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Abstract The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples

cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular

functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements.

The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the

nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and

biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3

complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally

diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by

Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of

integrative and distributive connections between 3:3 structures within a branched LINC complex

network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and

integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of

large forces across the nuclear envelope.

Introduction
The nuclear envelope partitions nuclear components from the cytoskeleton, thereby necessitating

their mechanical coupling across the nuclear envelope to enable cytoskeletal function in the struc-

ture and positioning of nuclear contents. This is achieved by the Linker of Nucleoskeleton and Cyto-

skeleton (LINC) complex, which traverses the nuclear envelope and binds to cytoskeletal and nuclear

structures to mediate force transduction between these partitioned components (Haque et al.,

2006; Crisp et al., 2006; Lee and Burke, 2018; Meinke and Schirmer, 2015; Figure 1a). In this

capacity, the LINC complex is essential for cellular life, performing critical functions in nuclear struc-

ture, shape, and positioning (Alam et al., 2015; Luxton et al., 2010; Crisp et al., 2006), in addition

to tissue-specific functions including sound perception in the inner ear and chromosome movements

during meiosis (Horn et al., 2013a; Roux et al., 2009; Horn et al., 2013b; Lee et al., 2015). Fur-

ther, mutations of the LINC complex and its interacting partners are associated with human lamino-

pathies, including Hutchison-Gilford progeria syndrome and Emery-Dreifuss muscular dystrophy

(Meinke et al., 2011; Chen et al., 2012; Taranum et al., 2012; Zhou et al., 2018b; Chang et al.,

2019).

The LINC complex is formed of SUN (Sad1 and UNC84 homology) domain and KASH (Klarsicht,

ANC-1, and Syne homology) domain proteins (Padmakumar et al., 2005; Haque et al., 2006;

Crisp et al., 2006), which interact immediately below the outer nuclear membrane, through complex

formation between their C-terminal eponymous SUN and KASH domains (Sosa et al., 2012;

Wang et al., 2012; Zhou et al., 2012). SUN proteins then traverse the approximately 50 nm peri-

nuclear space and cross the inner nuclear membrane, enabling their N-termini to bind to nuclear
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Figure 1. SUN-KASH complexes are 6:6 head-to-head assemblies. (a) The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex traverses the

nuclear envelope to transmit forces between the cytoskeleton and nuclear components. The canonical model of the LINC complex is a linear structure

formed of SUN and Nesprin proteins, which interact via a 3:3 complex between their SUN and KASH domains within the peri-nuclear space, and cross

the inner and outer nuclear membranes (INM and ONM), respectively. (b) Sequence alignment of the KASH domains of human Nesprins 1–4 and

KASH5. In this study, KASH1, KASH4, and KASH5 refer to the C-terminal KASH domains of Nesprin-1, Nesprin-4, and KASH5, respectively, which are

highlighted (black outline), and key amino acids within KASH4 and KASH5 are indicated. (c) Crystal structures of human SUN1-KASH4 (top), SUN1-

KASH5 (middle), and SUN1-KASH1 (bottom). The SUN1 molecular surface is displayed with SUN1 KASH-lids highlighted in blue as cartoons, and KASH

Figure 1 continued on next page
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contents, including reported interactions with the nuclear lamina (Crisp et al., 2006; Haque et al.,

2006; Haque et al., 2010), chromatin (Chi et al., 2007), and the telomeric ends of meiotic chromo-

somes (Shibuya et al., 2014). Similarly, KASH domain proteins cross the outer nuclear membrane

and have large cytoplasmic extensions to enable their N-termini to bind to the cytoskeleton

(Spindler et al., 2019; Starr and Fridolfsson, 2010). Thus, the LINC complex axis is established by

a peri-nuclear SUN-KASH core interaction and mechanically couples the cytoskeleton and nuclear

contents (Figure 1a).

In mammals, there are five SUN proteins, of which SUN1 and SUN2 are widely expressed and per-

form partially redundant functions (Lei et al., 2009; Zhang et al., 2009). There are similarly multiple

KASH proteins, four of which are Nesprins (Nuclear Envelope Spectrin Repeat proteins). Nesprin-1

and Nesprin-2 are widely expressed, perform overlapping functions and contain large cytoplasmic

spectrin-repeat domains with N-termini that bind to actin (Banerjee et al., 2014; Sakamoto et al.,

2017; Zhou et al., 2018a). Nesprin-3 shares a similar KASH domain but its cytoplasmic region binds

to plectin, mediating interactions with intermediate filaments (Wilhelmsen et al., 2005). The two

most divergent KASH proteins, Nesprin-4 and KASH5, exhibit substantial sequence diversity within

their KASH domains (Figure 1b). Nesprin-4 functions in the outer hair cells of the inner ear and is

essential for hearing (Horn et al., 2013a). Its N-terminus interacts with kinesin, which mediates

microtubule binding and plus-end directed movements that achieve the basal positioning of nuclei

(Horn et al., 2013a; Roux et al., 2009). KASH5 functions in meiosis and is essential for fertility

(Horn et al., 2013b; Morimoto et al., 2012). Its N-terminus interacts with dynein-dynactin

(Morimoto et al., 2012; Horn et al., 2013b), which mediates microtubule binding and minus-end

directed motility that drives rapid chromosomal movements to facilitate homologous chromosome

pairing (Lee et al., 2015; Zetka et al., 2020). Thus, KASH proteins execute a range of LINC complex

functions in transmitting actin forces, plus-/minus-end directed microtubule movements and the ten-

sile strength of intermediate filaments into the nucleus.

The canonical model of the LINC complex is based on crystal structures of the SUN-KASH domain

complexes formed between SUN2 and Nesprin-1/2 (Sosa et al., 2012; Wang et al., 2012). The SUN

domain adopts a ‘three-leaf clover’-like structure, in which a globular trimer extends from a short

N-terminal trimeric coiled-coil (Sosa et al., 2013). KASH domains are intertwined between SUN pro-

tomers and their path is defined by three distinct regions. The KASH C-terminus contains a triple

proline motif that packs between the globular cores of SUN protomers. The KASH mid-region winds

around the trimeric arc and is wedged between the globular core of one SUN protomer and a b-

turn-b loop, known as the KASH-lid, of the adjacent protomer. The KASH N-terminus then turns

by >90˚ to radiate out from the trimer axis and forms a disulphide bond with a SUN protomer

(between SUN2 and KASH1 amino acids C563 and C8774, respectively), which is predicted to

enhance the tensile strength of SUN-KASH (Jahed et al., 2015; Sosa et al., 2012). The extensive 3:3

complex of three KASH domains bound to a single SUN trimer was interpreted as the biological unit

of the crystal lattice (Sosa et al., 2012; Wang et al., 2012). On this basis, it was proposed that the

LINC complex consists of a SUN-KASH 3:3 complex that is orientated vertically to allow KASH pro-

teins to cross the outer nuclear membrane and SUN to form an extended trimeric coiled-coil that

spans the peri-nuclear space (Sosa et al., 2012; Sosa et al., 2013; Figure 1a). In support of this

model, the luminal region of SUN2 was shown to be trimeric in vitro by analytical ultracentrifugation,

SEC-MALS, and gel filtration (Sosa et al., 2012; Nie et al., 2016; Zhou et al., 2012; Jahed et al.,

2018b) and upon targeting to the nuclear envelope in vivo, the luminal regions of SUN2 and SUN1

were shown to form trimers and larger structures by fluorescence fluctuation spectroscopy

Figure 1 continued

sequences are represented as sticks (yellow, purple, and red, respectively). All structures are 6:6 complexes in which KASH proteins lie at the midline

head-to-head interface between SUN1 trimers. (d) SEC-MALS analysis showing differential refractive index (dRI) profiles with fitted molecular weights

(Mw) plotted as diamonds across elution peaks. SUN1-KASH4, SUN1-KASH5, and SUN1-KASH1 form 6:6 complexes in solution, with experimental

molecular weights of 150, 154, and 156 kDa, respectively (theoretical 6:6 – 155, 155, and 157 kDa). Representative of more than three replicates using

different protein preparations. Full elution profiles are shown in Figure 1—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Crystal structures of SUN-KASH complexes.

Figure supplement 2. SUN-KASH complexes are 6:6 assemblies.
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(Hennen et al., 2017; Hennen et al., 2018). However, the stoichiometry of SUN-KASH complexes

has not yet been tested in solution. Further, whilst it has been widely recognised that branching or

higher order assembly of LINC complexes may be advantageous in distributing large forces and

achieving coordinated motions (Zhou et al., 2012; Lu et al., 2008; Jahed et al., 2018a;

Wang et al., 2012; Sosa et al., 2013; Lu et al., 2012), we have hitherto lacked structural evidence

and a molecular basis for higher order assembly of the LINC complex.

Here, we provide crystallographic and biophysical evidence in support of the LINC complex form-

ing a branched network. We find that SUN-KASH complexes between SUN proteins and Nesprin-4,

KASH5 and Nesprin-1 are 6:6 structures formed of constitutive interactions between two 3:3 com-

plexes. The three distinct KASH domains provide structurally diverse but related 6:6 interfaces that

achieve the same topology with potential hinge-like motion between SUN trimers. The SUN-KASH

6:6 interface consists of a ‘head-to-head’ interaction between SUN’s trimeric C-terminal ‘heads’,

thereby providing a mechanistic basis for formation of a branched LINC complex network. Thus, we

propose that SUN-KASH domain complexes act as nodes for branching and integration between

LINC complexes to achieve the coordinated transduction of large forces across the nuclear

envelope.

Results

SUN1-KASH complexes are 6:6 hetero-oligomers
The previously reported crystal structures of SUN-KASH complexes between SUN2 and Nesprins 1–

2 revealed almost identical structures that were interpreted as 3:3 hetero-oligomers (Sosa et al.,

2012; Wang et al., 2012). The KASH domains of Nesprin-4 and KASH5 exhibit sequence divergence

from Nesprins 1–3, including the presence of N-terminal motifs of 381-CCSH-384 and 545-PPP-547,

which are conserved within Nesprin-4 and KASH5 sequences, respectively (Figure 1b). On this basis,

we reasoned that Nesprin-4 and KASH5 may impose unique SUN-KASH structures that differ from

the classical architecture of Nesprin 1–3 complexes, which may underlie their specialised functional

roles. We thus solved the X-ray crystal structures of SUN-KASH complexes formed between the SUN

domain of SUN1 and KASH domains of Nesprin-4 and KASH5 (herein referred to as SUN1-KASH4

and SUN1-KASH5). The SUN1-KASH4 structure was solved at a resolution of 2.75 Å and revealed a

6:6 assembly in which two globular 3:3 complexes are held in a head-to-head configuration through

zinc-coordination by opposing KASH4 molecules across the 6:6 interface (Figure 1c, Table 1 and

Figure 1—figure supplement 1a,b). The SUN1-KASH5 crystal structure was solved at 1.54 Å resolu-

tion and revealed a similar 6:6 assembly in which opposing 3:3 complexes are held together by

extensive interactions between opposing KASH5 molecules and KASH-lids (Figure 1c, Table 1 and

Figure 1—figure supplement 1a,c). Thus, both Nesprin-4 and KASH5 form SUN-KASH 6:6 hetero-

oligomers in which similar topologies of head-to-head 3:3 complexes are achieved through structur-

ally diverse 6:6 interfaces.

Is the 6:6 assembly unique to SUN-KASH complexes formed by Nesprin-4 and KASH5? We next

solved the crystal structure of the SUN-KASH complex between SUN1 and Nesprin-1 (herein

referred to as SUN1-KASH1). The SUN1-KASH1 structure was solved at 1.82 Å resolution and dem-

onstrated a similar 6:6 head-to-head assembly, albeit with less extensive interface-spanning interac-

tions provided solely by opposing KASH-lids (Figure 1c, Table 1 and Figure 1—figure supplement

1a,d). The electron density indicated the presence of a molecule bound close to the 6:6 interface,

which we interpreted as a disordered HEPES molecule from the crystallisation condition. This likely

provided structural rigidity that underlies the high resolution of the dataset, but was not essential for

the structure as we solved numerous other datasets at lower resolution in which an identical 6:6

interface was present in absence of a bound molecule (data not shown). Importantly, the SUN1-

KASH1 structure closely matches the previous SUN2-KASH1/2 structures, in which similar 6:6 interfa-

ces were present in the crystal lattice but were thought to be crystal contacts (Figure 1—figure sup-

plement 1e; Sosa et al., 2012; Wang et al., 2012). It was thus critical to determine whether SUN1-

KASH1 is a 6:6 complex in solution. We utilised size-exclusion chromatography multi-angle light scat-

tering (SEC-MALS) as the gold standard for determining molecular species. SEC-MALS revealed that

all SUN1-KASH complexes exist solely as 6:6 hetero-oligomers (Figures 1d and 2a, and Figure 1—

figure supplement 2). Moreover, their 6:6 complexes remained intact at the lowest detectable
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concentrations (Figure 2b–d) and we failed to detect 3:3 complexes in any biochemical conditions

tested. Thus, we conclude that the SUN-KASH complexes formed by SUN1 are constitutive 6:6 het-

ero-oligomers in which two 3:3 structures are locked in head-to-head interactions. Hence, their 6:6

interfaces could mediate the physical coupling of adjacent LINC complexes within the peri-nuclear

space.

Structural diversity within the SUN1-KASH 6:6 interface
Our SUN1-KASH crystal structures reveal the formation of similar 6:6 architectures through diverse

head-to-head interfaces. Whilst the C-termini of all three KASH domains adopt the same structure,

their N-termini differ substantially (Figure 3a,b). KASH1 undergoes a turn of >90˚ to radiate from

the trimer axis, similar to the previously reported SUN2-KASH1/2 structures (Figure 1—figure sup-

plement 1e), whereas KASH4 and KASH5 follow the arc of the SUN1 trimer, enabling them to con-

tribute directly to the 6:6 interface (Figure 3a,b).

Table 1. Data collection, phasing, and refinement statistics.

Sun1-kash4 Sun1-kash5 Sun1-kash1

PDB accession 6R16 6R2I 6R15

Data collection

Space group P212121 P6322 P6322

Cell dimensions

a, b, c (Å) 104.37, 117.21, 138.42 80.16, 80.16, 177.62 80.45, 80.45, 182.55

a, b, g (˚) 90.00, 90.00, 90.00 90.00, 90.00, 120.00 90.00, 90.00, 120.00

Wavelength (Å) 0.9795 0.9282 0.9282

Resolution (Å) 48.83–2.75 (2.85–2.75)* 88.81–1.54 (1.57–1.54)* 65.09–1.82 (1.87–1.82)*

Rmeas 0.111 (1.355) 0.070 (1.551) 0.085 (2.192)

Rpim 0.056 (0.741) 0.015 (0.329) 0.019 (0.465)

Completeness (%) 99.7 (97.5) 97.5 (100.0) 100.0 (100.0)

I/s(I) 15.4 (1.4) 23.5 (2.2) 21.5 (1.7)

CC1/2 0.999 (0.488) 1.000 (0.801) 1.000 (0.776)

Multiplicity 7.1 (5.6) 21.3 (22.1) 20.6 (21.9)

Refinement

Resolution (Å) 47.67–2.75 23.99–1.54 65.09–1.82

No. reflections 44658 49372 32230

Rwork / Rfree 0.2190/0.2549 0.1495/0.1683 0.1587/0.1817

Cruickshank DPI (Å) 0.25 0.06 0.06

No. atoms 10562 2127 2107

Protein 10451 1817 1845

Ligand/ion 21 1 26

Water 90 309 236

B factors 80.64 36.45 48.87

Protein 80.87 35.09 47.73

Ligand/ion 68.03 18.87 119.12

Water 56.37 44.50 50.06

R.m.s. deviations

Bond lengths (Å) 0.002 0.011 0.013

Bond angles (˚) 0.444 1.076 0.995

* Values in parentheses are for highest-resolution shell.
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SUN1-KASH4 adopts an unusual conformation in which the 6:6 complex is held together by three

interface spanning zinc-sites, each coordinated by opposing KASH4 molecules (Figure 3c and Fig-

ure 3—figure supplement 1a). The presence of metal ions in the crystal structure was confirmed by

corresponding peaks in anomalous difference electron density maps (Figure 3d), and their identity

as zinc ions that were co-purified from bacterial expression was confirmed by the spectrophotomet-

ric determination of three zinc ions per 6:6 complex in solution that were lost upon pre-incubation

with EDTA (Figure 3e). The zinc-sites are coordinated by asymmetric ligands from 381-CCSH-384

motifs of opposing KASH4 molecules, comprising C381 and C382 from one molecule, and C382 and

H384 from the other (Figure 3c), and mutation of both cysteine residues to serine was sufficient to

preclude zinc-binding (Figure 3e). The three zinc-sites form a tripod of interactions that provide the

sole interface-spanning contacts between opposing 3:3 complexes (Figure 3b).

SUN1-KASH5 demonstrates the most extensive 6:6 interface in which KASH5 molecules and

SUN1 KASH-lids from opposing 3:3 complexes wind around each other in a right-handed screw to

create a complete circumferential interface enclosing a hollow core, similar to a b-barrel fold

(Figure 3f and Figure 3—figure supplement 1b). KASH5 follows an almost linear path, packed

between a SUN1 globular core and KASH-lids of opposing SUN1 protomers, with N-terminal 545-

PPP-547 motifs of opposing molecules interacting across the interface. KASH5 and KASH4 follow

similar paths, with KASH5 PPP-motif interactions and KASH4 zinc-sites located at the same positions
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Figure 2. SUN-KASH 6:6 complexes are stable in solution. (a–d) SEC-MALS analysis performed in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT. (a)

GCN4-SUN1 and MBP-KASH form 6:6 complexes of 494 kDa (KASH4, yellow), 448 kDa (KASH5, blue), and 463 kDa (KASH1, red) (theoretical 6:6 – 464,
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KASH4 (theoretical 6:6 – 155 kDa), (c) SUN1-KASH5 (theoretical 6:6 – 155 kDa), and (d) SUN1-KASH1 (theoretical 6:6 – 157 kDa).
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KASH5, and SUN1-KASH1 crystal structures, superposed, and displayed as the SUN1 molecular surface with KASH-lids highlighted in blue as cartoons,

and KASH sequences represented as cartoons (yellow, purple, and red, respectively). (b) Cross-section through the head-to-head interface of

superposed SUN1-KASH4, SUN1-KASH5, and SUN1-KASH1 6:6 assemblies such that their constituent 3:3 complexes are visible. (c) Structural details of

the SUN1-KASH4 6:6 interface, showing a zinc-binding site in which opposing KASH4 chains provide asymmetric ligands C381 and C382, and C382 and

H384 (top), and the lack of interface-spanning interactions between opposing SUN1 KASH-lids (bottom). (d) 2Fo-Fc (blue) and anomalous difference

Figure 3 continued on next page
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and providing analogous interface-spanning interactions (Figure 3a,b). However, an important dis-

tinction is that a torsional rotation of approximately 20˚ between the 3:3 complexes of SUN1-

KASH5, relative to SUN1-KASH4, brings together opposing KASH-lids and enables their interaction

across the interface (Figure 3f). Thus, tip-to-tip interactions via amino acids I673 and F671 of oppos-

ing SUN1 KASH-lids contribute to the extensive 6:6 interface of SUN1-KASH5 (Figure 3f).

The SUN1-KASH1 6:6 complex is formed solely of a tripod of KASH-lid tip-to-tip interactions

mediated by amino acids I673 and F671, in the same manner and owing to the same torsional rota-

tion as in the SUN1-KASH5 structure (Figure 3g and Figure 3—figure supplement 1c). KASH1

undergoes acute angulation away from the 6:6 interface (Figure 3a,b), as previously observed in

SUN2-KASH1/2 (Figure 1—figure supplement 1e). As such, whilst amino acid F8784 binds to the

KASH-lids of each tip-to-tip interaction site (Figure 3g), KASH1’s N-terminus does not contribute to

the 6:6 interface (Figure 3a,b). This creates an open interface, with large solvent channels between

opposing 3:3 complexes (Figure 3—figure supplement 1c). Overall, the three structures demon-

strate alternative SUN-KASH 6:6 interaction mechanisms that are differentially exploited by KASH

proteins.

Our findings of differential 6:6 assembly mechanisms raise the possibility that the same SUN1-

KASH 6:6 complex could be supported by distinct interfaces. We confirmed this hypothesis for

SUN1-KASH4 through the finding that the 6:6 complex is retained upon zinc removal by pre-incuba-

tion with EDTA (Figure 3e and Figure 3—figure supplement 2), likely through reversal to a KASH1-

like interface in which the head-to-head interaction is mediated solely by SUN1 amino acids. The

zinc-stripped SUN1-KASH4 complex also formed a prominent 12:12 species (Figure 3—figure sup-

plement 2), suggesting that in absence of metal coordination, KASH4 can mediate interactions

between KASH1-like 6:6 complexes, which could occur through disulphide bond formation of

exposed C381 and C382 amino acids. These findings illustrate how SUN1-KASH4 and SUN1-KASH1

represent either ends of a spectrum of possible inter-trimer interfaces in which 6:6 structures are

supported solely by KASH-mediated metal coordination and SUN1’s KASH-lids, respectively. In con-

trast, SUN1-KASH5 is an intermediate structure that utilises both KASH and KASH-lid mechanisms to

form a fully enclosed 6:6 interface.

SUN1-KASH1 complex formation depends on KASH-lid 6:6 interactions
On the basis of our SUN-KASH crystal structures, we predicted that KASH-lid tip-to-tip interactions

are essential for 6:6 hetero-oligomer formation in solution by SUN1-KASH1 but not SUN1-KASH4.

We tested this by generating glutamate mutations of KASH-lid tip amino acids I673 and F671, which

mediate interface-spanning tip-to-tip interactions within SUN1-KASH1 and SUN1-KASH5 but have

no contacts within their respective 3:3 complexes (Figure 3c,f,g and Figure 4—figure supplement

1a–c). We also analysed a glutamate mutation of amino acid W676, which mediates hydrophobic

interactions with the KASH domain within a constituent 3:3 complex (Figure 4—figure supplement

1a–c), and acted as a negative control in disrupting all three SUN-KASH complexes (Figure 4a,b). It

was not possible to analyse SUN-KASH binding through amylose pull-down owing to the non-spe-

cific binding between SUN1 and amylose resin (Figure 4—figure supplement 1e). Instead, we

exploited this phenomenon by using amylose resin to purify complexes and dissociated proteins fol-

lowing GCN4-SUN1 and MBP-KASH co-expression, which we enriched by ion exchange (Figure 4—

Figure 3 continued

(yellow) electron density maps contoured at 1.0 s and 5.0 s, respectively, at a zinc-binding site of SUN1-KASH4. (e) Spectrophotometric determination

of zinc content for SUN1-KASH4 wild-type (dark blue; 3.00 Zn2+ per 6:6), wild-type with EDTA treatment prior to gel filtration (red; 0.09 Zn2+ per 6:6),

and CC381/382SS (light blue; 0.08 Zn2+ per 6:6), using metallochromic indicator PAR, with zinc standards shown in a gradient from light to dark grey (0–

100 mM). Representative of three replicates. (f) Structural details of the SUN1-KASH5 6:6 interface, demonstrating interface-spanning interactions

between PPP-motifs (amino acids 545-PPP-547) of opposing KASH5 chains, and between amino acids F671 and I673 of opposing SUN1 KASH-lids. (g)

Structural details of the SUN1-KASH1 6:6 interface showing interactions between amino acids F671 and I673 of opposing SUN1 KASH-lids that are

supported by KASH1 amino acid F8784, but with no interface-spanning interactions between opposing KASH1 chains.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. SUN-KASH crystal structures.

Figure supplement 2. SUN1-KASH4 forms 6:6 and 12:12 complexes upon sequestration of bound zinc SEC-MALS analysis of SUN1-KASH4 (yellow) and

following the removal of bound zinc (demonstrated in Figure 3e) by treatment with EDTA (blue).
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figure supplement 1d), and then pooled all fractions containing SUN-KASH complexes and dissoci-

ated proteins for analysis by analytical gel filtration (Figure 4a,b). We validated the resulting elution

profiles through SEC-MALS by confirming that the wild-type fusion complexes and dissociated

GCN4-SUN1 and MBP-KASH proteins are 6:6 complexes, trimers and monomers, respectively (Fig-

ure 4—figure supplement 1f).

The SUN1-KASH4 6:6 complex was impervious to KASH-lid mutations I673E and F671E

(Figure 4a,b, Figure 4—figure supplement 1d and Figure 4—figure supplement 2a), in keeping

with the lack of KASH-lid tip-to-tip interactions at its 6:6 interface and the aforementioned reversal

to KASH1-like binding only upon stripping of bound zinc In stark contrast, SUN1-KASH1 was dis-

rupted by I673E and F671E mutations (Figure 4a,b and Figure 4—figure supplement 1d), confirm-

ing that KASH-lid tip-to-tip interactions are essential for its 6:6 complex formation. Upon removal of

the trimerising GCN4 tag, the dissociated SUN1 I673E protein was monomeric, matching our

b
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Figure 4. SUN1 KASH-lid residues involved in 6:6 assembly are essential for KASH1-binding. (a,b) Gel filtration analysis. GCN4-SUN1 and MBP-KASH

proteins were co-expressed and purified by amylose affinity (utilising non-specific binding by SUN1 for non-interacting mutants) and ion exchange

(Figure 4—figure supplement 1d), and all fractions containing SUN-KASH complexes and dissociated proteins were concentrated and loaded onto an

analytical gel filtration column. The elution profiles were validating by SEC-MALS in which wild-type fusion complexes and dissociated GCN4-SUN1 and

MBP-KASH1 proteins were found to be 6:6 complexes, trimers and monomers, respectively (Figure 4—figure supplement 1f). (a) Gel filtration

chromatograms (UV absorbance at 280 nm) across elution profiles for SUN1 wild-type (WT; dark blue), I673E (red), F671E (light blue), and W676E

(green), with KASH4 (left), KASH5 (middle), and KASH1 (right), and (b) SDS-PAGE of their corresponding elution fractions. Representative of three

replicates using different protein preparations. Source data are provided in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Uncropped gel images relating to Figure 4b.

Figure supplement 1. SUN-KASH complex formation upon SUN1 KASH-lid mutagenesis.

Figure supplement 2. Biophysical analysis of the SUN1 I673E mutant.
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observations for wild-type SUN1, which remains monomeric in absence of KASH-binding (Figure 4—

figure supplement 2b). Further, SAXS analysis confirmed that its SUN domain remained folded (Fig-

ure 4—figure supplement 2c–g and Table 2). The failure to observe smaller hetero-oligomers dem-

onstrates that SUN1-KASH1 3:3 complexes are unstable in absence of the 6:6 interface, indicating

that SUN1-KASH1 is a constitutive 6:6 hetero-oligomer.

In agreement with the equal roles of KASH domain and KASH-lid interactions at its 6:6 interface,

SUN1-KASH5 exhibited intermediate phenotypes upon I673E and F671E mutation, with retention of

complex formation but reduction in oligomer size to species that likely reflect partially dissociating

6:6 complexes (Figure 4a,b and Figure 4—figure supplement 1d). We conclude that the diverse

roles of KASH-lids at the 6:6 interfaces of SUN1-KASH crystal structures are truly reflective of their

solution states and that KASH-lid tip-to-tip interactions are essential for assembly of a constitutive

SUN1-KASH1 6:6 hetero-oligomer.

SUN2-KASH complexes form 6:6 and higher molecular weight
structures
LINC complexes are commonly formed of SUN1 and SUN2 (Lei et al., 2009; Zhang et al., 2009),

raising the question of whether SUN2 forms similar 6:6 complexes or distinct LINC complex struc-

tures? To address this, we purified SUN2 complexes with the three characteristic KASH proteins.

SUN2-KASH4 was stable during purification (Figure 5a) and SEC-MALS analysis confirmed that it

constitutes a 6:6 hetero-oligomer (Figure 5b). In contrast, SUN2-KASH5 and SUN2-KASH1 proved

to be less stable and more heterogeneous than their comparative SUN1 complexes (Figure 5a), and

underwent substantial dissociation to SUN2 trimers and KASH monomers during SEC-MALS analysis

(Figure 5c,d). Nevertheless, eluted SUN2-KASH5 and SUN1-KASH1 complexes are molecular

Table 2. Summary of SEC-SAXS data.

SUN1
I673E
(monomer)

Sun1-kash4
(6:6)

Sun1-kash5
(6:6)

Sun1-kash1
(6:6)

SASDBD accession SASDJF5 SASDJC5 SASDJD5 SASDJE5

Guinier analysis

I(0) (cm�1) 0.042 0.045 0.100 0.130

Rg (Å) 21 40 38 39

qmin (Å�1) 0.0080 0.0014 0.0070 0.0090

P(r) analysis

I(0) (cm�1) 0.042 0.045 0.102 0.132

Rg (Å) 22 40 39 39

Dmax (Å) 82 135 135 130

Porod volume (Å3) 39,367 292,301 274,824 303,602

MW from Porod volume (kDa) 23 172 162 179

VC (Å2) 238 825 784 853

MW from VC (kDa) 22 139 131 152

DAMMIF ab initio modelling
(30 models)

Symmetry P1 N/A N/A N/A

NSD mean 0.645 N/A N/A N/A

�
2 (reference model) 1.85 N/A N/A N/A

Structural modelling

CRYSOL - crystal structure (�2) 5.43 1.62 5.50 4.83

CORAL - modelling of N-termini (�2) N/A 1.25 1.70 4.55

CORAL - rigid body modelling (�2) N/A N/A N/A 1.56

SREFLEX - normal mode analysis (�2) 1.72–1.98 N/A N/A N/A
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species of 350–650 kDa and 350–850 kDa, respectively (Figure 5c,d), which are substantially larger

than 3:3 complexes (232 kDa) and include 6:6 complexes (463 and 465 kDa). Thus, SEC-MALS pro-

files likely represent dissociation from SUN2-KASH complexes of 6:6 and higher order hetero-

oligomers. We confirmed this for SUN2-KASH1 by introducing SUN2 mutation C705A (designed to

prevent disulphide bond formation and hence minimise heterogeneity), which removed higher order

structures and demonstrated the presence of dissociating 6:6 hetero-oligomers (Figure 5d). Finally,

we introduced SUN2 mutation I579E, which targets the inter-trimer interface in precisely the same

manner as SUN1 mutation I673E. The SUN2 mutation I579E fully disrupted the SUN2-KASH1 com-

plex, mimicking the phenotype of SUN1 I673E mutation in SUN1-KASH1, confirming that KASH-lid

tip-to-tip interactions are essential for assembly of SUN2-KASH1 complexes. Thus, we conclude that

despite their lower stability and greater heterogeneity, SUN2-KASH complexes are 6:6 and

higher order structures, and interactions that solely span the 6:6 interface are essential for SUN1-

KASH1 complex formation.
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Figure 5. SUN2 forms 6:6 and higher molecular weight SUN-KASH complexes through head-to-head assembly. (a) Gel filtration analysis shown as SDS-

PAGE of elution fractions. GCN4-SUN2 (wild-type, C705A and I579E) and MBP-KASH proteins were co-expressed and purified by amylose affinity

(utilising non-specific binding by SUN2 for non-interacting mutants) and ion exchange, and all fractions containing SUN-KASH complexes and

dissociated proteins were concentrated and loaded onto an analytical gel filtration column. Source data are provided in Figure 5—source data 1. (b–

d) SEC-MALS analysis of SUN2-KASH (MBP fusion) complexes following gel filtration elution (a). (b) SUN2-KASH4 is a 6:6 complex of 485 kDa

(theoretical – 463 kDa). (c) SUN2-KASH5 forms a range of molecular species of at least 350–650 kDa, suggesting dissociation across the elution profile

of 6:6 and larger complexes (theoretical 3:3 and 6:6–232 kDa and 463 kDa). (d) SUN2-KASH1 wild-type (red) forms a range of molecular species of at

least 350–850 kDa, whilst the SUN2 C705A mutation (blue) stabilises a 6:6 complex of 422 kDa, suggesting dissociation across the elution profile of 6:6

and larger complexes (theoretical 3:3 and 6:6–232 kDa and 465 kDa).

The online version of this article includes the following source data for figure 5:

Source data 1. Uncropped gel images relating to Figure 5a.
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Hinge-like motion of the SUN-KASH 6:6 interface
How could the SUN-KASH 6:6 complex be orientated within the nuclear envelope? Its head-to-head

assembly suggests a horizontal orientation, parallel to the outer nuclear membrane, with SUN

trimers organised obliquely within the peri-nuclear space. In this configuration, tension forces carried

by SUN and KASH molecules would exert bending moments on the structure, favouring a hinge-like

angulation between opposing 3:3 complexes. We thus utilised small-angle X-ray scattering (SAXS) to

determine whether SUN-KASH complexes adopt angled conformations in solution. Whilst SAXS data

of SUN1-KASH4 and SUN1-KASH5 were closely fitted by their crystal structures upon flexible model-

ling of missing termini (c2 values of 1.25 and 1.70), we achieved only poor fits for SUN1-KASH1 (c2 =

4.83) (Figure 6a,b, Figure 6—figure supplement 1 and Table 2). In case of large-scale motion, we

performed SAXS-based rigid-body modelling using two SUN1-KASH1 3:3 complexes as indepen-

dent rigid bodies. We consistently obtained models that closely fitted experimental data (c2 = 1.56)

in which 3:3 complexes interact head-to-head with a bend of approximately 60˚ relative to the crystal

structure (Figure 6c,d and Table 2). In this model, two pairs of KASH-lid tip-to-tip interactions by

I673 and F671 are retained, whilst the third is disrupted, and an additional interface is formed

between opposing central KASH-lids. Thus, KASH-lids may act as a hinge at the 6:6 interface, allow-

ing the linear crystal structure to open into a continuous range of angled conformations, including

(but not limited to) the 60˚ angulation predicted by SAXS analysis.

The hinged SUN1-KASH1 structure solves a critical problem in understanding the potential role

of the 6:6 complex within its cellular context. Whilst the linear crystal structure distributes the

KASH1 N-termini around its circumferential exterior (Figures 1c and 3b), making it difficult to envis-

age how all KASH1 molecules could access the outer nuclear membrane, the asymmetrical hinged

structure places all six KASH1 N-termini in favourable positions and orientations for their upstream

transmembrane sequences to cross the outer nuclear membrane (Figure 6c,d).

Is a similar hinge-like angulation possible for SUN1-KASH4 and SUN1-KASH5? Whilst their exten-

sive 6:6 interfaces retain linear structures in solution (Figure 6a–b, Figure 6—figure supplement 1

and Table 2), angulation may be achieved by tension forces. We thus performed normal mode analy-

sis to determine whether angled structures are conformationally accessible. We observed low-fre-

quency normal modes corresponding to hinge-like angulation at the 6:6 interface for all SUN-KASH

complexes (Figure 7), indicating that angled conformations are accessible flexible states. As

described for SUN1-KASH1, hinging of SUN1-KASH4 and SUN-KASH5 would place the N-termini of

their constituent KASH domains in suitable positions and orientations to cross the outer nuclear

membrane, so adoption of hinged conformations may be a critical part of forming stable mem-

brane-associated assemblies. We thus conclude a model in which hinged SUN-KASH 6:6 complexes,

parallel with the outer nuclear membrane, act as nodes for the integration and distribution of tension

forces between oblique SUN trimers and KASH molecules within a branched LINC complex network

(Figure 8).

Discussion
How does our finding of a constitutive SUN-KASH 6:6 assembly integrate with previous biochemical

studies of the LINC complex? It was previously shown by analytical ultracentrifugation, SEC-MALS,

and gel filtration that luminal SUN2 is trimeric, and its isolated SUN domain is a trimer or monomer,

depending on biochemical conditions (Zhou et al., 2012; Wang et al., 2012; Sosa et al., 2013;

Jahed et al., 2018b). These findings agree with our observations that the isolated SUN domain of

SUN1 becomes monomeric upon cleavage of its N-terminal GCN4 expression tag (which mimics the

trimeric luminal coiled-coil), so is entirely dependent on KASH-binding to stabilise its trimeric struc-

ture and head-to-head assembly. The only previous analysis of SUN-KASH in solution involved dem-

onstrating complex formation by analytical gel filtration, without means for oligomer determination

(Esra Demircioglu et al., 2016). Thus, the 3:3 SUN-KASH model was the natural conclusion of com-

bining SUN’s luminal trimer with the extensive 3:3 complexes within SUN2-KASH1/2 crystal lattices

(Sosa et al., 2012; Wang et al., 2012). Our SEC-MALS and SEC-SAXS analyses provide the first

reported evidence of solution structure, revealing that SUN-KASH complexes formed by SUN1 and

SUN2 are 6:6 hetero-oligomers in which 3:3 structures are locked in head-to-head interactions, as

observed in our SUN1-KASH crystal structures and in previous SUN2-KASH crystal lattices

(Sosa et al., 2012; Wang et al., 2012). Further, mutational analysis confirmed that SUN1/2-KASH1
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Figure 6. SEC-SAXS analysis of SUN-KASH 6:6 complexes. (a) SAXS scattering curves of SUN1-KASH4, SUN1-KASH5, and SUN1-KASH1 overlaid with

theoretical scattering curves of their crystal structures (red), crystal structures with KASH flexible N-termini modelled by CORAL (blue) and rigid body

model of two 3:3 complexes (green). Residuals for each fit are shown (inset). Representative of more than three replicates using different protein

preparations. (b) SAXS P(r) distributions showing maximum dimensions of 135 Å, 135 Å, and 130 Å, respectively. (c–d) SAXS rigid body model of SUN1-

Figure 6 continued on next page
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complexes depend on interactions across the 6:6 interface for their stability. Hence, our conclusion

that SUN-KASH complexes are 6:6 hetero-oligomers in vitro is consistent with all existing crystallo-

graphic, biochemical, and biophysical data.

How does the SUN-KASH 6:6 assembly relate to previous observations of LINC complex structure

and function within the cell? The oligomeric states of luminal regions of SUN1 and SUN2, upon

expression and targeting to the nuclear envelope, were determined by fluorescence fluctuation

spectroscopy as trimers with additional higher order SUN1 structures (Hennen et al., 2017;

Hennen et al., 2018). In these studies, expressed KASH domains and isolated SUN domains

remained mostly monomeric, suggesting that expressed constructs did not form SUN-KASH com-

plexes with endogenous partners. Hence, these studies provided important evidence that the

coiled-coils of SUN’s luminal regions form trimers and larger oligomers but did not determine the

stoichiometry of SUN-KASH complexes. The assembly of higher order LINC structures has also been

suggested by numerous other cellular findings, including immobility within the nuclear envelope

(Lu et al., 2008), foci formation within the meiotic nuclear envelope (Ding et al., 2007;

Morimoto et al., 2012; Horn et al., 2013b), and the formation of transmembrane actin-associated

nuclear (TAN) lines (Luxton et al., 2010). Our model of LINC complex branching by SUN-KASH 6:6

assembly is consistent with the observed oligomeric state of SUN’s luminal region and higher order

LINC assembly, but its molecular details are not directly tested by any existing cellular data. Thus,

our molecular model of a branched LINC complex, and similarly the role of zinc-binding in the

SUN1-KASH4 complex, must be tested in future studies of the consequence of separation of func-

tion mutations (such as targeting the 6:6 interfaces of SUN1/2-KASH1 complexes by I673E and

I579E mutations) on the cellular structure and function of the LINC complex.

Figure 6 continued

KASH1 shown as (c) surface and (d) cartoon representation, in which two constituent 3:3 complexes from its crystal structure were assigned as rigid

bodies, with the 6:6 assembly generated by fitting to experimental SAXS data of solution SUN1-KASH1 (c2 = 1.56). The inlet schematic illustrates the

SAXS rigid body modelling procedure in which the crystal structure was split into its constituent 3:3 complexes, which were rotated as rigid bodies in

three dimensions and allowed to interact, whilst fitted against experimental SAXS data. (d) The cartoon representation highlights structural details of

the predicted KASH-lid interface, including the presence of unbound KASH-lids, and the close approximation of opposing KASH-lids, which achieve an

asymmetric positioning of the N-termini of KASH domains in locations and orientations compatible with their upstream sequences crossing the outer

nuclear membrane.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. SAXS analysis of SUN-KASH complexes.
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Figure 7. Hinge-link conformational flexibility within SUN-KASH 6:6 assemblies. Normal mode analysis of SUN-KASH complexes in which non-linear

normal modes calculated by the NOLB algorithm are shown as the largest amplitude of motion of one constituent 3:3 complex (blue) relative to its

original position and its stationary opposing 3:3 complex within the crystal structure (grey) for SUN1-KASH4 (left), SUN1-KASH5 (middle), and SUN1-

KASH1 (right).
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The advantages of a branched LINC complex network include its ability to transmit large forces,

being impervious to the breakage of individual linkages, and in mediating communication and coor-

dination between adjacent molecules. The SUN-KASH 6:6 assembly provides an attractive structural

means for branching, which may combine with a series of episodic instances of oligomer variation

along the SUN-KASH axis to generate a highly branched LINC complex network. Firstly, oligomer

variation could occur through higher order assembly of SUN-KASH 6:6 complexes, as indicated by

our observation of higher order SUN2-KASH structures and the formation of SUN1-KASH4 12:12

complexes upon disruption of zinc-binding. Secondly, oligomeric variation within SUN’s luminal

regions may mediate branching, such as indicated by the formation of trimers and larger oligomer

by luminal SUN1 (Hennen et al., 2018) and disulphide bond formation by SUN1 amino acid C526

(Lu et al., 2008). Finally, oligomer variation between SUN and KASH proteins could mediate branch-

ing across the outer nuclear membrane. Indeed, KASH5 is dimeric (Gurusaran and Davies, unpub-

lished findings), raising the question of how SUN trimers and KASH dimers are organised into

discrete 6:6 complexes? We suggest that each KASH dimer likely spans both SUN trimers, thereby

establishing a symmetrical array of SUN1-KASH interfaces within each 6:6 structure, which constitute

branching events between SUN-KASH5 6:6 complexes and their dimeric cytoskeletal attachments.

Thus, we propose that coordinated force transduction is achieved by a highly branched LINC com-

plex network in which SUN-KASH 6:6 hetero-oligomers contribute to branching by mediating force

distribution and integration between three KASH dimers and two SUN trimers (Figure 8).

The head-to-head nature of SUN-KASH 6:6 complexes suggests their orientation parallel to the

outer nuclear membrane, with SUN trimers organised obliquely within the peri-nuclear space (Fig-

ure 8). Our SAXS analysis of SUN1-KASH1 indicated that it adopts a hinged conformation in solu-

tion, stabilised by two KASH-lid tip-to-tip interactions and laterally associated central KASH-lids.

Whilst hinged motions were not required to explain SAXS data of SUN1-KASH4/5, normal mode

analysis predicted that hinged structures of up to approximately 60˚ angulation are conformationally

accessible states for all three SUN1-KASH complexes. Thus, we suggest that all SUN-KASH head-to-

head structures can undergo hinge-like motion at their 6:6 interface, with a large proportion of

highly angled conformations accounting for their dominance in the SAXS data of SUN1-KASH1 but
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Figure 8. The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex as a branched network of SUN-KASH assemblies. Model of the LINC

complex as a branched network in which SUN-KASH 6:6 complexes act as nodes for force integration and distribution between two SUN trimers and

three KASH dimers, which can bind to spatially separated and distinct nuclear and cytoskeletal components, respectively. This model enables

cooperation between adjacent molecules within a LINC complex network to facilitate the transduction of large and coordinated forces across the
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not other complexes. This hinge-like motion would result in SUN-KASH complexes becoming angled

in response to the magnitude and direction of tension forces carried by SUN and KASH molecules,

whilst providing the conformational flexibility necessary for constituent KASH proteins to adopt ori-

entations that allow upstream transmembrane sequences to cross the outer nuclear membrane. Fur-

ther, all three SUN-KASH 6:6 interfaces are largely hydrophobic, so could be stabilised by

interactions with phospholipids, possibly as part of integrated membrane-bound complexes that

include KASH’s transmembrane regions. Thus, hinge-like flexibility of SUN-KASH may result in a

diverse range of angled conformations owing to distinct tension forces, steric constraints and mem-

brane structures of particular spatiotemporal environments.

What are the roles of distinct SUN and KASH proteins in LINC complex structure and function?

Whilst SUN1 and SUN2 form similar 6:6 hetero-oligomers, we observed notable differences in the

stability and higher assembly of their SUN-KASH complexes. The reduced stability of SUN2-KASH

complexes could facilitate a faster turnover of SUN2-containing LINC complexes, whilst higher order

assembly of SUN2-KASH may combine with differential SUN1/2 luminal assemblies (Hennen et al.,

2017; Hennen et al., 2018) to achieve distinct LINC complex architectures. These findings may

underlie some of the observed asymmetries between SUN1 and SUN2 LINC complexes, such as their

differential preference for cytoskeletal components and their non-redundant functions (Link et al.,

2014; Zhu et al., 2017; Thakar et al., 2017; May and Carroll, 2018). It is important to note that

SUN2-KASH4, in which the 6:6 interface is mediated solely by KASH4 zinc sites, is the only SUN2

complex that retains the high affinity observed for SUN1 complexes. In contrast, SUN amino acids

contribute to the 6:6 interfaces of KASH1/5 complexes, explaining how SUN protein sequence diver-

sity can account for the substantially reduced affinity of SUN2-KASH1/5 in comparison with their

SUN1 complexes. The variation of KASH proteins seemingly provides even greater functional diver-

sity given their entirely non-redundant roles. An intriguing observation is that Nesprin-4 and KASH5,

which transduce microtubule forces (Horn et al., 2013a; Roux et al., 2009; Morimoto et al., 2012;

Horn et al., 2013b), demonstrate extensive interactions at their 6:6 interfaces. In contrast, a far less

extensive 6:6 interface is found in classical Nesprins, which transduce actin forces and the tensile

strength of intermediate filaments (Banerjee et al., 2014; Starr and Fridolfsson, 2010;

Ketema and Sonnenberg, 2011). Thus, cytoskeletal components may have differential requirements

for the strength, structure and stability of SUN-KASH 6:6 hetero-oligomers. Further, differences in

regulatory mechanisms, such as zinc-binding in SUN1-KASH4 assembly, may contribute towards spe-

cialisation. The expression levels and relative availability of SUN and KASH proteins will determine

their incorporation into LINC complexes, and specialised functionalities may be achieved by combin-

ing distinct isoforms within the same LINC complex network or within separate networks of the

same cell.

How is LINC complex assembly regulated within the cell? An intriguing finding is that SUN pro-

teins undergo autoinhibition, in which SUN domains become bound by upstream sequences in

monomeric conformations that are incapable of binding to KASH domains (Nie et al., 2016;

Xu et al., 2018; Jahed et al., 2018b; Jahed et al., 2018a). These autoinhibitory conformations likely

represent unassembled states that may be crucial intermediates in the dynamic process of LINC

complex expression, localisation, and assembly within the cell. They may also represent a ‘storage

form’ of SUN proteins that form when quantities of available KASH proteins are limiting. This would

establish discrete pools of assembled and unassembled SUN proteins, which could play an important

role in preventing unbound SUN molecules from weakening established LINC structures by continu-

ally competing for KASH-binding. Further, given the myriad of LINC complex functions in almost all

eukaryotic cells (Lee and Burke, 2018; Meinke and Schirmer, 2015; Starr and Fridolfsson, 2010),

assembly is likely directed along specific pathways to achieve distinct LINC complex structures for

the fulfilment of specialised functions. Thus, regulatory processes must overcome autoinhibition,

enable KASH-binding, and direct LINC assembly in a timely manner. These may involve chaperones,

enzymatic modification, protein interactions, and/or chemical conditions of the nuclear envelope

environment. In specific, these may include regulation by luminal ion concentration and pH

(Jahed et al., 2018b), local regulation of SUN-KASH angulation, control of SUN1-KASH4 assembly

by zinc availability, and determining the nature of LINC complexes through relative availability of

SUN and KASH protein isoforms. We have hitherto considered variations within SUN-KASH 6:6 com-

plexes, but also recognise the potential for regulatory mechanisms of the nuclear envelope to induce

more substantial structural changes. Thus, whilst our model of LINC complex branching through
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SUN-KASH 6:6 assembly is consistent with all existing data, it remains possible that alternative LINC

complex conformations may form within the spatial and temporal contexts of disparate cell types.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene (Homo
sapiens)

SUN1 GeneArt O94901

Gene (Homo
sapiens)

SUN2 GeneArt Q9UH99

Gene (Homo
sapiens)

Nesprin-1 GeneArt Q8NF91

Gene (Homo
sapiens)

Nesprin-4 GeneArt Q8N205

Gene (Homo
sapiens)

KASH4 GeneArt Q8N6L0

Recombinant
DNA reagent

pRSF-Duet1-
SUN1
(plasmid)

This paper SUN1 (616–812)
cloned into a
pRSF-Duet1
vector

Recombinant
DNA reagent

pRSF-Duet1-
SUN1
I673E
(plasmid)

This paper SUN1 (616–812)
I673E cloned
into a pRSF-
Duet1 vector

Recombinant
DNA reagent

pRSF-Duet1-
SUN1
F671E
(plasmid)

This paper SUN1 (616–812)
F671E cloned
into a pRSF-
Duet1 vector

Recombinant
DNA reagent

pRSF-Duet1-
SUN1
W676E
(plasmid)

This paper SUN1 (616–812)
W676E cloned
into a pRSF-
Duet1 vector

Recombinant
DNA reagent

pRSF-Duet1-
SUN2
(plasmid)

This paper SUN2 (522–717)
cloned into a
pRSF-Duet1
vector

Recombinant
DNA reagent

pMAT11-KASH1
(plasmid)

This paper Nesprin-1 (8769–
8797) cloned
into a pMAT11
vector

Recombinant
DNA reagent

pMAT11-KASH4
(plasmid)

This paper Nesprin-4 (376–
404) cloned into
a pMAT11
vector

Recombinant
DNA reagent

pMAT11-KASH5
(plasmid)

This paper KASH5 (542–562)
cloned into a
pMAT11 vector

Strain, strain
background
(Escherichia coli)

Rosetta2 (DE3) Thermo Fisher EC0114 Chemically
competent cells

Software,
algorithm

XDS http://xds.
mpimf-
heidelberg.mpg.
de/

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

XSCALE http://xds.
mpimf-
heidelberg.mpg.
de/
html_doc/
xscale_program.
html

Software,
algorithm

Phaser PHENIX

Software,
algorithm

PHENIX
Autobuild

PHENIX

Software,
algorithm

PHENIX refine PHENIX

Software,
algorithm

AutoPROC Global phasing

Software,
algorithm

ASTRA 6 Wyatt
Technology

Software,
algorithm

ScÅtter 3.0 http://www.
bioisis.net

Software,
algorithm

PRIMUS Atsas

Software,
algorithm

DAMMIF Atsas

Software,
algorithm

CRYSOL Atsas

Software,
algorithm

SREFLEX Atsas

Software,
algorithm

CORAL Atsas

Software,
algorithm

SAMSON
element

https://www.
samson-connect.
net

Recombinant protein expression and purification
The SUN domains of human SUN1 (amino acid residues 616–812) and SUN2 (amino acid residues

522–717) were fused to N-terminal TEV-cleavable His6-GCN4 tags (as described in Sosa et al.,

2012) and cloned into pRSF-Duet1 (Merck Millipore) vectors. The KASH domains of human KASH5

(amino acid residues 542–562), Nesprin-4 (KASH4, amino acid residues 376–404), and Nesprin-1

(KASH1, amino acid residues 8769–8797) were cloned into pMAT11 (Peränen et al., 1996) vectors

for expression as TEV-cleavable His6-MBP fusion proteins, respectively. SUN and KASH constructs

were co-expressed in BL21 (DE3) cells (Novagen), in 2xYT media, induced with 0.5 mM IPTG for 16

hr at 25˚C. Cell disruption was achieved by sonication in 20 mM Tris pH 8.0, 500 mM KCl for SUN1-

KASH complexes, 20 mM Tris pH 8.0, 150 mM KCl for SUN2-KASH complexes, and cellular debris

removed by centrifugation at 40,000 g. Fusion proteins were purified through consecutive Ni-NTA

(Qiagen), amylose (NEB), and HiTrap Q HP (GE Healthcare) ion exchange chromatography. TEV pro-

tease was utilised to remove affinity tags and cleaved samples were purified through ion exchange

chromatography and size exclusion chromatography (HiLoad 16/600 Superdex 200, GE Healthcare)

in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT. Protein samples were concentrated using Microsep

Advance Centrifugal Devices 10,000 MWCO centrifugal filter units (PALL) and were stored at �80 ˚C

following flash-freezing in liquid nitrogen. Protein samples were analysed by SDS-PAGE and visual-

ised with Coomassie staining. Concentrations were determined by UV spectroscopy using a Cary 60

UV spectrophotometer (Agilent) with extinction coefficients and molecular weights calculated by

ProtParam (http://web.expasy.org/protparam/).
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Crystal structure of SUN1-KASH4 (PDB accession 6R16)
SUN1-KASH4 protein crystals were obtained through vapour diffusion in sitting drops, by mixing

100 nl of protein at 25 mg/ml with 100 nl of crystallisation solution (0.06 M MgCl2; 0.06 M CaCl2; 0.1

M Imidazole pH 6.5; 0.1M MES (acid) pH 6.5; 18% Ethylene glycol; 18% PEG 8K) and equilibrating at

20˚C for 4–9 days. Crystals were flash frozen in liquid nitrogen. X-ray diffraction data were collected

at 0.9795 Å, 100 K, as 2000 consecutive 0.10˚ frames of 0.040 s exposure on a Pilatus 6 M-F detector

at beamline I04 of the Diamond Light Source synchrotron facility (Oxfordshire, UK). Data were

indexed and integrated in XDS (Kabsch, 2010), scaled in XSCALE (Diederichs et al., 2003) and

merged using Aimless (Evans, 2011). Crystals belong to orthorhombic spacegroup P212121 (cell

dimensions a = 104.37 Å, b = 117.21 Å, c = 138.42 Å, a = 90˚, b = 90˚, g = 90˚), with six copies of

SUN1 and KASH4 per asymmetric unit. The structure was solved by molecular replacement using

Phaser (McCoy et al., 2007), with SUN1-KASH1 (this study, PDB accession 6R15) as a search model.

The structure was re-built by PHENIX Autobuild (Adams et al., 2010) and completed through itera-

tive manual model building in Coot (Emsley et al., 2010), with the addition of six potassium ions,

three zinc ions and ethylene glycol ligands. The structure was refined using PHENIX refine

(Adams et al., 2010) with isotropic atomic displacement parameters and TLS parameters, using

SUN1-KASH1 as a reference structure. The structure was refined against 2.75 Å data to R and Rfree

values of 0.2190 and 0.2549, respectively, with 98.22% of residues within the favoured regions of the

Ramachandran plot (0 outliers), clashscore of 4.89 and overall MolProbity score of 1.26 (Chen et al.,

2010). The final SUN1-KASH4 model was analysed using the Online_DPI webserver (http://cluster.

physics.iisc.ernet.in/dpi) to determine a Cruikshank diffraction precision index (DPI) of 0.25 Å

(Kumar et al., 2015).

Crystal structure of SUN1-KASH5 (PDB accession 6R2I)
SUN1-KASH5 protein crystals were obtained through vapour diffusion in sitting drops, by mixing

100 nl of protein at 25 mg/ml with 100 nl of crystallisation solution (0.12 M 1,6-Hexanediol; 0.12 M

1-Butanol 1,2-Propanediol (racemic); 0.12 M 2-Propanol; 0.12 M 1,4-Butanediol; 0.12 M 1,3-Pro-

panediol; 0.1 M Imidazole pH 6.5; 0.1 M MES (acid) pH 6.5; 18% Glycerol; 18% PEG 4K) and equili-

brating at 20˚C for 4–9 days. Crystals were flash frozen in liquid nitrogen. X-ray diffraction data were

collected at 0.9282 Å, 100 K, as 2000 consecutive 0.10˚ frames of 0.050 s exposure on a Pilatus 6

M-F detector at beamline I04-1 of the Diamond Light Source synchrotron facility (Oxfordshire, UK).

Data were indexed, integrated, scaled, and merged in AutoPROC using XDS (Kabsch, 2010) and

Aimless (Evans, 2011). Crystals belong to hexagonal spacegroup P6322 (cell dimensions a = 80.16

Å, b = 80.16 Å, c = 177.62 Å, a = 90˚, b = 90˚, g = 120˚), with one copy of SUN1 and KASH5 per

asymmetric unit. The structure was solved by molecular replacement using Phaser (McCoy et al.,

2007), with SUN1-KASH1 (this study, PDB accession 6R15) as a search model. The structure was re-

built by PHENIX Autobuild (Adams et al., 2010) and completed through iterative manual model

building in Coot (Emsley et al., 2010), with the addition of a potassium ion. The structure was

refined using PHENIX refine (Adams et al., 2010), using anisotropic atomic displacement parame-

ters. The structure was refined against 1.54 Å data to R and Rfree values of 0.1495 and 0.1683,

respectively, with 96.71% of residues within the favoured regions of the Ramachandran plot (0 out-

liers), clashscore of 6.11 and overall MolProbity score of 1.54 (Chen et al., 2010). The final SUN1-

KASH5 model was analysed using the Online_DPI webserver (http://cluster.physics.iisc.ernet.in/dpi)

to determine a Cruikshank diffraction precision index (DPI) of 0.06 Å (Kumar et al., 2015).

Crystal structure of SUN1-KASH1 (PDB accession 6R15)
SUN1-KASH1 protein crystals were obtained through vapour diffusion in sitting drops, by mixing

100 nl of protein at 21 mg/ml with 100 nl of crystallisation solution (0.09 M NaF; 0.09 M NaBr; 0.09

M NaI; 0.1M Sodium HEPES pH 7.5; 0.1 M MOPS (acid) pH 7.5; 18% PEGMME 550; 18% PEG 20K)

and equilibrating at 20˚C for 4–9 days. Crystals were flash frozen in liquid nitrogen. X-ray diffraction

data were collected at 0.9282 Å, 100 K, as 2000 consecutive 0.10˚ frames of 0.100 s exposure on a

Pilatus 6 M-F detector at beamline I04-1 of the Diamond Light Source synchrotron facility (Oxford-

shire, UK). Data were indexed, integrated, scaled, and merged in Xia2 (Winter, 2010) using XDS

(Kabsch, 2010), XSCALE (Diederichs et al., 2003), and Aimless (Evans, 2011). Crystals belong to

hexagonal spacegroup P6322 (cell dimensions a = 80.45 Å, b = 80.45 Å, c = 182.55 Å, a = 90˚,
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b = 90˚, g = 120˚), with one copy of SUN1 and KASH1 per asymmetric unit. The structure was solved

by molecular replacement using Phaser (McCoy et al., 2007), with the SUN domain from SUN2-

KASH1 (PDB accession 4DXR; 67% sequence identity) (Sosa et al., 2012) as a search model. The

structure was re-built by PHENIX Autobuild (Adams et al., 2010) and completed through iterative

manual model building in Coot (Emsley et al., 2010), with the addition of a potassium ion, and PEG

and HEPES ligands. The structure was refined using PHENIX refine (Adams et al., 2010), using iso-

tropic atomic displacement parameters with four TLS groups per chain. The structure was refined

against 1.82 Å data to R and Rfree values of 0.1587 and 0.1817, respectively, with 96.86% of residues

within the favoured regions of the Ramachandran plot (0 outliers), clashscore of 0.00 and overall

MolProbity score of 0.69 (Chen et al., 2010). The final SUN1-KASH1 model was analysed using the

Online_DPI webserver (http://cluster.physics.iisc.ernet.in/dpi) to determine a Cruikshank diffraction

precision index (DPI) of 0.06 Å (Kumar et al., 2015).

Size-exclusion chromatography multi-angle light scattering (SEC-MALS)
The absolute molar masses of protein samples and complexes were determined by size-exclusion

chromatography multi-angle light scattering (SEC-MALS). Protein samples at >1 mg/ml (unless oth-

erwise states) were loaded onto a Superdex 200 Increase 10/300 GL size exclusion chromatography

column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT, at 0.5 ml/min using an ÄKTA

Pure (GE Healthcare). The column outlet was fed into a DAWN HELEOS II MALS detector (Wyatt

Technology), followed by an Optilab T-rEX differential refractometer (Wyatt Technology). Light scat-

tering and differential refractive index data were collected and analysed using ASTRA six software

(Wyatt Technology). Molecular weights and estimated errors were calculated across eluted peaks by

extrapolation from Zimm plots using a dn/dc value of 0.1850 ml/g. SEC-MALS data are presented as

differential refractive index (dRI) profiles with fitted molecular weights (MW) plotted across elution

peaks.

Spectrophotometric determination of zinc content
The presence of zinc in protein samples was determined through a spectrophotometric method

using the metallochromic indicator 4-(2-pyridylazo) resorcinol (PAR) (Säbel et al., 2009). Protein

samples at 90–200 mM, corresponding to SUN1-KASH4 wild-type and CC381/382SS, and a wild-type

sample that had been treated with EDTA (at a 10-fold molar excess relative to protein concentration)

prior to gel-filtration, were digested with 0.6 mg/ml proteinase K (NEB) at 60˚C for 1 hr. Of the super-

natant, 10 ml of each protein digestion was added to 80 ml of 50 mM 4-(2-pyridylazo)-resorcinol (PAR)

in 20 mM Tris, pH 8.0, 150 mM KCl, incubated for 5 min at room temperature, and UV absorbance

spectra were recorded between 600 and 300 nm (Varian Cary 60 spectrophotometer). Zinc concen-

trations were estimated from the ratio between absorbance at 492 and 414 nm, plotted on a line of

best fit obtained from analysis of 0–100 mM zinc acetate standards.

KASH-binding by SUN1 point mutants
The wild-type and individual point mutations I673E, F671E, and W676E of SUN1 and I579E of SUN2

(as His6-GCN4 fusions) were co-expressed with KASH (as His6-MBP fusion) as described above. Initial

purification was performed by amylose affinity chromatography (NEB), relying on the residual affinity

of SUN1/2 in cases when point mutations were disruptive. Resultant protein mixtures were analysed

by ion exchange chromatography using HiTrap Q HP (GE Healthcare) and comparable samples from

full elution profiles of wild-type and mutant proteins for each KASH binding-partner were analysed

by SDS-PAGE. The entire elutions were then pooled, concentrated and analysed by size-exclusion

chromatography on a Superdex 200 Increase 10/300 GL size exclusion chromatography column (GE

Healthcare) in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT, at 0.5 ml/min using an ÄKTA Pure (GE

Healthcare). Elution fractions of wild-type and mutant proteins for each KASH binding-partner were

analysed by SDS-PAGE.

Size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS)
SEC-SAXS experiments were performed at beamline B21 of the Diamond Light Source synchrotron

facility (Oxfordshire, UK). Protein samples at concentrations > 10 mg/ml were loaded onto a Super-

dex 200 Increase 10/300 GL size exclusion chromatography column (GE Healthcare) in 20 mM Tris
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pH 8.0, 150 mM KCl at 0.5 ml/min using an Agilent 1200 HPLC system. The column outlet was fed

into the experimental cell, and SAXS data were recorded at 12.4 keV, detector distance 4.014 m, in

3.0 s frames. ScÅtter 3.0 (http://www.bioisis.net) was used to subtract, average the frames and carry

out the Guinier analysis for the radius of gyration (Rg), and P(r) distributions were fitted using PRI-

MUS (Konarev et al., 2003). Ab initio modelling was performed using DAMMIF (Franke and Sver-

gun, 2009); 30 independent runs were performed in P1 and averaged. Crystal structures and

models were fitted to experimental data using CRYSOL (Svergun et al., 1995). Normal mode analy-

sis was used to model conformational flexibility for fitting to SAXS data using SREFLEX

(Panjkovich and Svergun, 2016), and rigid body and flexible termini modelling was performed using

CORAL (Petoukhov et al., 2012).

Normal mode analysis of SUN1-KASH structures
Non-linear normal modes were calculated and visualised for SUN1-KASH 6:6 structures using the

NOLB algorithm (Hoffmann and Grudinin, 2017) within the normal mode analysis SAMSON ele-

ment (https://www.samson-connect.net).

Protein sequence and structure analysis
Nesprin sequences were aligned and visualised using MUSCLE (Madeira et al., 2019) and Jalview

(Waterhouse et al., 2009). Molecular structure images were generated using the PyMOL Molecular

Graphics System, Version 2.3 Schrödinger, LLC.
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