ponatinib patients. Hypertension is
associated with ponatinib management. Ischemic heart disease is seen with nilotinib, bosutinib,
and ponatinib treatment. Significant pulmonary hypertension is associated with imatinib and dasatinib.
Lastly, QT prolongation is seen in nilotinib and dasatinib patients (Table 3).

Table 3. CML TKIs and their risk for adverse cardiovascular events.

TKIs/Syndromes Imatinib Nilotinib Bosutinib Dasatinib Ponatinib Asciminib
Cardiac

arrhythmias 0.3(0.1–1.4) 2.7(2.1–3.5) 1.6(0.2–11.7) 1(0.6–1.6) 1(0.5–2.2) NA

Cardiac failure 1.1(0.8–1.6) 1.5(1.3–1.7) 3.5 (1.9–6.6) 4.1(3.7–4.6) 1.8(1.4–2.4) NA
Cardiomyopathy 1.2(0.7–2.0) 0.4(0.2–0.6) NA 0.4(0.3–0.7) 0.6(0.3–1.2) NA

Embolic,
thrombotic 0.4(0.3–0.5) 1.3(1.1–1.4) 1(0.5–1.9) 0.5(0.4–0.6) 1.4(1.2–1.6) NA

Hypertension 0.2(0.1–0.5) 0.9(0.8–1.1) 1.2(0.4–3.7) 0.8(0.6–1.0) 3.5(2.9–4.3) NA
Ischemic heart 0.6(0.4–0.9) 6.7(6.2–7.2) 2.5(1.3–4.8) 1.0(0.8–1.2) 2.9(2.4–3.5) NA

Pulmonary
hypertension 3.9(2.4–6.4) 1.1(0.6–1.7) NA 8.5(6.8–10.6) 1.3(0.6–3.9) NA

QT prolongation 0.8(0.6–2.5) 12.2(10.3–14.6) NA 2.5(1.6–3.7) 0.9(0.3–2.4) NA
The table presents an adjusted reported odds ratio to a specific adverse cardiovascular event. A “green background”
means there is a protective effect of the drug. A “red” background means that the drug use was associated with an
adverse cardiovascular effect. These data were extracted and tabulated presently from information in Supplementary
Tables S1–S8 presented in Reference [94].

Although some data show that nilotinib use is associated with a prothrombotic phenotype
in vivo and in vitro [95,96], the clinical trial data do not support that. A three−year follow up of the
randomized Evaluating Nilotinib Efficacy and Safety in Clinical Trials Newly Diagnosed Patients
(ENESTnd) data reported 5 of 279 (300 mg twice daily) and 3 of 277 (400 mg twice daily) patients had
peripheral arterial occlusive events [79], which is not specifically reported in the five−year update [80].
The update reported no deep vein thrombosis, and 1 patient of 279 (300 mg twice daily) had retina
vein occlusion [80]. A recent Phase II Nilotinib With Newly Diagnosed Chronic Phase CML trial
(NCT00129740) that was performed by a review of adverse events did not show any increased incidence
of thrombotic adverse events for 148 patients with a dose of 400 mg twice daily [97]. In a further
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assessment of the potential problems of TKI use in CML and cardiovascular events (CV), a review
of six clinical trials that includes 531 patients was performed looking for CV adverse events (AE) in
patients who received frontline agents [98]. Overall, 237 patients out of 531 (45%) developed CV−AEs.
Hypertension was the most common AE in 175/531 (33%) with 17% having a severe grade 3 out of 4
blood pressure elevation. The CV−AE incidence ratios (IRs) with a 95% confidence interval are 8.6
(7.6–9.8) per 100−person years [98]. Among the TKIs, ponatinib shows the highest IR at 40.7 (27.9–59.4).
Concerning CV thrombosis (myocardial infarction, stroke, peripheral vascular occlusion, and carotid
artery occlusion), ponatinib had an incidence of 7/43 (16.3%) versus imatinib 13/274 (4.7%), nilotinib
10/108 (9.3%), and dasatinib 17/106 (16%). These data indicate that adverse CV events are not the
exclusive domain of ponatinib.

7. Mechanism(s) of Ponatinib−Induced Thrombosis

The mechanism of how ponatinib induces thrombosis is not completely understood [96,99,100].
Loren and colleagues investigated the possible prothrombotic effect of ponatinib in 2015. The in vitro
addition of 0.1 to 1 µM ponatinib to washed platelets inhibited GPVI activation pathways when
compared to untreated samples [99]. In addition, ponatinib−treated platelets spread less on fibrinogen
or collagen surfaces similar to platelets treated with the Src family kinases inhibitor PP2, but in contrast
to 1 µM nilotinib− or imatinib−treated samples. Second, ponatinib−treated platelets attached to
fibrinogen or collagen have reduced phosphorylated GPVI pathway kinases such as LynY507, SrcY416,
LatY191, or Btk Y223 similar to PP2−treated platelets, but not nilotinib− or imatinib−treated samples.
Third, platelet aggregation in response to stimulation with collagen−related peptide (CRP) (3 µg/mL)
was dramatically decreased by ponatinib at concentrations as low as 0.1 µM, a concentration that is
close to maximum plasma concentration observed in patients [99,101]. These platelets have a 4.3 ± 20.5
percent aggregation and a lag time of 42.0 ± 5.1 s, compared to vehicle−treated platelets (1% DMSO)
that have 100 percent aggregation and 14.3 ± 3.1 s lag time (p < 0.05). In these investigations, ponatinib
treatment significantly decreased the percent aggregation and increased the lag time for platelet shape
change and aggregation in response to CRP stimulation. Lastly, ponatinib treatment also decreases
platelet P−selectin and phosphatidylserine exposure, as detected by flow cytometry, in response to
collagen−related peptide (CRP = 10 µg/mL, n = 3, p < 0.05). These combined studies indicate that
integrin α2bβ3 and GPVI pathways are inhibited in ponatinib−treated (0.1 to 1.0 µM) platelets.

Hamadi and colleagues have also examined ponatinib use ex vivo and in vivo [96]. Using 0.1 and
1 µM ponatinib in an ex vivo flow model on a collagen surface, ponatinib treatment promoted thrombus
growth. Additionally, they showed that with administration of 3 mg/kg ponatinib orally to 8 week old
C57BL/6 mice, the ponatinib−treated mice were prothrombotic in ferric chloride assay with both a
significantly shortened time for occlusion and larger thrombus volume. They also detected increased
inflammatory cytokines TNFα and IL6 at 4 h after ponatinib treatment. Moreover, they observed that
administration of the calcium channel blocker diltiazem 24 h before ponatinib is given reduced the
prothrombotic effect of this TKI.

Having the result of the PACE trial, we independently examined the prothrombotic effect of
ponatinib [100]. When these investigations began, we were aware of the Loren et al. study and we chose
to create an in vivo model that mimics a steady state of ponatinib use with plasma concentration of the
agent in wild−type C57 mice similar to that seen in man. We treated 18–20 week old mice (median age
of CML patients is 60 years old) with 3 mg/kg orally twice a day of ponatinib for 14 days. Drug levels
for ponatinib at 3 mg/kg/po bid were obtained by LC/MS/MS assay on day four, 2 and 24 h after starting
treatment. They were 176 ± 47 and 11.4 ± 3.4 ng/mL, respectively, which translates to maximal final
in vivo concentrations of 33 to 2 nM, respectively [100]. These concentrations are similar to those
achieved in man by oral administration [102]. Initial investigations show that mice dosed that way have
significantly shorter times to carotid artery occlusion following thrombosis induction with Rose−Bengal
compared to vehicle (citrate buffer)−treated mice (10.4 ± 2.9 min versus 32.3 ± 4.8 min, p < 0.0001).
We did not see the same shortening of carotid artery thrombosis times in 8–10 week old C57BL/6 mice
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with similar ponatinib treatment. Once establishing that ponatinib−treated mice are having shortened
provoked occlusion times, we embarked upon an investigation to determine if the prothrombotic state
was due to changes in murine blood coagulation proteins, the vessel wall, or platelets, the three critical
components that determine the balance between hemostasis and thrombosis [103].

Ponatinib−treated animals have normal prothrombin (PT) and activated partial thromboplastin
(aPTT) times and are not different from vehicle−treated mouse plasmas. In addition, after ponatinib
treatment, contact activation and tissue factor−mediated thrombin generation times (TGT) show
no statistical difference between ponatinib−treated and vehicle−treated mouse plasma. These data
indicate that blood coagulation proteins were not aberrant in ponatinib−treated mice. Additionally,
ponatinib−treated mice have a normal complete blood count including platelet count and normal
white blood cell differential cell count [100].

As ponatinib uniquely inhibits a number of signaling systems that influence the vessel wall (FGFR,
VEGFR, PDGFR, and Tie2) (Table 1) and inhibition of Abl1 kinase negative effects in endothelium [25,27],
investigations examined if steady−state levels of ponatinib influence vessel wall biology [104–106].
Investigations determined if the aorta from ponatinib−treated mice show evidence of apoptosis and
increased reactive oxygen species. Vessel wall apoptosis is associated with thrombosis [107]. In murine
tissue investigations, we found significantly increased expression of caspase3 in vessel adventitia including
adipose tissue [100]. We also identified increased reactive oxygen species (ROS) using the antibody to
nitrotyrosine in the ponatinib−treated vessel wall [100]. Finding vessel apoptosis of the adventitia is
associated with increased nicotinamide adenine dinucleotide phosphate oxidase–derived ROS [108,109].

Additional investigations examined if ponatinib influences platelet function to determine if they
also contribute to the observed arterial thrombotic events seen in patients. Tail bleeding times show
that ponatinib−treated mice are 55 ± 12 sec (mean ± SEM), a value shorter than vs. 102 ± 9.3 sec for
untreated mice, p < 0.033, n > 20 in each group [100]. We next examined platelet GPVI activation
after collagen−related peptide (CRP) and protease−activated receptors after α−thrombin stimulation.
In vivo ponatinib treatment primed platelets such that their CRP or α−thrombin−induced expression
of JON/A (the epitope of the activated heterodimeric complex of α2bβ3 integrin complex on murine
platelets) (p < 0.01) and P−selectin (CD62) (p < 0.01) was significantly higher than that of untreated
platelets when examined on flow cytometry [100]. These studies indicate that in vivo administration
of ponatinib alters platelets such that they become activated at lower concentrations of CRP and
α−thrombin [100]. The difference between these experiments where platelets are treated in vivo with
ponatinib versus the in vitro investigations of Loren et al. [99] is that the final concentration of the TKI
was between 2–33 nM in the in vivo experiments versus 100–1000 nM in the in vitro studies [99,100].
As Lyn is constitutively active, the lower dose in the in vivo studies may have produced the open
conformation of p−Lyn by blocking only the higher inhibitory site at p−LynY507 [101]. These combined
studies indicate that ponatinib treatment alters both vessel wall and platelet function, making the
latter hyperactive.

Next, we sought an antidote to ponatinib’s effect on the vessel wall and platelets. Preliminary
studies indicated that in ponatinib−treated mice, aortic Sirt1, KLF4, thrombomodulin, and endothelial
cell nitric oxide synthetase were reduced. We postulated that a PPAR−gamma agonist, i.e., pioglitazone,
that stimulates Sirt1 might correct these defects. When ponatinib−treated mice are also given pioglitazone
(10 mg/kg/day, orally), the time to thrombosis significantly lengthens and corrects to normal (41 ± 3.7 min,
p < 0.025) compared to ponatinib treatment alone (p = 0.0009) [100]. Additionally, combined ponatinib
and pioglitazone treatment corrects the increased ROS and apoptosis in murine aorta as indicated by no
nitrotyrosine and caspase 3 expression, respectively [100]. Further, pioglitazone treatment combined
with ponatinib normalizes (i.e., increases) the threshold concentration of CRP to induce platelet JONA
and P−selectin (CD62) expression on platelets [100]. These experiments indicate that in our murine
model, pioglitazone is an antidote to ponatinib. In several randomized clinical trials, pioglitazone
has been recognized to be protective of cardiovascular events [110–112]. Additionally, as pioglitazone
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is a Stat5 inhibitor, it has been shown that it also increases molecular remission in CML [113–115].
We observed Stat5 inhibition in our experiments [100].

8. Summary and Perspective

In the last 20 years, the discovery and use of TKIs to treat CML have been a major success.
With continued use of TKIs, it has been recognized that some are associated with negative
cardiovascular events. This effect is clearest for ponatinib. However, understanding the mechanism(s)
of ponatinib−induced thrombosis will guide us to re−purpose or develop novel therapies to manage
the TKI toxicities so that these effective anti−cancer agents continue to be used.
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TKI Tyrosine Kinase Inhibitors
Bcr−Abl1 Breakpoint Cluster Region Protein−Abelson Tyrosine−Protein Kinase 1
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