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Abstract: Natural toxins are chemical substances that are not toxic to the organisms that produce
them, but which can be a potential risk to human health when ingested through food. Thus, it is
of high interest to develop advanced analytical methodologies to control the occurrence of these
compounds in food products. However, the analysis of food samples is a challenging task because of
the high complexity of these matrices, which hinders the extraction and detection of the analytes.
Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or
preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental
analysis. Current trends in sample preparation involve moving towards “greener” approaches by
scaling down analytical operations, miniaturizing the instruments and integrating new advanced
materials as sorbents. The combination of these new materials with sorbent-based microextraction
technologies enables the development of high-throughput sample preparation methods, which
improve conventional extraction and clean-up procedures. This review gives an overview of the
most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of
exogenous origin from food, as well as the improvements achieved in food sample preparation by the
integration of new advanced materials as sorbents in these microextraction techniques, giving some
relevant examples from the last ten years. Challenges and expected future trends are also discussed.
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1. Introduction

Natural toxins are chemical substances naturally produced by living organisms (animal, plants or
microorganisms) that are not toxic to them, but which can be potential health hazards to humans when
ingested through food. These substances may naturally occur in food endogenously (toxic compounds
that are implicit constituents of food resulting from the metabolism of a genus, species or strain, e.g.,
glycoalkaloids in potato or tetradotoxin in pufferfish) or exogenously (toxic compounds resulting from
the metabolism of living organisms that occur in food as contaminants as they are not intentionally
added, e.g., mycotoxins produced by molds grown in different products and toxins produced by algae
that may be accumulated in edible marine organisms) [1,2]. The World Health Organization (WHO)
encourages national authorities to monitor the most relevant natural toxins in the food supply. In this
context, natural toxins of exogenous origin have received the most attention because of their potential
harmful health risks and their involvement as natural contaminants. With respect to international
organisms, these natural toxins of exogenous origin can be grouped in mycotoxins, phycotoxins (or
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marine toxins) and plant alkaloids [1,3,4]. Mycotoxins are toxic metabolites produced by certain
types of molds, which can grow on a large number of foodstuffs such as cereals, dried fruits, nuts
and spices. Most of these mycotoxins are chemically stable and survive food processing. The most
common are aflatoxins (B1, B2, G1, G2 and M1), ochratoxins (A, B and C), patulin and fusarium toxins
(deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, zearalenone and fumonisins) [5]. On the other hand,
marine toxins are produced during blooms of particular naturally occurring microalgae species in the
ocean and fresh water. Thus, these toxins can be retained and bioaccumulated in shellfish and fish or
contaminate drinking water. Their intake can be a potential hazard to consumers, since they are not
eliminated by cooking or freezing, and might cause several adverse effects [6]. Conversely, in recent
years, awareness about alkaloids of plant origin, such as pyrrolizidine, tropane and opioid alkaloids,
has raised because of their occurrence as contaminants in different food products and the lack of data
and knowledge about their exposure through food. These alkaloids are secondary metabolites of
some plants, which can grow in fields as weeds and contaminate food crops appearing throughout
the production of plant-derived products and finally be ingested, being toxic to humans [4,7–12].
The control of all these exogenous natural toxins in food is of high importance since they can cause
from mild disorders (headache, vomiting, diarrhea, etc.) to serious situations (neurological disorders,
carcinogenic, teratogenic or/and mutagenic effects, hepatic and renal damage, etc.) and can even be
lethal. Moreover, they may cause the appearance of chronic diseases due to their harmful effects
after a long-term exposure at high levels [1–12]. Therefore, food safety plays an essential role in
reducing the risks related to the presence of harmful substances in food in order to protect consumers.
In fact, the WHO in collaboration with the European Food Safety Authority (EFSA), the Food and
Agriculture Organization (FAO) and the Codex Alimentarius Commission have established a legislation
for mycotoxins and marine toxins [13,14], whereas pyrrolizidine, tropane and opioid alkaloids are in
the process of being legislated, and at the moment only recommendations have been established for
them [15–17]. In this sense, maximum residue limits (MRLs) for many of these natural toxins have
been established in these guidelines to control the occurrence of these compounds in food [13,18].

Nonetheless, to achieve these limits and ensure the health of consumers it is important to develop
high-throughput, sensitive and selective analytical methods to determine in a feasible way the presence
of these natural toxins in foodstuffs [19]. However, the analysis of these compounds in food samples
constitutes a challenging task because of the extreme complexity of these matrices, which considerably
hinders the selective extraction of the target analytes and decreases the sensitivity of the method [20].
Despite significant advances in analytical instrumentation, particularly with respect to the combination
of mass spectrometry and chromatographic separation, these techniques are not sensitive enough
for direct analysis of complex matrices. Therefore, sample preparation is still a crucial step in food
analysis in order to achieve an effective isolation and/or preconcentration of the analytes and provide
an adequate clean-up of matrix interferences prior to instrumental analysis [21].

For many years, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) have been the
most extensively used sample preparation techniques. Due to the inherent drawbacks of LLE (such
as: time-consumption, limited ability to extract polar compounds, requirement of large volumes of
solvents, etc.), SPE has become more popular, as it provides more efficient recoveries and lower solvent
consumption than LLE [22]. Nevertheless, current trends in sample preparation involve moving towards
“greener” approaches by scaling down analytical operations and miniaturizing the instruments [23,24].
This has led in recent years to the development of different microextraction techniques for sample
preparation procedures. In this sense, the SPE technique has been the axis of improving and creating
even better and greener sorbent-based sample preparation techniques, which require less time and
labor than SPE, such as: miniaturized solid-phase extraction (m-SPE), micro-dispersive solid-phase
extraction (µ-dSPE), microextraction by packed sorbents (MEPS), pipette-tip solid-phase extraction
(PT-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and micro-solid-phase
extraction (µ-SPE). These sorbent-based microextraction techniques have been proposed in recent
years as an alternative to conventional sample preparation techniques to meet the Green Analytical
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Chemistry (GAC) requirements, as they involve advantages such as minimal solvent and sample
consumption, fewer treatment steps, and reduction of waste generation [25]. Thus, they enable
the development of cheaper, more cost-effective, and more environmentally friendly extraction and
purification procedures.

On the other hand, the synthesis of new advanced materials for their application as sorbents in
sample preparation has achieved considerable progress in the last decade, since these materials can
play an important role in preconcentration processes and, in some cases, provide selective extraction of
the target compounds [20,21,23,26,27]. Magnetic nanoparticles (MNPs), silica-based nanomaterials,
metal-organic frameworks (MOFs), multiwalled carbon nanotubes (MWCNTs) and graphene oxide
(GO) are currently the most used materials for the extraction of natural toxins from food samples, as
they present large surface area and advanced physicochemical properties that enhance the efficiency,
selectivity and sensitivity of the analytical procedures [21,27–29]. Additionally, the combination of
these new materials with microextraction technologies enables the development of high-throughput
sample preparation methods, which provide the advantages of both strategies leading to meet the
GAC requirements and improving conventional extraction and clean-up technologies [23,30].

Some works in the literature have previously reviewed the determination of several natural toxins,
such as phytotoxins [27] or mycotoxins [31], in food samples and other matrices. However, these works
have just focused on one type of compounds but have not considered other natural toxins. On the other
hand, other published reviews have addressed the development of new materials for their application
to extract or detect chemical contaminants in order to ensure food safety [27,32,33]. Nevertheless, these
revisions have not specifically evaluated the integration of these new materials in microextraction
procedures for the particular determination of natural toxins in food. Accordingly, this review aims to
provide an overview of the different sorbent-based approaches employed for the microextraction of
natural toxins in food products, as well as the improvements achieved in sample preparation by the
integration of new materials as sorbents in these microextraction techniques, by giving some relevant
examples from the last ten years (from 2009 to 2019). The criteria of microextraction followed in this
review are the use of the sorbent-based microextraction technique and the reduced amount of sorbent
employed to achieve the extraction of the target analytes. Nevertheless, other aspects, such as the
amount of sample and the volume of solvents, are also indicated. Natural toxins of exogenous origin
that have been legislated or in the process of regulation, like mycotoxins, marine toxins, pyrrolizidine
alkaloids, tropane alkaloids and opioid alkaloids, have been established as featured analytes due to the
harmful risk their intake may entail on human health, as well as their possible regular consumption
through diet. Challenges and expected future trends are also included.

2. Sorbent-Based Microextraction of Natural Toxins from Food Samples

The miniaturization of conventional sample preparation procedures has been proposed as an
alternative for developing analytical methods with improved analytical characteristics (accuracy,
precision, sensitivity, etc.) along with a decrease in sample and solvent consumption, reduction
of hazardous reagents and wastes, and saving energy and time. As a result, new formats and
configurations have arisen to carry out microextraction procedures, which overcome drawbacks of
conventional techniques. Table 1 collects the most relevant works published in the last decade dealing
with microextraction techniques based on sorbent-adsorption, which have been applied for the isolation
of natural toxins from different food samples. In this sense, Solid-Phase Microextraction (SPME)
has been the most popular [34–38]. However, procedures based on the dispersion of the sorbent
material, such as micro-dispersive solid-phase extraction (µ-dSPE) and micro-solid-phase extraction
(µ-SPE) have also been used [39–41]. All the works reviewed were performed for the analysis of
mycotoxins (ochratoxins, aflatoxins, zearalenone, fumonisins and patulin) in different food matrices
(mainly, wine, cereals and nuts). Only three of the methodologies developed in these articles perform
the simultaneous determination of different types of mycotoxins [37,39,40], while the other works only
described the individual determination of a specific analyte [34–36,38,41,42]. Concerning detection
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mode, mass spectrometry (MS) and fluorescence detection (FLD) were the techniques employed to
detect these natural toxins (Table 1). Most of these works used MS detection, which is the most suitable
technique to detect the presence of contaminants in food at trace levels thanks to its high sensitivity and
to its structural elucidation capability, which enables the unequivocal identification and confirmation
of the target analytes. In contrast, the FLD also provides high sensitivity and selectivity, but if the
analytes do not show fluorescence it is necessary to carry out a derivatization process (pre-column or
post-column derivatization) for their detection, which can sometimes be time consuming.

2.1. Solid-Phase Microextraction (SPME)

Solid-Phase Microextraction (SPME) was first developed by Pawlisyn and Arthur in 1990 [43]
to overcome some inherent limitations of SPE, such as saving time and reducing the consumption
of organic solvents. This technique is a solvent free sample preparation strategy which consists in
a fused silica fiber coated with a suitable stationary phase attached to a modified micro-syringe.
Its configuration enables easy access of the analytes, enhancing their extraction and desorption.
SPME presents many advantages, it is simple, sensitive, solvent-less, time-efficient (combines sampling
and extraction in one step) and can be easily coupled with analytical separation instruments such as
HPLC, gas chromatography (GC) and capillary electrophoresis (CE). Additionally, it can be applied to
liquid, gas and solid samples. However, it also presents some drawbacks: batch to batch variation,
fragility of fibers, restricted choice of commercially available stationary phases and fiber coatings,
and insufficient selectivity of these materials [25]. Nevertheless, despite these negative aspects, due
to its versatility and benefits it is easy to find a large number of papers which use SPME to perform
sample preparation and analyte enrichment. Regarding the application of SPME in recent years in the
extraction of natural toxins from food samples, it has been used to extract ochratoxins, aflatoxins, and
patulin from different foods, such as drinks, cereals, nuts, dried fruit and spices (Table 1). For instance,
Quinto et al. proposed a SPME procedure to extract four aflatoxins from cereal flours followed by
its subsequent determination by HPLC-FLD with post-column photochemical derivatization step to
improve the limits of detection (LODs) and enhance the native fluorescence of aflatoxins B1 and G1 [34].
Different commercial fibers were evaluated, with polydimethylsiloxane/divinylbenzene (PDMS/DVB)
being the one with the greatest extraction capability. Also, other parameters, such as temperature,
pH, ionic strength, adsorption and desorption time and mobile phase, were studied and optimized.
Nevertheless, under the optimized conditions low recovery values were achieved, ranging from 49%
to 59%, and LODs were between 0.035–0.2 µg/Kg.
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Table 1. Application of sorbent-based microextraction techniques for isolation of natural toxins in food samples (2009–2019).

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Cereal flours (2 g) AF (B1, B2, G1, G2)

Extraction with 10 mL of MeOH/phosphate buffer (80/20,
v/v, pH 5.8). Evaporation to dryness and reconstitution
with 4 mL of phosphate buffer. An aliquot of the extract

(2 mL) subject to microextraction.

SPME
Sorbent: Commercial fibers

Elution: 0.1 mL MeOH
HPLC-FLD 49–59 0.035-0.2 µg/Kg [34]

Nuts, cereals, dried
fruits and spices (0.5 g) AF (B1, B2, G1, G2)

Extraction with 1 mL of MeOH/H2O (80/20, v/v).
An aliquot of the extract (0.1 mL) mixed with 0.1 mL of
50 mM Tris buffer and brought to a total volume of 1 mL

with H2O before microextraction.

In-tube SPME *
Sorbent: SUPEL-Q PLOT capillary HPLC-MS 81–109 0.0021-0.0028 µg /L [35]

Fruit juice and dried
fruit (1 mL) PAT - In-tube SPME *

Sorbent: Carboxen-1006 PLOT capillary HPLC-MS > 92 0.023 µg /L [36]

Nut and grain
samples (0.5 g) OTA, OTB

Extraction with 1 mL of MeOH/H2O (80/20, v/v).
Defatted with 3 mL hexane, supernatant discarded.
An aliquot of the clean extract (0.1 mL) brought to a

total volume of 1 mL with H2O before microextraction.

In-tube SPME *
Sorbent: Carboxen-1006 PLOT capillary HPLC-MS 88 0.089-0.092 µg /L [37]

Wine (0.05 mL) OTA - In-tube SPME *
Sorbent: Luna C18 particles HPLC-MS/MS 61–73 0.02 µg/L [38]

Powdered infant milk
(3 mL) and mineral

waters (50 mL)

ZEN, α-ZAL,
β-ZAL, α-ZEL,
β-ZEL, ZAN

Extraction of milk samples with 0.15 mL acetic acid and
6 mL ACN. Evaporation up to 2.5 mL and reconstitution

with H2O to 25 mL, pH adjusted to 3.0 before
microextraction.

µ-dSPE
Sorbent: 80 mg of MWCNTs

Elution: 30 mL MeOH/Acetone (1/1, v/v)
HPLC-MS/MS 77–120 0.05–2.02 µg/L [39]

Peach seed, milk
powder, corn flour

(0.2 g) and beer
(0.2 mL)

AF (B1), OTB, T-2,
OTA, ZEN

Microwave assisted extraction of solid samples with
0.2 g NaCl and 5 mL MeOH/H2O (70/30, v/v).

An aliquot of the extract (0.2 mL) brought to a total
volume of 5 mL with H2O before microextraction.

Liquid samples diluted with H2O up to 5 mL
before microextraction.

µ-dSPE
Sorbent: 12.5 µg zirconia nanoparticles

Elution: 0.1 mL MeOH
UHPLC-MS/MS 84–105 0.0022–0.017 µg/L

0.0036–0.033 µg/Kg [40]

Coffee (10 g) and
grape juice (10 mL) OTA

Extraction of coffee samples with 100 mL of carbonate.
An aliquot of the extract (10 mL) adjusted to pH 1.5

before microextraction.
Grape juice samples adjusted to pH 1.5

before microextraction.

µ-SPE
Sorbent: 15 mg AFFINIMIPTM OTA

Elution: 0.25 mL MeOH/Acetic acid (98:2, v/v)
HPLC-FLD 91–101 0.02–0.06 µg/Kg [41]

Wine (0.35 mL) OTA -
MEPS

Sorbent: 4 mg C18 sorbent
Elution: 0.05 mL ACN/2% Acetic Acid (90/10, v/v)

HPLC-FLD 76–108 0.08 µg/L [42]

* Elution performed with mobile phase (online system); ACN: Acetonitrile; AF: Aflatoxin; F: Fumonisin; HPLC-FLD: High performance liquid chromatography coupled to fluorescence;
HPLC-MS/MS: High performance liquid chromatography coupled to tandem mass spectrometry; HPLC-MS: High performance liquid chromatography coupled to mass spectrometry; MeOH:
Methanol; MEPS: Microextraction by packed sorbent; MWCNTs: Multiwalled carbon nanotubes; OTA: Ochratoxin A; OTB: Ochratoxins B; PAT: Patulin; SPME: Solid-phase microextraction;
T-2: T-2 toxin; UHPLC-FLD: Ultra High performance liquid chromatography coupled to fluorescence; UHPLC-MS: Ultra High performance liquid chromatography coupled to tandem
mass spectrometry; ZAL: Zearalanol; ZAN: Zearalanone; ZEL: Zearalenol; ZEN: Zearalenone; µ-dSPE: Micro-dispersive solid-phase extraction; µ-SPE: Micro-solid-phase extraction.
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A variant of this method is the in-tube SPME technique, which involves employing internally
coated open-tubular capillary columns or needles, instead of using coated fibers. This SPME modality
arose with the aim of easily coupling SPME on-line with HPLC or GC [44]. In addition, in-tube
SPME can overcome some drawbacks related to conventional SPME, such as: fragility, low sorption
capacity and extraction phase bleeding. Additionally, it reduces analysis time and provides better
accuracy, precision and sensitivity. Nonetheless, it requires more complex instrumentation than
conventional SPME. In this context, Kataoka et al. developed different in-tube SPME methods for the
extraction of several mycotoxins (aflatoxins, patulin and ochratoxins) from different food matrices
(nut, cereals, dried fruits, spices, fruit juice) prior to their analysis by HPLC-MS [35–37]. In these
works, a capillary GC column was used as the in-tube SPME device, which was placed between the
injection loop and the injection needle of the autosampler (Figure 1). The procedures were carried out
in the draw/eject extraction mode, which means the autosampler has to be programmed to control the
extraction, desorption and injection steps of SPME. For this purpose, a programmable autosampler with
a metering pump is required, which limits its applicability, since it requires specific instrumentation.
The extraction of analytes onto the capillary coating was performed by repeated draw/eject cycles of
the sample in the load position of the autosampler. The repeated draw/eject cycles were carried out in
the same vial including the sample. Afterwards, desorption of the extracted analytes from the capillary
coating to the analytical column was performed by switching the injector to the inject position. In all
these works, different types of coated capillary columns were tested. Best extraction performance
was achieved using porous divinylbenzen polymer (Supel-Q PLOT) and carboxen molecular sieves
polymer (Carboxen-1006 PLOT) capillary columns for aflatoxins [35] and both patulin and ochratoxins,
respectively [36,37]. Under the optimized conditions, recovery values for aflatoxins were in the range
81–109%, and their chromatographic separation was achieved within 8 min with LODs values of
0.0021–0.0028 µg/L [35]. Therefore, this method is more suitable and effective than the previous
work reported by Quinto et al. for the analysis of aflatoxins [34], since higher recovery values and
sensitivity are achieved with similar run-time analysis in the chromatographic separation [35]. On the
other hand, high recovery values were also achieved with in-tube SPME for patulin (>92%) [36] and
ochratoxins A and B (>88%) [37], with LODs of 0.023, 0.092 and 0.089 µg/L, respectively. In addition,
the chromatographic separation of these compounds was achieved within 5 min [36,37].
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(SPME) system (reprinted with permission from reference [38]).

More recently, Andrade et al. proposed an in-tube SPME method using a capillary packed with
C18 particles in the flow-through extraction mode instead of the draw/eject extraction approach for
the extraction of ochratoxin A from wine samples and its subsequent analysis by HPLC-MS/MS [38].
The flow-through extraction mode is a more versatile approach since it can operate in manual and
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automated sample introduction, whereas the draw/eject approach can only be performed in automated
mode. Moreover, the flow-through extraction mode is more suitable for packed and monolithic
capillary columns, since it overcomes problems of high backpressure, which may occur when using
these types of capillaries in the draw/eject extraction mode. In addition, the flow-through extraction
mode exhibits better extraction efficiency in a shorter time than the draw/eject approach [38,44].
Nevertheless, the in-tube SPME extraction proposed by Andrade et al. [38] with the flow-through
extraction mode provided lower recovery values for ochratoxin A (61–73%) than the ones previously
reported by Kataoka et al. using the draw/eject extraction mode (>88%) [37]. On the other hand, the
LOD report for ochratoxin A was similar (0.02 µg/L) [38], but the chromatographic separation took
longer (11 min) than the method proposed by Kataoka et al. (5 min) [37].

2.2. Micro-Dispersive Solid-Phase Extraction (µ-dSPE)

µ-dSPE is a simple miniaturization of the conventional dispersive solid-phase extraction (dSPE)
procedure in which small amounts of sorbents (lower than 100 mg) and solvents are used to extract
and enrich compounds from different matrices. In contrast to SPE, in this method, the sorbent is
dispersed into the sample solution, providing a more effective interaction between the analyte and
the sorbent that improves extraction, since it avoids passing the sample extract through a packaged
cartridge. After the elution step, the sorbent can be separated by centrifugation or filtration. The easy
operation of µ-dSPE makes this technique very suitable for performing multicomponent extraction of
different analytes saving time and reagents. For instance, it has been used to simultaneously extract
six estrogenic mycotoxins (zearalenone, α-zearalenol, β-zearalenol, zearalanone, α-zearalanol and
β-zearalanol) from mineral water and powdered infant milk using multiwalled carbon nanotubes
(MWCNTs) as sorbent prior their determination by HPLC-MS [39]. Similarly, Du et al. developed a
method combining microwave-assited µ-dSPE and ultra-high performance liquid chromatography
coupled to tandem MS (UHPLC-MS/MS) to determine 6 different mycotoxins (fumonisin B1, aflatoxin
B1, ochratoxin B, T-2 toxin, ochratoxin A and zearalenone) in different food matrices, including peach
seed, milk powder, corn flour and beer, using zirconia nanoparticles as sorbent [40]. In both works,
several experimental parameters affecting the extraction efficiency (pH, type and amount of sorbent
and elution solvent, etc.) were evaluated and optimized, and both methods were successfully validated,
achieving good recovery values. With 80 mg of MWCNTs, recoveries ranged from 77% to 120%, and
limits of detection (LODs) were in the range 0.05–2.02 µg/L [39]. However, zirconia nanoparticles
proved to be very superior sorbents, since with a really small amount of them (12.5 µg) and a very
short extraction time (2 min) the recoveries of the different target mycotoxins ranged between 84 and
105% with lower LODs (0.0022–0.017 µg/L and 0.0036–0.033 µg/Kg for liquid and solid samples,
respectively) [40] than the ones described for the previous work [39]. Using this minimum amount of
sorbent was possible because the authors previously dispersed 2 mg of the zirconia nanoparticles in an
aqueous solution, and then an aliquot of the dispersed solution containing 12.5 µg of the nanoparticles
was used to perform microextraction of the target analytes, showing the great extraction potential of
this type of sorbent.

2.3. Micro-Solid-Phase Extraction (µ-SPE)

The sorbent-based µ-SPE technique emerged as an alternative to the multi-step SPE procedure,
as the clean-up and extraction step are performed simultaneously. In this procedure the sorbent is
enclosed in a porous membrane sheet, the ends of which are heat-sealed. This membrane is directly
placed into the sample solution under stirring, and due to its porosity, analytes diffuse freely and are
extracted by the sorbent. Afterwards, the membrane is removed from the solution and immersed
into the elution solvent to perform the desorption of analytes assisted by ultrasonification. Lee et al.
developed a µ-SPE strategy to extract ochratoxin A from coffee and grape juice [41]. To achieve higher
selectivity, they used a commercial molecularly imprinted polymer (MIP) as sorbent material which
was packed in the membrane sheet device (Figure 2). After extraction, the sample extract was analyzed
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by HPLC-FLD within 4 min. As ochratoxin A presents natural fluorescence, a derivatization step was
not necessary. Under the optimized conditions, recoveries ranged from 91% to 101% and low limits of
detection (LODs) were achieved (0.02–0.06 µg/Kg). Despite using FLD, these LOD values are similar
to the ones achieved by MS [40], probably because using a MIP as sorbent provides higher clean-up
of matrix interferences. Thus, it may increase not only the selectivity, but also the sensitivity of the
analytical method. The proposed method [41] was applied to the determination of ochratoxin A in
real samples. Totals of 62% and 91% of the coffee and grape juice samples assayed, respectively, were
contaminated with this mycotoxin. Nonetheless, the levels found of ochratoxin A were below its legal
maximum residue limits (MRL).
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Figure 2. Schematic diagram and microscopic image of molecularly imprinted polymer (MIP) sorbent
used in micro-solid-phase extraction (µ-SPE) for the extraction of ochratoxin A (reprinted with
permission from reference [41]).

2.4. Microextraction by Packed Sorbent (MEPS)

The Microextraction by Packed Sorbent (MEPS) procedure was created in 2004 as a miniaturization
of conventional SPE by Abdel-Rehim et al. in order to reduce sample and solvent volumes and provide
an automated method through its easy interface to chromatographic systems [45]. In this technique,
the sorbent (1–4 mg) is integrated into a micro-syringe needle and not in a separate column, as in SPE.
Additionally, unlike SPE, in MEPS there is a two-directional flow potential (up and down), which
provides repetition of each step, enhancing the sample-sorbent contact and improving the method’s
efficiency (Figure 3). Nevertheless, the main drawback of this technique is its limitation in terms
of being applied to viscous or highly concentrated samples, which need to be previously diluted in
order to avoid flow blocking through the device. For this reason, this technique is more suitable
for sample preparation of liquid matrices. For instance, MEPS has been used for the extraction of
ochratoxin A from wine samples using a C18 sorbent prior to its determination by HPLC-FLD [42].
Different experimental parameters, such as the sample and elution solvent volumes, the number of
extraction cycles and the flow speed were optimized. Wine samples were previously diluted with
an acidified aqueous solution, probably to avoid the negative influence of ethanol on the extraction
efficiency which may directly eluted the analytes during the loading step, as reported by other
authors [46,47]. Under optimal conditions, an aliquot of 50 µL of diluted sample was passed through
the C18 sorbent 7 times, and elution was achieved with 50 µL of Acetonitrile (ACN)/2% aqueous
acetic acid solution (90/10, v/v), which were directly analyzed in the chromatographic system in less
than 6 min. Recovery values ranged between 76–108% and the LOD was 0.08 µg/L. Additionally, the
proposed MEPS extraction was compared with well-established SPE and immunoaffinity clean-up
(IAC) methods. The precision of the MEPS procedure was similar to the IAC one, whereas SPE was
clearly the one with the worst reproducibility. The applicability of the proposed MEPS strategy was
shown by te analysis of 60 different wine samples, requiring 15 min of extraction and 15 min of
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chromatographic analysis for each sample. The possibility of automating the procedure proved the
suitability of MEPS when a significant number of samples have to be analyzed in short time, such as in
regular monitorization of food quality and safety.
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3. Integration of New Advanced Materials as Sorbents on Microextraction Techniques to Isolate
Natural Toxins from Food Samples

Sometimes, the commercially available microextraction techniques and sorbent materials used
limit the development of the analytical methodologies. One of the crucial parameters that determine
success of sample preparation is the choice of the sorbent material. Depending on the analytes to
be extracted, the sorbent material must have specific characteristics that allow obtaining the highest
extraction efficiency. In addition, using minimal amounts of sorbents is one of the requirements of the
Green Analytical Chemistry (GAC) when developing an analytical procedure [29]. Thus, the sorbent
must have advanced functional properties to be able to potentially interact with the target analytes to
achieve high extraction efficiency by using minimal amounts of it. In this sense, current trends in the
development of analytical methods are focused on the synthesis of new advanced materials to apply
them as sorbents in sample preparation procedures. Among these materials, magnetic nanoparticles
(MNPs), silica-based nanomaterials, metal-organic frameworks (MOFs), multiwalled carbon nanotubes
(MWCNTs) and graphene oxide (GO) have been the most employed for the extraction of natural
toxins from food products (Table 2). The advanced properties of these materials, such as their large
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surface area, low resistance to diffusion, fast sorption kinetics and large adsorptive capability make
them very suitable for sample preparation, as they improve the efficiency, selectivity and sensitivity
of the analytical procedures. Moreover, the integration of these new materials in microextraction
technologies enables developing high-throughput analytical methods with the advantages of both
strategies. Thanks to this integration, conventional and commercially available procedures can be
improved and GAC requirements can be accomplished. In this sense, in the last decade, different
new materials have been used to extract natural toxins from food products by their combination
with different microextraction techniques, such as m-SPE, in-syringe SPE, PT-SPE, µ-dSPE, µ-MSPE,
µ-SPE, SPME and SBSE (Table 2). They have proved their efficiency in the extraction of several
mycotoxins (mainly aflatoxins, ochratoxins, patulin and zearalenone) and marine toxins, which have
been mainly extracted from cereals, drinks, dairy products and seafood (Table 2). Sometimes, these
sorbent materials lack or have little selectivity during the extraction procedure, leading to the extraction
of matrix interferences along with the analyte that may hinder its detection. To overcome this problem,
MIPs can be synthesized as sorbents by polymerization processes [30]. In this sense, different MIPs have
been applied in m-SPE, µ-MSPE and SBSE for the extraction of patulin, T-2 toxin, fumonisin, aflatoxins
and ochratoxins from food samples (Table 2). Nevertheless, when developing multicomponent methods
to simultaneously extract different compounds belonging to different chemical families in a single
run, the lack of selectivity of the materials is desirable, since in this case the sorbent must be able
to extract a wide range of compounds. Therefore, in these cases specificity is not required. On the
other hand, the analytical procedures published in the last decade, which integrate new materials in
microextraction techniques for the extraction of natural toxins from food, have been mainly combined
with the detection of analytes by HPLC coupled to MS or FLD, and to a lesser extent with ultraviolet
detection (UV), such as the diode array detection (DAD) (Table 2). In contrast, there are no works
using GC as a separation technique instead of HPLC. Indeed, for the analysis of these natural toxins, it
is more suitable to use HPLC, since they are not very volatile compounds. Therefore, sometimes, to
achieve their analysis by GC it is necessary to perform a derivatization process, which is more complex
and time consuming than the determination by HPLC.
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Table 2. Application of new advanced materials on sorbent-based microextraction techniques to isolate natural toxins from food samples (2009–2019).

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Cereals (5 g) AF (B1, B2, G1, G2)

Extraction with 25 mL of MeOH/H2O
(80/20, v/v). Evaporation of the

methanolic fraction of an aliquot of the
extract (15 mL). Addition of

Britton-Robinson buffer (pH 5.2) up to
3 mL. An aliquot of the extract (2 mL)

subject to microextraction.

m-SPE
Sorbent: 50 mg hyperbranched polymer

Elution: 0.2 mL ACN
HPLC-FLD 83–103 0.012–0.120 µg/Kg [48]

Apple juice (1 mL) PAT -
m-SPE

Sorbent: 30 mg CD-based polymers
Elution: 1 mL Diethyl ether/ACN (4/1, v/v)

HPLC-DAD n.p. n.p. [49]

Apple juice (1 mL) PAT Dilution with 1 mL of H2O before
microextraction.

m-SPE
Sorbent: 50 mg SiO2maleicpolymer@MIP

Elution: 5 mL de acidified ACN
HPLC-DAD 82–98 8.6 µg/L [50]

Apple, apple juice,
hawthorn, hawthorn

juice, mixed juice,
wines and tomato

(10 g)

PAT

Extraction with 10 mL of ACN, 4 mg
MgSO4 and 1 g NaCl. An aliquot of the
extract (1 mL) evaporated to dryness and

reconstituted with 1 mL H2O before
microextraction.

m-SPE
Sorbent: 30 mg dual dummy-MIP Elution:

3 mL MeOH
HPLC-MS/MS 81–106 0.05–0.2 µg/Kg [51]

Bell pepper, rice and
corn flakes (1 g) F (B1, B2, B3)

Extraction with 6 mL ACN/H2O (84/16,
v/v). An aliquot of the extract (1 mL)

evaporated to dryness and reconstituted
with 1 mL ACN/H2O (90/10, v/v) before

microextraction.

m-SPE
Sorbent: 20 mg MIP

Elution: 1 mL MeOH/Acetic acid (95/5, v/v)
HPLC-MS/MS 62–86 4.5–44 µg/Kg [52]

Maize, barley and oat
(5 g) T-2

Extraction with 25 mL of ACN/H2O
(84/16, v/v). For oat samples, after the
solid-liquid extraction, the extract was

additionally defatted with 10 mL of
hexane. An aliquot of the sample extracts

(1 mL) evaporated to dryness and
reconstituted with 1 mL MeOH/H2O
(20/80, v/v) before microextraction.

m-SPE
Sorbent: 50 mg MIP

Elution: 3 mL MeOH/Acetic acid (95/5, v/v)
HPLC-MS/MS 60–73 0.4–0.6 µg/Kg [53]

Milk (1 mL)

AF (B1, M1), OTA,
ZEN, α-ZEL,
β-ZEL, ZAN,
α-ZAL, β-ZAL

Extraction with 5 mL ACN with 0.1%
formic acid. Supernatant of the extract

evaporated to dryness and reconstituted
with 0.5 mL ACN/H2O (20/80, v/v) and
diluted up to 5 mL with 5 mL of H2O

before microextraction.

m-SPE
Sorbent: 10 mg rGO/Au

Elution: 5 mL MeOH/ACN/Formic acid
(50/49/1, v/v/v)

UHPLC-MS/MS 70–111 0.01–0.07 ng/mL [54]
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Table 2. Cont.

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Soy-based foods (2 g) AF (B1, B2, G1, G2)
Extraction with 10 mL ACN/H2O (75/25,
v/v). Diluted up to 50 mL with 10% NaCl
aqueous solution before microextraction.

In syringe SPE
Sorbent: 30 mg 3DG@Fe3O4

Elution: 0.7 mL MeOH
HPLC-FLD 83–103 0.09–0.15 µg/Kg [55]

Soy-based foods (2 g) AF (B1, B2, G1, G2)
Extraction with 10 mL ACN/H2O (75/25,
v/v). Diluted up to 50 mL with 7% NaCl
aqueous solution before microextraction.

In syringe SPE
Sorbent: PU/GO nanofibers

Elution: 0.75 mL MeOH
HPLC-FLD 76–101 0.09–0.15 µg/Kg [56]

Maize (5 g) AF (B1, B2, G1, G2)

Extraction with 20 mL ACN/H2O (80/20,
v/v). Evaporation to dryness and
reconstituted with 0.1 mL MeOH.

Diluted up to 10 mL with H2O before
microextraction.

In syringe SPE
Sorbent: 15 mg β-CDPG

Elution: 2 mL MeOH/DCM (2/1, v/v)
HPLC-FLD 91–105 0.0075–0.030 µg/Kg [57]

Shellfish (0.2 g)
YTX, OA, DTX (1),
GYM, SPX (1), PTX

(2), AZA (1)

Extraction with 9 mL MeOH. An aliquot
of the extract (0.1 mL) evaporated to

dryness and reconstituted with 0.2 mL
H2O before microextraction.

PT-SPE
Sorbent: 2 mg graphene

Elution: 2 mL ACN with 0.5% ammonium
hydroxide (for basic conditions) or with 0.5%

formic acid (for acid conditions)

HPLC-MS/MS 78–90 0.1–1.5 µg/Kg [58]

Peanut (50 g) AF (B1, B2, G1, G2)
Extraction with MeOH/H2O (80/20, v/v).
An aliquot of the extract (8 mL) diluted

with H2O before microextraction.

µ-dSPE
Sorbent: 5 mg GO

Elution: 2 mL MeOH
HPLC-FLD 85–101 0.08–0.65 µg/Kg [59]

Milk and yogurt
(1.5 mL)

ZEN, α-ZEL,
β-ZEL, ZAN,
α-ZAL, β-ZAL

Extraction of milk samples with 3 mL
ACN and 0.075 mL acetic acid.

Evaporation of the supernatant until
1.5 mL and diluted with H2O up to

25 mL, pH adjusted to 7 before
microextraction. Extraction of yogurt

samples with 4.5 mL and 0.075 mL acetic
acid. The rest of the procedure the same

as for milk samples.

µ-MSPE
Sorbent: 80 mg Fe3O4@pDA

Elution: 8 mL MeOH
HPLC-MS/MS 70–120 0.21–4.77 µg/L [60]

Mineral and tap
water (25 mL)

ZEN, α-ZEL,
β-ZEL, ZAN,
α-ZAL, β-ZAL

Adjustment of pH to 7 before
microextraction.

µ-MSPE
Sorbent: 60 mg Fe3O4@pDA

NPs Elution: 6 mL MeOH
HPLC-MS/MS 70–119 0.02–1.1 µg/L [61]

Red wine (50 mL) AF (B1, B2, G1, G2) -
µ-MSPE

Sorbent: 4.4 mg PD-MNPs
Elution: 0.25 ACN/MeOH (1/1, v/v)

HPLC-MS/MS 97–108 0.0012–0.0031 µg/L [62]

Milk and dairy
products (5 mL) AF (M1)

Extraction with 5 mL hexane and 5 mL
MeOH/2 mM NaCl aqueous solution (8/2,

v/v) before microextraction.

µ-MSPE
Sorbent: 8 mg AMNPs

Elution: 2 mL DCM/MeOH/Acetic acid
(80/19/1, v/v/v)

HPLC-FLD 97–116 0.2 ng/L [63]
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Table 2. Cont.

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Shellfish (2 g) AZA (1, 2, 3), OA,
DTX (1, 2)

Extraction with 10 mL MeOH/H2O
(4/1, v/v). The supernatant mixed with 2
mL hexane, evaporated until 1 mL and

addition of 4 mL of H2O before
microextraction.

µ-MSPE
Sorbent: 50 mg MMM

Elution: 2 mL Formic acid/MeOH (5/95, v/v)
UHPLC-MS/MS 83–119 0.4–1.0 µg/Kg [64]

Maize (6 g)
ZEN, α-ZEL,
β-ZEL, ZAN,
α-ZAL, β-ZAL

Extraction with 24 mL of ACN/H2O
(75/25, v/v). The extract diluted up to

25 mL with H2O before microextraction.

µ-MSPE
Sorbent: 5 mg MNPs-MWCNT-nanoC18

Elution: 1 mL ACN
HPLC-MS 92–98 0.6–1.0 µg/mL [65]

Rice, wheat and
sesame (50 g) AF (B1, B2, G1, G2)

Extraction of rice and wheat samples
with 200 mL Acetone/H2O (50/50, v/v).

Elimination of the acetone fraction before
microextraction. Extraction of sesame

samples with 100 mL hexane and 200 mL
Acetone/H2O (50/50, v/v). The rest of the

procedure the same as for rice and
wheat samples.

µ-MSPE
Sorbent: 10 mg MGNP

Elution: 2 mL Acetone/H2O (1/1, v/v)
HPLC-FLD 64–122 0.025–0.075 µg/Kg [66]

Apple juice (5 g) PAT

Extraction with 5 mL ethyl
acetate/hexane (96/4, v/v), 1 g NaH2PO4

and 5 g Na2SO4. An aliquot of the
organic phase (3 mL) mixed with 0.02 mL

acetic acid, evaporated to dryness and
reconstituted with 2 mL H2O at pH 6.2

before microextraction.

µ-MSPE
Sorbent: 30 mg MGO
Elution: 1 mL ACN

HPLC-UV 69–83 2.3 µg/Kg [67]

Milk (20 mL) AF (B1, B2, G1, G2) -
µ-MSPE

Sorbent: 90 mg M/ZIF-8
Elution: 1 mL ACN/DCM (1/1, v/v)

UHPLC-MS/MS 79–102 2.3–8.1 ng/L [68]

Seafood (5 g) DA
Extraction with 20 mL MeOH/H2O

(1/1, v/v). The resultant sample extract
subjected to microextraction.

µ-MSPE
Sorbent: 1 mg Fe3O4 SPs@ZIF8/Zn2+

Elution: 0.4 mL 3 mM histidine solution
HPLC-MS/MS 93−102 0.2 ng/L [69]

Shellfish samples
(5 g) DA

Extraction with 20 mL MeOH/H2O
(1/1, v/v). The resultant sample extract

brought to a total volume of 25 mL with
MeOH/H2O (1/1, v/v) before

microextraction.

µ-MSPE
Sorbent: 1 mg Fe3O4@SiO2@UiO-6

Elution: 1.5 mL ACN with 20% acetic acid
HPLC-MS/MS 91–107 1.45 µg/L [70]

Beer (6 mL)
DON, ZEN, AF

(B1, B2, G1, G2), F
(B1)

Clean-up with a C18 sorbent. An aliquot
of the clean sample (0.1 mL) evaporated

to dryness and reconstituted with
0.48 mL ACN/H2O/acetic acid (49/50/1,

v/v/v) before microextraction.

µ-MSPE
Sorbent: 25 mg MNM

Elution: 0.5 mL ACN/H2O/acetic acid
(79/20/1, v/v/v)

UHPLC-MS/MS 87 n.p. [71]
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Table 2. Cont.

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Corn (25 g) AF (B1, B2, G1)

Extraction with 5 g NaCl and 125 mL
MeOH/H2O (7/3, v/v). An aliquot of the
extract (15 mL) mixed with 45 mL of PBS

before microextraction.

µ-MSPE
Sorbent: 80 mg MNPC

Elution: 1.2 mL ACN/H2O (6/4, v/v).

HPLC-FLD
HPLC-MS/MS 75–99 0.05–0.07 µg/L [72]

Tea leaves and corn
(5 g) AF (B1, B2, G1, G2)

Extraction with 10 mL ACN/H2O (60/40,
v/v). 5 mL of the extract subjected to

microextraction.

µ-MSPE
Sorbent: 10 mg MMIP

Elution: 1 mL ACN/formic acid (95/5, v/v).
UHPLC-MS/MS 76–95 0.05–0.1 µg/Kg [73]

Rice (25 g) and wine
(20 mL) OTA, OTB, OTC

Extraction of rice samples with 100 mL
ACN/H2O (60/40, v/v) before

microextraction. Wine samples diluted
up to 25 mL with a solution of 2.5 M

NaCl and 0.24 M NaHCO3 before
microextraction.

µ-MSPE
Sorbent: 15 mg Fe3O4@PDA MIPs

Elution: 1 mL ACN
HPLC-FLD 71–88 0.0018–0.018 µg/Kg [74]

Grape juice OTA -
µ-MSPE

Sorbent: 5 mg MMIP
Elution: -

UV–vis 97 0.374 mg/L [75]

Coffee (10 g) and
cereals (5 g) OTA

Extraction with 10 mL 1% carbonate
aqueous solution. Sample extract

adjusted to pH 1.5 before
microextraction.

µ-SPE
Sorbent: 10 mg LTL

Elution: 0.4 mL MeOH
HPLC-FLD 92–101 0.09–0.3 µg/Kg [76]

Cheese (0.05 g) OTA -
SPME

Sorbent: Carbon-tape fiber
Elution: 0.15 mL MeOH

HPLC-MS/MS 93 1.5 µg/L [77]

Rice and wheat (10 g) AF (B1, B2)

Extraction with 1 g NaCl and 100 mL
MeOH/H2O (80/20, v/v). Evaporation of
the methanolic fraction of the extract and
diluted with 40 mL H2O. An aliquot of

the extract (25 mL) subject to
microextraction.

SPME
Sorbent: 50 mg CNT
Elution: 2 mL MeOH

HPLC-DAD 47–103 0.061–0.074 µg/L [78]

Rice (2 g) AF (B1), ZAN,
STEH

Extraction with 10 mL ACN/MeOH/H2O
(51/9/40, v/v/v), 1.5 g MgSO4 and 0.5 g

NaCl. Evaporation to dryness and
reconstituted with 3 mL 0.1% TFA/ACN

(99/1, v/v) before microextraction.

SPME in-tube *
Sorbent: MAA-co-DVB

Elution:-
HPLC-PDA 78–103 0.69–2.03 µg/Kg [79]
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Table 2. Cont.

Food Matrix
(Amount) Analytes Sample Pretreatment Microextraction Technique Analysis Recovery

(%) LOD Ref.

Milk (1 g) and baby
foods (3 g)

AF (B1, B2, G1, G2,
M1)

Extraction of milk samples with 3 mL 1%
formic acid solution. Supernatant

discarded and solid residue extracted
with 6 mL chloroform. Evaporation to
dryness and reconstitution with 4 mL

H2O before microextraction. Baby food
samples dissolved with 1% formic acid

solution. Supernatant discarded and
solid residue extracted with 18 mL

chloroform. Evaporation to dryness and
reconstitution with 6 mL H2O before

microextraction.

SBSE
Sorbent: 0.5 g MMIP-SB

Elution: 3 mL MeOH/acetic acid (75/25, v/v)
HPLC-MS/MS 39–60 0.3–1.0 ng/Kg [80]

* Elution performed with mobile phase (online system); ACN: Acetonitrile; AF: Aflatoxin; AMNPs: Aptamer-functionalized magnetic nanoparticles; AZA: Azaspiracid; CD: Cyclodextrin;
CNT: Carbon nanotube; DA: Domoic acid; DAD: Diode array detector; DCM: Dichloromethane; DON: Deoxynivalenol; DTX: Dinophysistoxin; F: Fumonisin; Fe3O4 SPs@ZIF8/Zn2+:
Modified magnetic zeolite imidazolate framework-8; Fe3O4@PDA MIPs: Magnetic polydopamine-based molecularly imprinted polymer; Fe3O4@pDA NPs: Core–shell polydopamine
magnetic nanoparticles; Fe3O4@SiO2@UiO-6: Magnetite@silica core-shell magnetic microspheres; FLD: Fluorescence; GO: Graphene oxide; GYM: Gymnodimine; HPLC: High performance
liquid chromatography; LTL: Zeolites linde type; M/ZIF-8: Magnetic zeolite imidazolate framework-8; MAA-co-DVB: Methacrylic acid-co-divinyl-benzene; MeOH: Methanol; MEPS:
Microextraction by packed sorbent; MGNP: Magnetic-graphene nanoparticles; MGO: Magnetic graphene oxide; MIP: Molecular imprinted polymer; MMIP: Magnetic molecularly
imprinted polymer; MMIP-SB: Magnetic molecularly imprinted stir-bars; MMM: Magnetic mesoporous microspheres; MNM: Magnetic nanostructured materials; MNPC: Magnetic
nanoporous carbon; MNPs: Magnetic nanoparticles; MS: Mass spectrometry; MS/MS: Tandem mass spectrometry; m-SPE: Miniaturized solid phase extraction; MWCNTs: Multiwalled
carbon nanotubes; n.p.: Not provide; OA: Okadaic acid; OTA: Ochratoxin A; OTB: Ochratoxin B; OTC: Ochratoxin C; PAT: Patulin; PBS: Phosphate buffer saline; PDA: Photodiode array;
PD-MNPs: Polydopamine magnetic nanoparticles; PT-SPE: Pipette-tip solid phase extraction; PTX2: Pectenotoxin-2; PU: Polyurethane; rGO: Reduced Graphene oxide; SBSE: Stir-bar
sorptive extraction; SPE: Solid-phase extraction; SPME: Solid-phase microextraction; SPX1: Spirolides-1; STEH: Sterigmatocystin; TFA: Trifluoroacetic acid; T-2: T-2 toxin; UHPLC: Ultra
high performance liquid chromatography; UV/vis: Ultraviolet/visible; YTX: Yessotoxins; ZAL: Zearalanol; ZAN: Zearalanone; ZEL: Zearalenol; ZEN: Zearalenone; β-CDPG: β-cyclodextrin
supported on porous graphene nanohybrid; µ-dSPE: Micro-dispersive solid-phase extraction; µ-MSPE: Micro-magnetic solid-phase extraction; µ-SPE: Micro-solid-phase extraction;
3DG@Fe3O4: Magnetic three-dimensional graphene sorbent.
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3.1. Miniaturized Solid-Phase Extraction (m-SPE)

Miniaturized SPE is almost equal to conventional SPE, with the same operation steps (conditioning,
sample loading, washing and elution). The miniaturization concept just involves scaling down the
amount of sample, sorbent and/or solvents used, but the sorbent still packed inside the extraction
cartridge between two frits. Among researchers, there are different criteria as to what amount of
sorbent or elution volume should be used to be considered a miniaturized SPE. Due to the great
diversity of opinions, this review considers those works employing an amount of sorbent below
100 mg. Commercial packed cartridges for SPE are usually available with high amounts of sorbents
(100–500 mg). To miniaturize the extraction, many authors have developed new materials, not only to
pack their own cartridges, but also with the aim of designing potential sorbents for sample preparation
with specific characteristics, which improve extraction efficiency using a minimal amount of them.

In this context, Liu et al. proposed the synthesis of supramolecular hyperbranched polymers as
sorbents, which provide molecular capture through available non-covalent interactions (hydrogen
bonding and π-π interactions) [48]. These polymers were tested as sorbents to extract four aflatoxins
from cereal powder samples (rice, oatmeal and pear barley). Under the optimal experimental conditions,
with 50 mg of one of these polymers the recovery values of the target aflatoxins were in the range of
83–103%. Moreover, under the same conditions, the sorbent was compared with a homemade C18
sorbent, which is a widespread commercially available SPE sorbent. The polymer prepared proved to
have superior extraction efficiency than the traditional C18 sorbent. Although the extraction efficiency
towards aflatoxins G1 and G2 was similar between both sorbents, the polymer was significantly
superior in the extraction of aflatoxins B1 and B2, due to its major sites of hydrogen bonding and
π-electronic stacking interactions. In contrast, 50 mg of C18 sorbent was insufficient to achieve
successful extraction of aflatoxins B1 and B2. Thus, this highlights the limited extraction capacity of
commercial sorbents when using small amounts of them.

On the other hand, Appell and Jackson proposed the preparation of cyclodextrin (CD)-based
polymers as SPE sorbents to extract patulin from apple juice samples [49]. The incorporation of CDs
into polymers results in a porous material with cavities, which can act as potential binding sites for
analytes. It was observed that with 30 mg of polyurethane-β-CD polymer used as sorbent it was
possible to successfully extract the target analyte from the food matrix, thanks to the hydrogen bonding
interactions established between the hydroxyl groups of β-CD and patulin.

In contrast, other authors have developed more selective strategies to achieve the extraction of
patulin through the preparation of MIP materials [50,51]. In this sense, Anene et al. developed a MIP
sorbent by bulk polymerization using patulin as template [50]. The material was used in SPE for the
extraction of patulin from apple and juice samples prior to its determination by HPLC-DAD analysis.
Under the extraction conditions assayed, 50 mg of the MIP were established as the optimal sorbent
amount, showing high selectivity and great affinity towards patulin providing recovery values in the
range 82–98%. To show its applicability, the proposed method with the patulin MIP was used for
the analysis of different food samples (juices and apples). Surprisingly, patulin was found in three
samples exceeding its MRL fixed by the European Commission regulations [13]. This could be due to
template bleeding, which is one of the inherent problems of MIP technology. During MIP’s preparation,
sometimes it may be difficult to completely eliminate the template molecules. Thus, if some residues of
the template remain in the sorbent, it can lead to false positive results. Nonetheless, this problem can
be solved by using dummy templates, which involves replacing the template with another molecule
with an analogous structure to the target analytes. Accordingly, Zhao et al. prepared a dummy MIP by
precipitation polymerization for the extraction of patulin using 2-oxindole and 6-hydroxynicotinic
acid as dual-dummy template molecules [51]. In this case, with a smaller amount of sorbent (30 mg)
than the previous work [50], it was possible to successfully extract patulin obtaining high recovery
values (81–106%). Moreover, the extraction efficiency of the method proposed with the dummy MIP
was compared with the QuEChERS method, showing better purification effect and higher recovery of
patulin. Also, the method proposed by Zhao et al. [51] was more sensitive (LOD were 0.05–0.2 µg/Kg)
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than the one previously described by Anene et al. (LOD 8.6 µg/L) [50]. This was mainly due to the
fact that the former used HPLC-MS/MS, whereas the latter used HPLC-DAD, which is inherently a
less sensitive detection technique. Moreover, the mobile phase composition of the chromatographic
method was the same in both works (water and ACN). However, Zhao et al. [51] used a gradient
elution with a linear ramp, which increased the composition of ACN from 5% to 90% in 2 min, while
the chromatographic analysis of Anene et al. [50] was performed in isocratic mode (water: ACN (90:10,
v/v)). The retention time of patulin was shorter using the gradient elution mode (4.27 versus 5.18 min).
In addition, when the dummy MIP was applied for the analysis of different food matrices (apple, apple
juice, hawthorn, hawthorn juice, mixed juice, wines and tomato) no patulin residues were detected in
them [51]. Therefore, the use of dummy MIPs might be more reliable to avoid false positive results.

On the other hand, MIPs have also been developed by bulk polymerization for the selective
extraction of other mycotoxins (fumonisins and T-2) from different food samples [52,53]. In both
works, the selectivity of the MIPs synthesized was evaluated through a cross-reactivity study, which
involved performing the extraction procedure of the target analytes in the presence of other compounds,
which may also interact with the sorbent when they occur together in the sample with the analytes.
Moreover, the extraction efficiency of the MIPs developed was compared with the results obtained
when using other popular commercial sorbents, such as C18, strong anion exchange (SAX), IAC and
Oasis HLB®sorbents. These commercial sorbents were packed with a higher amount (200–500 mg) of
sorbents than the amount used to perform miniaturized SPE with the MIPs materials (20 and 50 mg
for extraction of fumonisins [52] and T-2 [53], respectively). In the case of the MIP developed for
the selective extraction of fumonisins [52], recoveries varied from 62% to 86%. In contrast, higher
recoveries were achieved with SAX (71–111%), while low recoveries were obtained with C18, which
in addition did not show selectivity towards fumonisins at all. Despite the SAX sorbent showed the
highest extraction efficiency, it showed less selectivity towards fumonisins than the MIP, since SAX
has selectivity towards fumonisins and any compound with a negatively charged carboxylic group.
Regarding the MIP designed for the selective extraction of T-2 [53], the recovery values obtained varied
from 60 to 73%. In contrast, recoveries were in the range of 74–104% and 60–85% when using Oasis
HLB® and IAC sorbents. Nevertheless, as in the previous work [52], although the highest extraction
efficiency was achieved with Oasis HLB®, the MIP and the IAC materials were superior regarding
selectivity and providing less matrix effects.

To carry out the simultaneous extraction of several compounds with different nature, the most
suitable thing is to use non-specific materials with potential advanced characteristics, which can be
able to efficiently extract a wide range of compounds. For instance, graphene, which is a carbon
nanomaterial, has proved to be a potential sorbent material because of its advanced properties, such as
its huge surface area (>2000 m2/g), good chemical and mechanical stability, good adsorption capability
and possibility of functionalization, among other things. In this context, a reduced GO and gold
nanoparticle nanocomposite was synthesized and applied as sorbent for simultaneous purification
and pre-concentration of 9 different mycotoxins (including aflatoxin B1, aflatoxin M1, ochratoxin A,
zearalenone, α-zearalenol, β-zearalenol, zearalenone, α-zearalanol, β-zearalanol) from milk samples
prior their analysis by UHPLC-MS/MS [54]. Different experimental parameters of the procedure were
optimized. Best extraction conditions were achieved by only using 10 mg of the sorbent material, using
a mixture of methanol/ACN/formic acid (50/49/1, v/v/v) as elution solvent. Under these conditions,
recoveries achieved for the target analytes ranged from 70% to 111% and low LOD values were obtained
(0.01–0.07 µg/L). Moreover, the separation of the 9 mycotoxins was achieved in a relatively short time
(within 9 min) thanks to the use of UHPLC, which enables to significantly reduce analysis time by using
short chromatographic columns packed with sub-2 µm particles and high-pressure conditions (1000 bar).

3.2. In-Syringe Solid-Phase Extraction

In-syringe SPE is a novel miniaturized variant of the conventional SPE method, which involves
placing a minimal amount of sorbent inside a syringe holder, which is connected to the syringe tip
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(Figure 4). The procedure steps are the same than in SPE. This setup, besides increasing the contact area
between the sorbent and the analytes, enables the use of higher sample loading flows than conventional
SPE cartridges, improving the extraction efficiency.
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Figure 4. Schematic illustration of the in-syringe solid-phase extraction procedure using aflatoxins as
target analytes (adapted and reprinted with permission from reference [57]).

In the determination of natural toxins in food samples, this technique has only been used for the
extraction of aflatoxin from corn and soybean products [55–57]. Different types of materials based on
graphene have been evaluated for this purpose: magnetic three-dimensional graphene nanoparticles
fixed on a perforated magnetic sheet [55], electrospun polyurethane nanofibers doped with GO [56] and
porous graphene functionalized with β-CD [57]. In all these works, successful results were achieved,
since recovery values were in all cases higher than 75%, showing the great potential of these materials
to extract the target analytes. All the in-syringe SPE procedures proposed for the extraction of aflatoxins
were combined with the analysis by HPLC-FLD. LODs were the same for the methods using the
magnetic three-dimensional graphene nanoparticles and electrospun polyurethane nanofibers doped
with GO (0.09–0.15 µg/Kg) [55,56]. However, the nanoporous graphene material functionalized with
β-CD (Figure 5) proved to be more sensitive, as lower LODs were achieved (0.0075–0.03 µg/Kg) [57].
Nonetheless, all three materials showed high extraction efficiency and great potential as sorbents.
On the other hand, the magnetic material could have probably taken advantage of its magnetic nature
using a simpler method like MSPE, by dispersing the material in the sample extract and separating it
after with a magnet, instead of placing it in the syringe holder.
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3.3. Pipette-Tip Solid-Phase Extraction (PT-SPE)

The Pipette-Tip Solid-Phase Extraction (PT-SPE) technique has also emerged as a miniaturized
version of conventional SPE, in which the sorbent material is packed inside plastic micropipette tips.
In this sense, extraction is carried out by repeated aspirating/dispensing cycles of the sample solution
using pipettor with a single channel or multichannel. Shen et al. proposed a PT-SPE method using
graphene as sorbent material for the extraction of seven lipophilic marine toxins, including yessotoxins,
okadaic acid, dinophysitoxin-1, gymmodimine, spirolides-1, pectenotoxin-2 and azaspiracid-1 from
shellfish tissues [58]. For the PT-SPE procedure, GO was first synthesized, and afterwards it was
reduced by hydrazine to obtain graphene, which was packed (2 mg) into a 200 µL pipette tip. Extraction
was performed by 20 repeated aspirating/dispensing cycles, discarding the eluate as waste, and then
analytes were eluted by 10 repeated aspirating/dispensing cycles. The resultant eluate was then injected
in the HPLC-MS/MS system. Separation of the seven compounds was achieved within 5 min and high
recovery values were obtained (78–90%). The results were compared with the ones obtained with
different commercially available sorbents (C18, HLB, Strata-X and MWCNTs) using the same extraction
procedure. Nevertheless, graphene proved its great potential as a sorbent due to its ultrahigh surface
area which provides high loading capacity. Recoveries obtained with Strata-X were very similar to the
ones achieved with graphene, whereas the other sorbents were less effective, proving the superiority of
graphene. The proposed PT-SPE method was successfully validated, obtaining LODs ranging from 0.1
to 1.5 µg/Kg, and it was applied for the analysis of 67 mussel samples in China. Okadaic acid was
found to be a dominant contaminant and yessotoxins were detected at low level in the samples of one
of the geographic areas evaluated.

3.4. Micro-Dispersive Solid-Phase Extraction (µ-dSPE)

GO, which is cheaper and exhibits similar adsorption capacity than graphene, has been used as
sorbent in the µ-dSPE of aflatoxins from peanuts [59]. GO was first synthesized and characterized
as sorbent. Afterwards, a small amount of the prepared material was dispersed into the sample
solution to perform the extraction of the target analytes. Different parameters that could affect the
extraction efficiency of the procedures (GO amount, elution solvent, extraction and desorption time,
etc.) were evaluated and optimized. The results suggested that GO was a successful sorbent material.
Under optimal conditions, 5 mg of GO were enough to achieve the extraction of four aflatoxins from
peanut samples obtaining recovery values ranging from 85% to 101%. Aflatoxins were analyzed from
the purified sample extracts by HPLC-FLD. For this purpose, before column separation a derivatization
step was required. The four aflatoxins were separated within 25 min, which is a longer time than the
one reported by other authors [34] and LODs ranged from 0.08 to 0.65 µg/Kg.

3.5. Micro-Magnetic Solid-Phase Extraction (µ-MSPE)

Undoubtedly, in recent years, the preparation of new magnetic materials has been the most
popular trend in sample preparation, as can be seen from the large volume of articles published on the
subject (Table 2). In recent years, MSPE has attracted significant attention because of its simplicity and
superiority over conventional methods. In addition, the high potential of the magnetic materials has
enable reducing the amounts of sorbents and solvents in the extraction procedures, giving rise to the
appearance of its miniaturized version µ-MSPE. This technique is very similar to µ-dSPE, since it is
based on the dispersion of the magnetic sorbent into the sample solution. However, it differs in the way
of separating the sorbent from the sample solution. Its magnetic properties allow the removal of the
sorbent enriched with the target analytes by using an external magnet, instead of using centrifugation
or filtration as in µ-dSPE. In this way, the procedure is simplified, reducing the use of additional steps,
decreasing sample manipulation and saving time.

MNPs involve having a magnetic core, which in most cases is magnetite (Fe3O4), which is coated
with different organic ligands to provide the material with specific functional characteristics. In this
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sense, many types of MNPs have been used as sorbents for the extraction of natural toxins from food
samples. For instance, MNPs coated with polydopamine have been synthesized and successfully
applied as sorbents for the extraction of zearalenone-related compounds from dairy products [60] and
drinking water [61], as well as for the extraction of aflatoxins from red wine [62]. In this last work,
a small amount of polydopamine-coated MNPs (4.4 mg) was used as sorbent [62].

On the other hand, another common coating material of MNPs is silica, which in turn, due to the
presence of silanol groups in its surface, it can be functionalized with different organosilanes and/or
affinity ligands which enable the selective extraction of analytes. In this context, aptamer-functionalized
silica MNPs have been proposed as sorbents for the extraction of aflatoxin M1 from dairy
products [63]. More recently, magnetic mesoporous silica nanoparticles have been bifunctionalized
with octadecyl (C18) and amino (NH2) groups in order to obtain a magnetic mixed-mode sorbent with
reversed-phase/weak anion exchange interactions [64]. This novel and advanced material (Figure 6)
has been successfully applied for the extraction of six lipophilic marine toxins from shellfish samples,
with recovery values ranging from 83% to 119% using 50 mg of sorbent. MWCNTs have also been used
as coating of MNPs for the extraction of zearalenone-related compounds from maize samples [65],
using a small amount of sorbent (5 mg). However, it was proved that the preparation of MNPs coated
with a layer of silica functionalized at the same time with C18 groups and MWCNTs significantly
improved the extraction efficiency of zearalenone and its metabolite compounds [65].
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Figure 6. Preparation scheme of magnetic mesoporous silica nanoparticles bifunctionalized with
octadecyl (C18) and amino (NH2) and enrichment process of azaspiracids (AZA), okadaic acid (OA)
and dinophysistoxins (DTX) (Reprinted with permission from reference [64]).

Conversely, graphene has also been extensively used as coating material of MNPs. In this sense,
graphene MNPs have been successfully applied as MSPE sorbent for the extraction of aflatoxins from
cereal samples [66] and patulin from apple juice [67]. Additionally, zeolites have also been used in the
preparation of MNPs. For instance, they have been applied for the extraction of four aflatoxins in milk
samples [68], obtaining recovery values in the range 79–102% using 90 mg of the designed sorbent.
In contrast, Huang et al. also used zeolites to prepare MNPs, but in this case they only needed 1 mg
of sorbent to achieve the extraction of domoic acid from seafood samples, achieving high recovery
values (93–102%) [69]. On the other hand, Zhang et al. also proposed a MSPE procedure to extract
domoic acid from shellfish samples [70]. However, for this purpose, they prepared silica coated MNPs
functionalized with a MOF as sorbent. They also used 1 mg of the synthesized sorbent to achieve the
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extraction of the target analyte, obtaining recovery values in the range 91–107%, which are very similar
to the ones reported in the previous work [69].

It also worth highlighting the recent work developed by González-Jartín et al., in which 25 different
magnetic nanostructures materials with different coatings (including silica, activated carbon, bentonite,
aluminum oxide, GO and biopolymers, among others) were synthesized with differentiated sizes and
compositions in order to evaluate them as MSPE sorbents for the extraction of 7 different types of
mycotoxins from beer samples [71]. It was observed that MNPs composed of mixtures of alginate and
activated carbon or pectin had the highest extraction efficiency.

Magnetic MIPs have also been developed for the selective extraction of aflatoxins and ochratoxins
from different food matrices (Table 2). For instance, Wu et al. prepared an MNP with a core of
nanoporous carbon magnetized with Co3O4, which was coated with a dummy MIP for aflatoxins [72].
Ethyl-3-coumarincarboylate was used as template. The best extraction conditions involved using
80 mg of sorbent to achieve the extraction of aflatoxins from corn samples, obtaining recovery values
ranging from 75 to 99%. Tan et al. also developed a magnetic dummy MIP for the determination of
aflatoxins from corn and tea leaves [73]. In this case, the magnetic core was of Fe3O4 which was first
coated with silica and afterwards the silanol groups of the silica surface were modified with the MIP.
This material proved to be superior to the previous one [72], since with only 10 mg of sorbents the
recovery values obtained for the four aflatoxins were in the range 76–95% [73], which is very similar to
the one described above [72]. Additionally, the chromatographic method was developed by ultra-high
performance liquid chromatography (UHPLC), achieving the separation of the analytes in less than
5 min [73], whereas the chromatographic method developed by Wu et al. took longer than 10 min [72].

On the other hand, a magnetic MIP for ochratoxins was developed by functionalizing the MIP
on the surface of an MNP coated with polydopamine [74]. Ochratoxin A was used as template.
This material was applied for the extraction of ochratoxins from rice and wine samples. Under optimal
experimental conditions using 15 mg of the sorbent the recovery values obtained range from 71% to
88% and good sensitivity of the method was achieved (LODs 0.0018–0.018 µg/L). Turan and Sahin also
prepared a magnetic MIP for the selective extraction of ochratoxin A from grape juice [75]. In this
case, they first prepared bromine-coated MNPs and afterwards these were functionalized with the
MIP, which was synthesized by using ochratoxin A as template. High recovery (97%) of ochratoxin A
was achieved by just using 5 mg of sorbent in the extraction procedure, showing its great selectivity
towards the target analyte.

3.6. Micro-Solid-Phase Extraction (µ-SPE)

Lee et al. also used µ-SPE for the extraction of ochratoxin A in coffee and cereals, but in this case
using zeolite-L crystals enclosed in a porous membrane sheet as sorbent material [76] instead of the
commercial MIP described before [41]. Zeolites are crystalline microporous aluminosilicates with an
open framework and exchangeable cations, which leads to the presence of pores and cavities (3–10 Å).
Their specific size and pore shape allow them to act as sorbents, since they can control the access of
molecules with different shape and polarity into their pores (Figure 7). In this work [76], several zeolites
(nanosized, road, cylinder and needle) were synthesized with different morphology, length, diameter
and particle size, and all of them were evaluated as sorbents in µ-SPE. Among them, the cylinder zeolite
was found to be more effective in the extraction of ochratoxin A. Under the optimized conditions,
the extraction procedure took 30 min and the elution of the analyte 5 min. The chromatographic
method by HPLC-FLD was the same than the one used in their previous work [41]. Moreover, the
results were very similar either using zeolites or the commercial MIP as µ-SPE sorbent, since recovery
values (92–101%) and LODs (0.09–0.3 µg/Kg) obtained [76] were similar to the ones reported before for
the µ-SPE work using MIP [41]. Therefore, zeolite showed good extraction efficiency and selectivity
towards ochratoxin A in a similar way to the commercial MIP sorbent, which is more expensive,
whereas the preparation of zeolites is simple and they are affordable starting materials. Thus, zeolites
can be used as an alternative cost-effective sorbent material.
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Figure 7. (a) Top view of the structure of zeolite Linde Type L (LTL) illustrating its hexagonal framework.
It shows a channel surrounded by six neighboring channels. (b) Schematic view of some channels in a
hexagonal zeolite LTL crystal with cylinder morphology. (c) Side view of a channel that consists of
0.75 nm long unit cells with a van der Waals opening of 0.71 nm at the smallest and 1.26 nm at the
widest place. (d) Schematic illustration of different orientation of molecules in the main channel of LTL.
(e) The width and length of ochratoxin A. (f) Schematic illustration of ochratoxin A in the main channel
of LTL (reprinted with permission from reference [76]).

3.7. Solid-Phase Microextraction (SPME)

Regarding the analysis of natural toxins, several strategies for preparing SPME fibers have
been employed for the extraction of several mycotoxins from different food matrices. For instance,
Zhang et al. prepared a carbon-tape SPME fiber for the extraction of ochratoxin A from cheese combined
with its analysis by HPLC-MS/MS [77]. The results indicated good extraction efficiency (recovery 93%),
and the LOD was 1.5 µg/L, which was higher than other LODs reported for the analysis of ochratoxin
A by HPLC-MS/MS [49,50]. On the other hand, Es’haghi et al. proposed a new SPME fiber format by
the sol–gel synthesis of functionalized MWCNTs that were introduced inside a polypropylene hollow
fiber as the sorbent [78]. In this way, during extraction, the analytes and the sorbent are in contact with
each other through the fiber wall pores which act like channels. The prepared hollow fiber was applied
for the extraction of two aflatoxins (B1 and B2) from rice and wheat samples. Recoveries achieved in
the rice sample were low, ranging from 47% to 54%, whereas the ones obtained for the wheat sample
were higher (83–103%). The analysis of the sample extracts was performed by HPLC coupled to a
photodiode array detector (HPLC-PDA). Aflatoxins were separated in 10 min and the method exhibited
good sensitivity with LODs values in the range 0.061–0.074 µg/L. In addition, more recently, an in-tube
SPME strategy has been proposed for the simultaneous multicomponent extraction of three different
mycotoxins (aflatoxin B1, zearalenone and sterigmatocystin) from rice samples [79]. For this purpose, a
poly(methacrylic acid-co-divinyl-benzene) monolithic column was prepared and applied as SPME fiber
for the extraction of the target analytes, which were subsequently analyzed by HPLC-PDA. Extraction
was successful, resulting in good recovery values (78–103%) thanks to the effective hydrophobic, π-π
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and hydrogen bonding interactions established between the monolithic column and the analytes.
Additionally, the proposed methodology proved its high potential as clean-up and preconcentration
technique (elimination of the matrix interferences) through its comparison with direct HPLC analysis
of a rice sample not subjected to the in-tube SPME method developed (Figure 8). However, LODs
were higher (0.69–2.03 µg/L) than the ones obtained by MS or in the work previously described for the
analysis of aflatoxins by HPLC-PDA [80]. Nonetheless, the separation of the three mycotoxins was
achieved in less than 6 min and recovery values were successful for all the analytes assayed [79].
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Figure 8. Chromatograms of three mycotoxins obtained from spiked rice grain samples: (a) blank
sample by in-tube SPME-HPLC method; (b) in-tube SPME–HPLC from spiked rice grain sample;
(c) direct injection mode of HPLC of the blank rice grain sample; (d) direct injection mode of HPLC of
the spiked rice grain sample. The analytes of three mycotoxins were spiked respective at 0.1 mg/Kg,
the volume for direct injection was 20 µL. (Reprinted with permission from reference [79]).

3.8. Stir-Bar Sorptive Extraction (SBSE)

Stir-Bar Sorptive Extraction (SBSE) was proposed by Baltussen et al. [80] in 1999 as a technique
to reduce the generation of wastes and to overcome the limited extraction capacity of SPME fibers.
This sorptive technique fulfills the GAC requirements, since it is a solvent-less sample preparation
method based on a distribution between the sample and a non-miscible liquid phase, similar to
the SPME methodology. Nevertheless, instead of using a coated fiber, in SBSE a stir bar is coated,
and the amount of non-miscible liquid phase coated is 50–250 times larger than on SPME. For this
reason, the extraction ability of SBSE is higher, being able to provide better recovery values than
SPME. Conventional SBSE involves using PDMS polymer to coat the glass stir bar, which provides
hydrophobic interactions with the target compounds. However, due to the hydrophobic nature of
the polymer, it fails to achieve good performance towards the extraction of polar and slightly polar
compounds. For this reason, the development of new coating materials has become an important
issue to improve SBSE methodologies. In this sense, Diaz-Bao et al. proposed the synthesis of a
magnetic dummy MIP stir bar to achieve the SBSE extraction of 5 aflatoxins from milk and cereal-based
baby foods combined with LC-MS/MS analysis [81]. Fe3O4 nanoparticles were first prepared by a
co-precipitation method and afterwards they were embedded into a dummy MIP through a bulk
polymerization process. Template bleeding is one of the drawbacks of using MIPs, but it can be solved
using dummy templates. Thus, in this work, due to the toxicity of aflatoxins, 5,7,-dimethoxycoumarin
was used as dummy template. The MIP was successfully grafted to the surface of the MNPs and the
polymer was formed around pieces of magnetite, resulting in a monolithic bar with stirring capacity
(Figure 9). Once the stir bar was prepared, it was used to perform SBSE of the samples. The extraction
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procedure was carried out for 45 min and the elution step took another 45 min, which is a considerably
long time in comparison with other sample preparation techniques, such as µ-MSPE. In addition, the
subsequent chromatographic analysis of the sample extract took 15 min. Moreover, with this technique,
low recovery values were obtained, ranging from 39% to 60%. However, very low LODs were achieved,
in the range 0.3–1.7 ng/Kg.
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4. Future Challenges in the Integration of New Advanced Materials on Microextraction
Techniques for the Analysis of Natural Toxins in Food Samples

In recent years, the occurrence of other natural toxins which can be found in food products, such
as pyrrolizidine, tropane and opioid alkaloids, has aroused great interest [4,7,15–17]. The EFSA is
currently demanding more information and studies about the presence of these toxic compounds
in food in order to know the real exposure of the population to these toxins through their intake
because of their potential harmful risks to human health [4,7–12]. In this sense, in recent years, several
analytical methods have been proposed to identify and quantify these compounds in different food
samples [82–84]. However, most of these methods employ commercial materials as sorbents and, in
addition, none of them have been performed under microextraction conditions. Indeed, only two
works have reported the microextraction of opiates by MEPS and µ-MSPE, but from biological samples
(blood and human hair, respectively) instead of food [85,86]. Regarding the development of new
materials for the extraction of these compounds, apart from the MNPs functionalized with silane
groups which were prepared as sorbent for the microextraction of morphine from human hair [86],
different MIP materials have been synthesized for the selective extraction of tropane alkaloids [87–90].
In these works, MIPs for the extraction of atropine and scopolamine have been applied as sorbents in
pharmaceutical formulations [87,88] and biological samples (urine and plasma samples) [89], except
the work published by Zeng et al., which employs a MIP for the extraction of four tropane alkaloids
(including scopolamine, atropine, anisodine and anisodamine) from fruit samples [90], which was the
only one applied for food sample preparation. This MIP was prepared by precipitation polymerization
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using anisodine as a template. Once it was prepared, 100 mg of the material were packed in a SPE
cartridge and the target analytes were extracted according to a traditional SPE procedure. Afterwards,
the resulting purified sample extracts were analyzed by HPLC-MS/MS, achieving good recovery values
(82–102%) and LODs in the range 2.12 to 0.52 µg/L. However, due to the amount of sorbent used it
cannot be considered a miniaturized SPE extraction. In contrast, no articles were found in the literature
for the microextraction of pyrrolizidine alkaloids from food products, nor about the development
of new materials for the extraction of these compounds. Therefore, future trends in food sample
preparation should focus on the development of potential analytical procedures, which involve both
the development of advanced materials and their integration as sorbent in microextraction techniques
for their application to the extraction of these natural alkaloids from food samples. This is practically
an unexplored path that is of great interest due to the harmful effect that the intake of these compounds
can impose for human health, which may also help to expand knowledge about them.

5. Conclusions

As shown throughout this review, the integration of new materials as sorbents in microextraction
techniques is a powerful approach to develop food sample preparation procedures which enables
to meet the GAC requirements. By scaling down the procedures, it is possible to develop less
time-consuming and more cost-effective analytical methods to extract natural toxins from food samples.
In this sense, SPME was one of the first microextraction techniques which were developed. However,
in recent years, its use has decreased, and new emerging techniques have appeared, like MEPS, µ-SPE,
PT-SPE and in-syringe SPE. In contrast, other traditional sample preparation procedures have evolved
into more sophisticated and environmentally friendly modes through their miniaturization (such
as m-SPE and µ-dSPE). Among the microextraction techniques employed for the determination of
natural toxins in food samples, SPME and SBSE have been the ones with worst extraction efficiency,
providing low recovery values. Nonetheless, the effectiveness of SPME improves when it is used in the
in-tube mode. On the other hand, µ-MSPE has been the extraction technique most widely used due
to its simplicity and high extraction potential, followed by m-SPE. In this context, dispersive-based
microextraction techniques have proved to be very suitable to perform multicomponent extractions,
since the interaction is higher between the analytes and the sorbent than when the sorbent is packed
inside a cartridge.

Regarding the development of new advanced materials as novel sorbents for the extraction
of natural toxins from food samples, they have offered new opportunities for improving analytical
methods, as it has been shown through the comparison of some of them with commercially available
sorbent materials. Moreover, the use of graphene as sorbent in different microextraction techniques
has aroused great interest due to its advanced properties, like huge surface area, good chemical and
mechanical stability, good adsorption capability, and possibility of surface modification. In this sense,
it has been used as a sorbent in several microextraction techniques, including m-SPE, in-syringe SPE,
PT-SPE, µ-dSPE and µ-MSPE for the extraction of different analytes. Magnetic materials have also
proved their superiority as potential sorbents, enabling to develop simple, effective and quick extraction
methods. On the other hand, the development of MIPs has proved to be very suitable to achieve
the selective extraction of different compounds, providing effective clean-up of matrix interferences.
Additionally, it is worth highlighting that it is more convenient to prepare dummy MIPs to avoid
false positive results, and thus develop more reliable methods. However, MIPs are not suitable for
performing multicomponent extractions due to their high selectivity. Therefore, for multicomponent
extractions is better to use a sorbent material with high versatility able to provide different types of
interaction, like for instance mixed-mode or bi-functionalized sorbent materials.

Overall, great advances have been made in the food sample preparation field in the last decade,
involving the development of new materials and their integration in microextraction techniques.
Among all the natural toxins reviewed, mycotoxins have been by far the most studied in recent years.
Nevertheless, the development of advanced analytical strategies for the determination of other natural
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toxins such as pyrrolizidine, tropane and opioid alkaloids through the combination of new materials
and microextraction techniques is still a great challenge. In this sense, the future trends for the next
years in this field should focus on the development of quick multicomponent methods to achieve the
determination of these unexplored compounds in food samples by integrating advanced materials as
sorbents in microextraction procedures. In addition, there is still a long way to really achieve analytical
methods meeting all the GAC requirements. As showed in the articles reviewed, despite decreasing
the amount of sorbent, many of them still using large amounts of sample and solvents in the sample
pretreatment. Additionally, reducing the elution volume is also necessary. Although it is true that
there have been more efforts to reduce the solvent volume for the elution step than for the extraction.
Therefore, in order to truly achieve miniaturized and microextractive methods, efforts must be made
in the future not only to improve the sorbent-based microextraction part, but also the previous part.
This way, sensitive and environmentally friendly analytical strategies would be achieved, contributing
to improve food safety by using low consumption of samples, solvents and time.
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