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Summary. Statistical network modelling has focused on representing the graph as a discrete
structure, namely the adjacency matrix. When assuming exchangeability of this array—which
can aid in modelling, computations and theoretical analysis—the Aldous–Hoover theorem in-
forms us that the graph is necessarily either dense or empty. We instead consider representing
the graph as an exchangeable random measure and appeal to the Kallenberg representation
theorem for this object. We explore using completely random measures (CRMs) to define the
exchangeable random measure, and we show how our CRM construction enables us to achieve
sparse graphs while maintaining the attractive properties of exchangeability.We relate the spar-
sity of the graph to the Lévy measure defining the CRM. For a specific choice of CRM, our
graphs can be tuned from dense to sparse on the basis of a single parameter. We present a
scalable Hamiltonian Monte Carlo algorithm for posterior inference, which we use to analyse
network properties in a range of real data sets, including networks with hundreds of thousands
of nodes and millions of edges.

Keywords: Exchangeability; Generalized gamma process; Lévy measure; Point process;
Random graphs

1. Introduction

The rapid increase in the availability and importance of network data has been a driving force
behind the significant recent attention on random-graph models. In devising such models, there
are several competing forces:

(a) flexibility to capture network features like sparsity of connections between nodes, heavy-
tailed node degree distributions, dense spots or block structure;

(b) interpretability of the network model and associated parameters;
(c) theoretical tractability of analysis of network properties;
(d) computational tractability of inference with the ability to scale analyses to large collections

of nodes.

A plethora of network models have been proposed in recent decades, each with different trade-
offs made between flexibility, interpretability and theoretical and computational tractability;
we refer the interested reader to overviews of such models provided by Newman (2003, 2010),
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Bollobás (2001), Durrett (2007), Goldenberg et al. (2010) and Fienberg (2012). In this paper,
our focus is on providing a new framework in which to make these trade-offs. We demonstrate
the ability to make gains in multiple directions using this framework through a specific example
where the goal is to capture

(i) sparsity—tunable from sparse to dense via interpretable parameters,
(ii) heavy-tailed degree distributions—again controlled via interpretable parameters—and
(iii) computational tractability of Bayesian inference, scaling to networks with hundreds of

thousands of nodes and millions of edges.

Classically, the graph being modelled has been represented by a discrete structure, or adjacency
matrix, Z where Zij is a binary variable with Zij =1 indicating an edge from node i to node j.
In the case of undirected graphs, we furthermore restrict Zij =Zji. Then, the statistical network
model is devised with this structure representing the observable quantity.

From a modelling, computational and theoretical standpoint, making an assumption of ex-
changeability is attractive. Under the adjacency matrix graph representation, such a statement
informally equates with an invariance in distribution to permutations of node orderings. One rea-
son why this assumption is attractive can be seen from applying the celebrated Aldous–Hoover
theorem (Aldous, 1981; Hoover, 1979) to the adjacency matrix: infinite exchangeability of the
binary matrix implies a mixture model representation involving transformations of uniform
random variables (see theorem 7 in Appendix A.1). For undirected graphs, this transformation
is specified by the graphon (Borgs et al. 2008; Lovász, 2013), which was originally studied as
the limit object of dense graph sequences (Lovász and Szegedy, 2006; Borgs et al. 2010). The
connection with the Aldous–Hoover theorem was made by Diaconis and Janson (2008). The
graphon provides an object by which to study the theoretical properties of the statistical network
process and to devise new estimators, as has been studied extensively in recent years (Bickel and
Chen, 2009; Bickel et al., 2011; Rohe, et al., 2011; Zhao et al., 2012; Airoldi et al., 2013; Choi
and Wolfe, 2014). Furthermore, the mixture model is a cornerstone of Bayesian modelling and
provides a framework in which computational strategies are straightforwardly devised. Indeed,
the Aldous–Hoover constructive definition has motivated new models (Lloyd et al., 2012) and
many popular existing models can be recast in this framework, including the stochastic block
model (Nowicki and Snijders, 2001; Airoldi et al., 2008) and latent space model (Hoff et al.,
2002).

One consequence of the Aldous–Hoover theorem is that graphs that are represented by an
exchangeable random array are either empty or dense, i.e. the number of edges grows quadrat-
ically with the number of nodes n (see Lovász (2013) and Orbanz and Roy (2015)). However,
empirical analyses suggest that many real world networks are sparse (Newman, 2010). Formally,
sparsity is an asymptotic property of a graph. Following Bollobás and Riordan (2009), we refer
to graphs with Θ.n2/ edges as dense and graphs with o.n2/ edges as sparse (for notation, see
Appendix C). The conclusion appears to be that we cannot have both exchangeability, with
the associated benefits described above, and sparse graphs. Although network models can of-
ten adapt parameters to fit finite graphs, it is appealing to have a modelling framework with
theoretically provable properties that are consistent with observed network attributes.

There are a couple of approaches to handling this apparent issue. One is to give up on ex-
changeability to obtain sparse graphs, such as in the popular preferential attachment model
(Barabási and Albert, 1999; Berger et al., 2014) or configuration model (Bollobás, 1980; New-
man, 2010). Indeed, the networks literature is dominated by sparse non-exchangeable models.
Alternatively, there is a body of literature that examines rescaling graph properties with network
size n, leading to sparse graph sequences where each graph is finitely exchangeable (Bollobás
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Fig. 1. Point process representation of a random graph: each node i is embedded in RC at some location
θi and is associated with a sociability parameter wi ; an edge between nodes θi and θj is represented by a
point at locations .θi , θj / and .θj , θi / in R2C

et al., 2007; Bollobás and Riordan, 2009; Olhede and Wolfe, 2012; Wolfe and Olhede, 2013;
Borgs et al., 2014a,b). Convergence of sparse graph sequences, analogous to the study of limit-
ing objects for dense graph sequences, has also been studied (e.g. Borgs et al. (2017)). However,
any method building on a rescaling approach provides a graph distribution πn that lacks pro-
jectivity: marginalizing node n does not yield πn−1, the distribution on graphs of size n−1.

We instead propose to set aside the discrete structure of the adjacency matrix and examine
a different notion of exchangeability for a continuous space representation of networks. In
particular, we consider a point process on R2+:

Z =∑
i,j

zij δ.θi,θj/, .1/

where zij is 1 if there is a link between node i and node j, and is 0 otherwise, and θi and θj are in
R+ = [0, ∞/ (Fig. 1). We can think of θi as a time index for node i. Exchangeability, as defined
in Section 2, then equates with invariance to the time of arrival of the nodes. See Section 3.5 for
a further interpretation of θi.

We note that exchangeability of the point process representation does not imply exchange-
ability of the associated adjacency matrix; however, the same modelling, computational and
theoretical advantages remain. Interestingly, we arrive at a direct analogue to the construc-
tive representation of the Aldous–Hoover theorem for exchangeable arrays and the associated
graphon. Appealing to Kallenberg (1990, 2005), chapter 9, a point process on R2+ is exchange-
able if and only if it can be represented as a transformation of unit rate Poisson processes and
uniform random variables (see theorem 1 in Section 2).

As a case-study in how this exchangeable random-measure framework can enable statistical
network models with properties that are different from what can be achieved in the exchangeable
array framework, we consider the following specification. To induce node heterogeneity in the
link probabilities, we endow each node with a scalar sociability parameter wi > 0. We then
consider a straightforward link probability model. For any i �= j,

Pr.zij =1|wi, wj, θi, θj/=1− exp.−2wiwj/: .2/

This link function has been previously used by several others to build network models (Aldous,
1997; Norros and Reittu, 2006; Bollobás, et al., 2007; van der Hofstad, 2014). Note that, under
this specification, the ‘time indices’ θi and θj of nodes i and j do not influence the probability
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of these two nodes to form a link. This is in contrast with, for example, standard latent space
models (Hoff et al., 2002). See Section 4 for further discussion.

To define the set of .wi, θi/i=1,2,::: underlying this statistical network model, we explore the
use of completely random measures (CRMs) (Kingman, 1967). The .wi/i=1,2,::: are the jumps of
the CRM and the .θi/i=1,2,::: the locations of the atoms. We show that, by carefully choosing
the Lévy measure characterizing this CRM, we can construct graphs ranging from sparse to
dense. In particular, any Lévy measure yielding an infinite activity CRM leads to sparse graphs;
alternatively, finite activity CRMs yield dense graphs. For the class of infinite activity regularly
varying CRMs, we can sharpen the results to obtain graphs where the number of edges increases
at a rate below na, where 1 < a < 2 depending on the Lévy measure. We focus on the flexible
generalized gamma process CRM and show that one can tune the graph from dense to sparse
via a single parameter.

Building on the framework of CRMs leads to other desirable properties as well. One is
that our CRM-based exchangeable point process leads to an analytic representation for the
graphon analogue in the Kallenberg framework (see Section 5.1). Another is that, by drawing
on the considerable theory of CRMs that has been well studied in the Bayesian non-parametric
community, we can derive network simulation techniques and develop a principled statistical
estimation procedure. For the latter, in Section 7 we devise a scalable Hamiltonian Monte Carlo
(HMC) sampler that can automatically handle a range of graphs from dense to sparse. We
empirically show in Section 8 that our methods scale to graphs with hundreds of thousands of
nodes and millions of edges. Importantly, exchangeability of the random measure underlies the
efficiency of the sampler.

In summary, the CRM-based formulation combined with the specific link model of equation
(2) serves as a proof of concept that moving to the point process representation of equation
(1) can yield models with desirable attributes that are different from what can be obtained by
using the discrete adjacency matrix representation. More generally, the notion of modelling the
graph as an exchangeable random measure and appealing to a Kallenberg representation for
such exchangeable random measures serves as an important new framework for devising and
studying random-graph models, just as the original graphon concept stimulated considerable
work in the network community in the past decade.

Our paper is organized as follows. In Section 2, we provide background on exchangeability
and CRMs. Our statistical network models for directed multigraphs, undirected graphs and
bipartite graphs are in Section 3. A discussion of our framework compared with related network
models is provided in Section 4. Properties, such as exchangeability and sparsity, and methods
for simulation are presented in Section 5. Specific cases of our formulation leading to dense and
sparse graphs are considered in Section 6, including an empirical analysis of network properties
of our proposed formulation. Our Markov chain Monte Carlo (MCMC) posterior computations
are in Section 7. Finally, Section 8 provides a simulation study and an analysis of a variety of
large, real world graphs.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Background on exchangeability

Our focus is on exchangeable random structures that can represent networks. We first briefly
review exchangeability for random sequences, continuous time processes and discrete network
arrays. Thorough and accessible overviews of exchangeability of random structures have been
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Table 1. Overview of representation theorems

Discrete structure Continuous time or space

Exchangeability de Finetti (1931) Bühlmann (1960)
Joint or separate Aldous (1981) and Kallenberg (1990)

exchangeability Hoover (1979)

presented in the surveys of Aldous (1985) and Orbanz and Roy (2015). Here, we simply abstract
away the notions that are relevant to placing our network formulation in context, as summarized
in Table 1.

The classical representation theorem arising from a notion of exchangeability for discrete
sequences of random variables is due to de Finetti (1931). The theorem states that a sequence
Z1, Z2, : : : with Zi ∈Z is exchangeable if and only if there is a random probability measure P on
Z with law ν such that the Zi are conditionally independently and identically distributed (IID)
given P, i.e. all exchangeable infinite sequences can be represented as a mixture with mixing
measure ν. If examining continuous time processes instead of sequences, the representation that
is associated with exchangeable increments was given by Bühlmann (1960) (see also Freedman
(1996) in terms of mixing Lévy processes.

The focus of our work, however, is on graph structures. For generic matrices Z in some space
Z, an (infinite) exchangeable random array (Diaconis and Janson, 2008; Lauritzen, 2008) is one
such that

.Zij/
d= .Zπ.i/π̃.j// for .i, j/∈N2 .3/

for any permutations π, π̃ of N (separate exchangeability), or for any permutation π= π̃ of N

(joint exchangeability), where the notation ‘=d’ stands for ‘equal in distribution’. A representa-
tion theorem for exchangeability of the classical discrete adjacency matrix Z arises by consid-
ering a special case of the Aldous–Hoover theorem (Aldous, 1981; Hoover, 1979) to 2-arrays.
For undirected graphs where Z is a binary, symmetric adjacency matrix, the Aldous–Hoover
representation can be expressed as the existence of a graphon. For completeness, the Aldous–
Hoover theorem (specialized to 2-arrays under joint exchangeability) and further details on the
graphon are provided in Appendix A.1.

Throughout this paper, we instead consider representing a graph as a point process Z =
Σi,j zijδ.θi,θj/ with nodes θi embedded in R+, as in equation (1), and then examine notions of
exchangeability in this context. Paralleling result (3), the point process Z on R2+ is exchangeable
if and only if (Kallenberg (2005), chapter 9)

.Z.Ai ×Aj//
d= .Z.Aπ.i/ ×Aπ̃.j/// for .i, j/∈N2, .4/

for any permutations π, π̃ of N, with π= π̃ in the jointly exchangeable case, and any intervals
Ai = [h.i−1/, hi] with i∈N and h> 0.

In words, result (4) states that the point process Z is exchangeable if, for any arbitrary regular
square grid on the plane, the associated infinite array of increments (edge counts between nodes
in a square) is exchangeable (Fig. 2). This provides a notion of exchangeability akin to that of
the Aldous–Hoover theorem, but fundamentally different as the array being considered here
is formed on the basis of an underlying continuous process. This array is not equivalent to an
adjacency matrix, regardless of how fine a grid is considered.
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(a) (b)

Fig. 2. Illustration of the notion of exchangeability for point processes on the plane: for any regular square
grid on the plane (a), the associated infinite array counting the number of points in each square (b) is
exchangeable in the sense of result (3)

Kallenberg (1990) derived de-Finetti-style representation theorems for separately and jointly
exchangeable random measures on R2+, which we present for the jointly exchangeable case in
theorem 1. In what follows λ denotes the Lebesgue measure on R+, λD the Lebesgue measure
on the diagonal D={.s, t/∈R2+|s= t} and Ñ2 ={{i, j}|.i, j/∈N2}. We also define a U-array to
be an array of independent uniform random variables.

Theorem 1 (representation theorem for jointly exchangeable random measures on R2+ (Kallen-
berg (1990) and Kallenberg (2005), theorem 9.24)). A random measure ξ on R2+ is jointly
exchangeable if and only if almost surely

ξ=∑
i,j

f.α0,ϑi,ϑj, ζ{i, j}/δθi,θj +β0λD +γ0.λ×λ/

+∑
j,k

{g.α0,ϑj,χjk/δθj , σjk
+g′.α0,ϑj,χjk/δσjk ,θj}

+∑
j

{h.α0,ϑj/.δθj ×λ/+h′.α0,ϑj/.λ× δθj /}

+∑
k

{l.α0, ηk/δρk ,ρ′
k
+ l′.α0, ηk/δρ′

k ,ρk
} .5/

for some measurable functions f : R4+ → R+, g, g′ : R3+ → R+ and h, h′, l, l′: R2+ → R+. Here,
.ζ{i,j}/ with {i, j}∈ Ñ2 is a U-array. {.θj,ϑj/} and {.σij,χij/} on R2+ and {.ρj,ρ′

j, ηj/} on R3+
are independent, unit rate Poisson processes. Furthermore, α0,β0,γ0 �0 are an independent
set of random variables.

We can think of the θi as random time indices, the sets {θi} × R+ and R+ × {θj} form-
ing Poisson processes of vertical and horizontal lines. The representation (1) is slightly more
involved than the representation theorem for exchangeable arrays (see Appendix A.1). The
first component of ξ is, however, similar to the representation for exchangeable arrays, the se-
quence of fixed indices i=1, 2, : : : and uniform random variables .Ui/i=1,2,::: in equation (46) in
Appendix A.1 being replaced by a unit rate Poisson process {.θi,ϑi/} on R2+. We place our pro-
posed network model of Section 3 within this Kallenberg representation in Section 5.1, yielding
direct analogues to the classical graphon representation of graphs based on exchangeability of
the adjacency matrix.
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3. Proposed statistical network model

Recall that we represent an undirected graph using an atomic measure

Z =
∞∑

i=1

∞∑
j=1

zij δ.θi,θj/,

with the convention zij = zji ∈ {0, 1}. Here, zij = zji = 1 indicates an undirected edge between
nodes θi and θj. See Section 3.5 for the interpretation of θi.

There are many options for defining a statistical model for the point process graph represen-
tation Z. We consider one in particular in this paper based on a specific choice of

(a) link probability model and
(b) a prior on the model parameters.

Expanding on the discussion of Section 1, we introduce a collection of per-node sociability
parameters w ={wi} and specify link probabilities via

Pr.zij =1|w/=
{

1− exp.−2wiwj/ i �= j,
1− exp.−w2

i / i= j:
.6/

As mentioned in Section 1, this link probability model is not new to the statistical networks
community and is a straightforward method for achieving node heterogeneity (see Aldous (1997)
and Norros and Reittu (2006)).

3.1. Defining node parameters by using completely random measures
The model parameters consist of a collection of node-specific sociability parameters wi > 0 and
continuous-valued node indices θi ∈R+.

Our generative model jointly specifies .wi, θi/i=1,2,::: by first defining an atomic random mea-
sure

W =
∞∑

i=1
wiδθi .7/

and then taking W to be distributed according to a homogeneous CRM (Kingman, 1967).
CRMs have been used extensively in the Bayesian non-parametric literature for proposing

flexible classes of priors over functional space (Regazzini et al., 2003; Lijoi and Prünster, 2010).
We briefly review a few important properties of CRMs that are relevant to our construction; the
reader can refer to Kingman (1993) or Daley and Vere-Jones (2008) for an exhaustive coverage.

A CRM W on R+ is a random measure such that, for all finite families of disjoint, bounded
measurable sets .A1, : : : , An/ of R+, the random variables W.A1/, : : : , W.An/ are mutually inde-
pendent.

We shall focus here on CRMs with no deterministic component and stationary increments
(i.e. the distribution of W.[t, s]/ depends only on t − s). In this case, the CRM takes the form (7),
with .wi, θi/i∈N the points of a Poisson point process on .0, ∞/×R+ defined by a mean measure
ν.dw, dθ/=ρ.dw/λ.dθ/, where λ is the Lebesgue measure and ρ is a Lévy measure on .0, ∞/.

We denote this by

W ∼CRM.ρ,λ/: .8/

Note that W.[0, T ]/ < ∞ almost surely for any T < ∞, whereas W.R+/ = ∞ almost surely if∫ ∞
0 ρ.dw/> 0.
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The jump part ρ of the mean measure—which characterizes the increments of W—is of
particular interest in our graph construction, as explored in Section 5. If ρ satisfies the condition∫ ∞

0
ρ.dw/=∞, .9/

then there will be an infinite number of jumps in any interval [0, T ], and we refer to the CRM
as infinite activity. Otherwise, the number of jumps will be finite almost surely. In our model,
the jumps correspond to potentially connected nodes, i.e. these nodes need not be connected to
any other node within a bounded interval and instead represent an upper bound on the set of
connected nodes. See Section 3.5 for further discussion.

In Section 6, we consider special cases including the (compound) Poisson process and gener-
alized gamma process (GGP) (Brix, 1999; Lijoi et al., 2007).

3.2. Directed multigraphs
Formally, our undirected graph model is viewed as a transformation of a directed integer-
weighted graph, or multigraph, as detailed in Section 3.3. We now specify this directed multi-
graph. Although our primary focus is on undirected network models, in some applications the
directed multigraph might actually be the direct quantity of interest. For example, in social
networks, interactions are often not only directed (‘person i messages person j’) but also have
an associated count. Additionally, interactions might be typed (‘message’, ‘SMS’, ‘like’, ‘tag’).
Our proposed framework could be directly extended to model such data.

Let V = .θ1, θ2, : : :/ be a countably infinite set of node indices with θi ∈R+. We represent the
directed multigraph of interest with an atomic measure on R2+

D=
∞∑

i=1

∞∑
j=1

nij δ.θi,θj/, .10/

where nij counts the number of directed edges from node i to node j, with time indices θi and
θj. See Fig. 3 for an illustration.

Given W as defined in expressions (7) and (8), D is simply generated from a Poisson process
with intensity given by the product measure W̃ =W ×W on R2+:

D|W ∼PP.W̃/, .11/

i.e., informally, the individual counts nij are generated as Poisson.wiwj/. (We consider a gener-
alized definition of a Poisson process, where the mean measure is allowed to have atoms (Daley
and Vere-Jones (2003), section 2.4).) By construction, for any A, B ⊂ R, we have W̃.A × B/ =
W.A/W.B/. On any bounded interval A of R+, W.A/ <∞, implying that W̃.A×A/ has finite
mass.

3.3. Undirected graphs via transformations of directed graphs
We arrive at the undirected graph via a simple transformation of the directed graph: set zij =
zji =1 if nij +nji > 0 and zij = zji =0 otherwise, i.e. place an undirected edge between nodes θi

and θj if and only if there is at least one directed interaction between the nodes. In this definition
of an undirected graph, we allow self-edges. This could represent, for example, a person posting
a message on his or her own profile page. The resulting hierarchical model is
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(a)

(b) (c)

Fig. 3. Example of (a) an atomic measure D as in equation (10) restricted to [0, 1]2, (b) the corresponding
directed multigraph and (c) the corresponding undirected graph

W =
∞∑

i=1
wiδθi W ∼CRM.ρ,λ/,

D=
∞∑

i=1

∞∑
j=1

nijδ.θi,θj/ D|W ∼PP.W ×W/,

Z =
∞∑

i=1

∞∑
j=1

min.nij +nji, 1/δ.θi,θj/:

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.12/

This process is depicted graphically in Fig. 4.
To see the equivalence between this formulation and that specified in equation (6), note

that, for i �= j, Pr.zij =1|w/=Pr.nij +nji > 0|w/. By properties of the Poisson process, nij and
nji are independent random variables conditioned on W . The sum of two Poisson random
variables, each with rate wiwj, is again Poisson with rate 2wiwj. Result (6) arises from the fact
that Pr.nij +nji >0|w/=1−Pr.nij +nji =0|w/. Likewise, the i=j case arises by using a similar
reasoning for Pr.zii =1|w/=Pr.nii > 0|w/.

We note that our computational strategy of Section 7 relies on this interpretation of our model
for undirected graphs as a transformation of a directed multigraph. In particular, we introduce
the directed edge counts as latent variables and do inference over these counts.
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Fig. 4. Example of (a) the product measure QW D W � W for CRM W , (b) a draw of the directed multi-
graph measure DjW � PP.W � W/ and (c) the corresponding undirected measure Z D Σ1

iD1Σ1
jD1 min.nij C

nji , 1/δ.θi ,θj /

3.4. Bipartite graphs
The above construction can also be extended to bipartite graphs. Let V = .θ1, θ2, : : :/ and
V ′ = .θ′

1, θ′
2, : : :/ be two countably infinite sets of nodes with θi, θ′

i ∈ R+. We assume that only
connections between nodes of different sets are allowed.

We represent the directed bipartite multigraph of interest by using an atomic measure on R2+:

D=
∞∑

i=1

∞∑
j=1

nijδ.θi,θ′
j/, .13/

where nij counts the number of directed edges from node θi to node θ′
j. Similarly, the bipartite

graph is represented by an atomic measure

Z =
∞∑

i=1

∞∑
j=1

zijδ.θi,θ′
j/:

Our bipartite graph formulation introduces two independent CRMs, W ∼CRM.ρ,λ/ and W ′ ∼
CRM.ρ′,λ/, whose jumps correspond to sociability parameters for nodes in sets V and V ′
respectively. The generative model for the bipartite graph mimics that of the non-bipartite
graph:
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W =
∞∑

i=1
wiδθi W ∼CRM.ρ,λ/,

W ′ =
∞∑

j=1
w′

jδθ′
j

W ′ ∼CRM.ρ′,λ/,

D=
∞∑

i=1

∞∑
j=1

nijδ.θi,θ′
j/ D|W , W ′ ∼PP.W ×W ′/,

Z =
∞∑

i=1

∞∑
j=1

min.nij, 1/δ.θi, θ′
j/:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.14/

Model (14) has been proposed by Caron (2012) in a slightly different formulation. In this paper,
we recast this model within our general framework, enabling new theoretical and practical
insights.

3.5. Interpretation of θi
We can think of the positive, continuous valued node index θi as representing the time at which
a potential node enters the network and has the opportunity to link with other existing nodes
θj <θi. We use the terminology ‘potential node’ here to clarify that this node need not form any
observed connections with other nodes existing before time θi. We emphasize that an observed
link between θi and some other node θk >θi will eventually occur almost surely as time progresses.
This could represent, for example, signing onto a social networking service before your friends
do and only forming a link once they join. On the basis of our CRM specification, we have
almost surely an infinite number of potential nodes as time goes to ∞. For infinite activity
CRMs, we have almost surely an infinite set of potential nodes even at any finite time.

In Section 5, we examine properties of the network process across time, and we describe
methods for simulating networks at any finite time. There, our focus is on the observed link
process from this set of potential nodes. For example, sparsity is examined with respect to the
set of nodes with degree at least 1, not with respect to the set of potential nodes. Since we need
not think of θi as a time index, but rather just a general construct of our formulation, we also
generically refer to θi as the node location in the remainder of the paper.

4. Related work

There has been extensive work over recent years on flexible Bayesian non-parametric models
for networks, allowing complex latent structures of unknown dimension to be uncovered from
real world networks (Kemp et al., 2006; Miller et al., 2009; Lloyd et al., 2012; Palla et al., 2012;
Herlau et al., 2014). However, as mentioned in the unifying overview of Orbanz and Roy (2015),
these methods all fit in the Aldous–Hoover framework and as such produce dense graphs.

Norros and Reittu (2006) proposed a conditionally Poissonian multigraph process with sim-
ilarities to be drawn to our multigraph process. In their formulation, each node has a given
sociability parameter and the number of edges between two nodes i and j is drawn from a
Poisson distribution with rate the product of the sociability parameters, normalized by the sum
of the sociability parameters of all the nodes. The normalization makes this model similar to
models based on rescaling of the graphon and, as such, does not define a projective model, as
explained in Section 1. See van der Hofstad (2014) for a review of this model and Britton et al.
(2006) for a similar model.

As pointed out by Jacobs and Clauset (2014) in their discussion of an earlier version of
this paper, another related model is the degree-corrected random-graph model (Karrer and
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Newman, 2011), where edges of the multigraph are drawn from a Poisson distribution whose
rate is the product of node-specific sociability parameters and a parameter tuning the interaction
between the latent communities to which these nodes belong. When the sociability parameters
are assumed to be IID from some distribution, this model yields an exchangeable adjacency
matrix and thus a dense graph.

Additionally, there are similarities to be drawn with the extensive literature on latent space
modelling (e.g. Hoff et al. (2002), Penrose (2003) and Hoff (2009)). In such models, nodes
are embedded in a low dimensional, continuous latent space and the probability of an edge is
determined by a distance or similarity metric of the node-specific latent factors. In our case, the
continuous node index θi is of no importance in forming edge probabilities. It would, however,
be possible to extend our approach to time- or location-dependent connections by considering
inhomogeneous CRMs.

Finally, as we shall detail in Section 5.5, our model admits a construction with connections
to the configuration model (Bollobás, 1980; Newman, 2010), which is a popular model for
generating simple graphs with a given degree sequence.

The connections with this broad set of past work place our proposed network model within
the context of existing literature. Importantly, however, to the best of our knowledge this work
represents the first fully generative and projective approach to sparse graph modelling (see Sec-
tion 5), and with a notion of exchangeability that is essential for devising our scalable statistical
estimation procedure, as shown in Section 7.

5. General properties and simulation

We provide general properties of our network model depending on the properties of the Lévy
measure ρ.

5.1. Exchangeability under the Kallenberg framework

Proposition 1 (joint exchangeability of undirected graph measure). For any CRM W ∼
CRM.ρ,λ/, the point process Z defined by equation (12), or equivalently by equation (6),
is jointly exchangeable.

The proof is given in Appendix B. In the adjacency matrix representation, we think of ex-
changeability as invariance to node orderings. Here, we have invariance to the time of arrival of
the nodes, thinking of θi as a time index.

We now reformulate our network process in the Kallenberg representation (5). Because of
exchangeability, we know that such a representation exists. What we show here is that our CRM-
based formulation has an analytic and interpretable representation. In particular, the CRM W

can be constructed from a two-dimensional unit rate Poisson process on R2+ by using the inverse
Lévy method (Khintchine, 1937; Ferguson and Klass, 1972). Let .θi,ϑi/ be a unit rate Poisson
process on R2+. Let ρ̄.x/ be the tail Lévy intensity

ρ̄.x/=
∫ ∞

x

ρ.dw/: .15/

Then the CRM W = Σi wiδθi with Lévy measure ρ.dw/dθ can be constructed from the bi-
dimensional point process by taking wi = ρ̄−1.ϑi/. Note that the inverse Lévy intensity ρ̄−1 is
a monotone function. It follows that our undirected graph model can be formulated under
representation (5) by selecting any α0, β0 =γ0 =0, g=g′ =0, h=h′ = l= l′ =0 and
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(a) (b)

Fig. 5. Illustration of the model construction based on the Kallenberg representation: (a) a unit rate Poisson
process .θi ,ϑi /, i 2 N, on [0,α] � RC; (b) for each pair {i, j} 2 Ñ2, set zij D zji D 1 with probability M.ϑi ,ϑj /
(here, M is indicated by the blue shading (darker shading indicates higher value) for a stable process (GGP
with τ D0); in this case there is an analytic expression for Nρ�1 and therefore M)

f.α0,ϑi,ϑj, ζ{i,j}/=
{

1 ζ{i,j} �M.ϑi,ϑj/,
0 otherwise

.16/

where M : R2+ → [0, 1] is defined by

M.ϑi,ϑj/=
{

1− exp{−2 ρ̄−1.ϑi/ ρ̄
−1.ϑj/} if ϑi �=ϑj,

1− exp{−ρ̄−1.ϑi/
2} if ϑi =ϑj:

In Section 6, we provide explicit forms for ρ̄ depending on our choice of Lévy measure ρ.
Expression (16) represents a direct analogue to that arising from the Aldous–Hoover framework.
In particular, M here is akin to the graphon ω of expression (47) in Appendix A.1, and thus
allows us to connect our CRM-based formulation with the extensive literature on graphons.
An illustration of the network construction from the Kallenberg representation, including the
function M, is in Fig. 5. Note that, if we had started from the Kallenberg representation and
selected an f (or M) arbitrarily, we would probably not have obtained a network model with
the normalized CRM interpretation that enables both interpretability and analysis of network
properties.

For the bipartite graph, Kallenberg’s representation theorem for separate exchangeability
(Kallenberg (1990) and Kallenberg (2005), theorem 9.23) can likewise be applied.

5.2. Interactions between groups
For any disjoint set of nodes A, B ⊂ R+, A ∩ B = ∅, the probability that there is at least one
connection between a node in A and a node in B is given by

Pr{Z.A×B/> 0|W}=1− exp{−2W.A/W.B/},

i.e. the probability of a between-group edge depends on the sum of the sociabilities in each
group, W.A/ and W.B/.



1308 F. Caron and E. B. Fox

5.3. Graph restrictions
Let us consider the restriction of our process to the square [0,α]2. For finite activity CRMs,
there will be a finite number of potential nodes (jumps) in the interval [0,α]. For infinite activity
CRMs, we shall have an infinite number of potential nodes. We are interested in the properties of
the process as α grows, where we can think of α as representing time and observing the process
as new potential nodes and any resulting edges enter the network. We note that, in the limit of
α→∞, the number of edges approaches ∞ since W.R+/=∞ almost surely.

Let Dα and Zα be the restrictions of D and Z respectively to the square [0,α]2. Then, .Dα/α�0
and .Zα/α�0 are measure-valued stochastic processes, indexed by α. We also denote by Wα and
λα the corresponding CRM and Lebesgue measure on [0,α]. In what follows, our interests are
in studying how the following quantities vary with α:

(a) Nα, the number of nodes with degree at least one in the network, and
(b) N.e/

α , the number of edges in the undirected network.

We refer to Nα as the number of observed nodes. In our construction, recall that .Nα/α�0 and
.N.e/

α /α�0 are non-decreasing, integer-valued stochastic processes corresponding to the number
of nodes with at least one connection in Zα and the number of edges in Zα respectively. Formally,

Nα= card.{θi ∈ [0,α]|Z.{θi}× [0,α]/> 0}/, .17/

N.e/
α =Z[{.x, y/∈R2

+|0�x�y �α}]: .18/

The two processes have the same jump times, which correspond to the addition of one or
more new nodes with at least one connection in the graph. An example of these processes is
represented in Fig. 6. In later sections we use ZÅ

α=Zα.[0,α]2/ to denote the total mass on [0,α]2,
and similarly for DÅ

α and WÅ
α .

5.4. Sparsity
In this section we state the sparsity properties of our graph model, which relate to the properties
of the Lévy measure ρ. In particular, we are interested in the relative asymptotic behaviour of the
number of edges N.e/

α with respect to the number of observed nodes Nα as α→∞. Henceforth,
we consider

∫ ∞
0 ρ.dw/ > 0, since the case of

∫ ∞
0 ρ.dw/ = 0 trivially gives N.e/

α = Nα = 0 almost
surely.

In theorem 2 we characterize the sparsity of the graph with respect to the properties of
its Lévy measure: graphs obtained from infinite activity CRMs are sparse, whereas graphs
obtained from finite activity CRMs are dense. The rate of growth can be further specified when
ρ is a regularly varying Lévy measure (Feller, 1971; Karlin, 1967; Gnedin et al., 2006, 2007), as
defined in Appendix A.2. We follow the notation of Janson (2011) for probability asymptotics
(see Appendix C.1 for details).

Theorem 2. Consider a point process Z representing an undirected graph. Let N.e/
α be the

number of edges and Nα be the number of observed nodes in the point process restriction Zα

(see equations (17) and (18)). Assume that the defining Lévy measure is such that
∫ ∞

0 wρ.dw/<

∞. If the CRM W is finite activity, i.e.∫ ∞

0
ρ.dw/<∞,

then the number of edges scales quadratically with the number of observed nodes
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Fig. 6. Example of point process Z and above it the associated integer-valued stochastic processes for
the number of observed nodes .Nα/α�0 ( ) and edges .N.e/

α /α�0 ( )

N.e/
α =Θ.N2

α/ .19/

almost surely as α→∞, implying that the graph is dense.
If the CRM is infinite activity, i.e. ∫ ∞

0
ρ.dw/=∞,

then the number of edges scales subquadratically with the number of observed nodes

N.e/
α =o.N2

α/ .20/

almost surely as α→∞, implying that the graph is sparse.
Furthermore, if the Lévy measure ρ is regularly varying (see definition 1 in Appendix A.2),

with exponent σ∈ .0, 1/ and slowly varying function l satisfying lim inf t→∞ l.t/> 0, then

N.e/
α =O.N2=.1+σ/

α / almost surely as α→∞: .21/

Theorem 2 is a direct consequence of two theorems that we state now and prove in Appendix
C. The first theorem states that the number of edges grows quadratically with α, whereas the
second states that the number of nodes scales superlinearly with α for infinite activity CRMs,
and linearly otherwise.

Theorem 3. Consider the point process Z. If
∫ ∞

0 wρ.dw/ <∞, then the number of edges in
Zα grows quadratically with α:

N.e/
α =Θ.α2/ .22/

almost surely. Otherwise, N.e/
α =Ω.α2/ almost surely.
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Theorem 4. Consider the point process Z. Then

Nα=
{

Θ.α/ if W is a finite activity CRM,
ω.α/ if W is an infinite activity CRM

.23/

almost surely as α→∞. In words, the number of nodes with degree at least 1 in Zα scales
linearly with α for finite activity CRMs and superlinearly with α for infinite activity CRMs.
Furthermore, for a regularly varying Lévy measure with slowly varying function l such that
lim inf t→∞ l.t/> 0, we have

Nα=Ω.ασ+1/ almost surely as α→ ∞: .24/

We finally give the expressions of the expectations for the number of edges and nodes in the
model. The proof is given in Appendix C.4. (Equations (26) and (27) could alternatively be
derived as particular cases of the results in Veitch and Roy (2015).)

Theorem 5. The expected number of edges DÅ
α in the multigraph, edges N.e/

α in the undirected
graph and observed nodes Nα are given as follows:

E[DÅ
α]=α2

{∫ ∞

0
w ρ.dw/

}2

+α

∫ ∞

0
w2ρ.dw/, .25/

E[N.e/
α ]= 1

2
α2

∫ ∞

0
ψ.2w/ρ.dw/+α

∫ ∞

0
{1− exp.−w2/}ρ.dw/, .26/

E[Nα]=α

∫ ∞

0
[1− exp{−w2 −α ψ.2w/}]ρ.dw/, .27/

whereψ.t/=∫ ∞
0 {1−exp.−wt/}ρ.dw/ is the Laplace exponent. Additionally, if ρ is a regularly

varying Lévy measure with exponentσ∈ [0, 1/ and slowly varying function l, and
∫ ∞

0 wρ.dw/<

∞ then

E[Nα]
α↑∞∼ α1+σl.α/Γ.1−σ/

{
2
∫ ∞

0
wρ.dw/

}σ

: .28/

5.5. Simulation
5.5.1. Direct simulation of graph restrictions
By definition, the directed multigraph restriction Dα is drawn from a Poisson process with finite
mean measure Wα×Wα, where Wα∼CRM.ρ,λα/: Leveraging standard properties of the CRM
and Poisson process, we can first simulate the total number of directed edges DÅ

α based on the
total mass WÅ

α :

DÅ
α|WÅ

α ∼Poisson.WÅ 2
α /: .29/

For k =1, : : : , DÅ
α a particular edge is drawn by sampling a pair of nodes

Ukj|Wα
IID∼ Wα

WÅ
α

j =1, 2, .30/

where Wα=WÅ
α is called a normalized CRM. We form directed edges .Uk1, Uk2/, resulting in

Dα=
DÅ
α∑

k=1
δ.Uk1,Uk2/: .31/
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Because of the discreteness of Wα, there will be ties between the .Uk1, Uk2/, and the number
of such ties corresponds to the multiplicity of that edge. In particular, a total of 2DÅ

α nodes
Ukj are drawn but result in some Nα� 2DÅ

α distinct values. We overload the notation Nα here
because this quantity also corresponds to the number of nodes with degree at least 1 in the
resulting undirected network. Recall that the undirected network construction simply forms an
undirected edge between a set of nodes if there is at least one directed edge between them. If we
consider unordered pairs {Uk1, Uk2}, the number of such unique pairs takes a number N.e/

α �DÅ
α

of distinct values, where N.e/
α corresponds to the number of edges in the undirected network.

The construction above enables us to re-express our Cox process model in terms of normalized
CRMs (Regazzini et al., 2003). This is very attractive both practically and theoretically. As we
show in Section 6 for special cases of CRMs, one can use the results surrounding normalized
CRMs to derive an exact simulation technique for our directed and undirected graphs.

Remark 1. The construction above enables us to draw connections with the configuration
model (Bollobás, 1980; Newman, 2010), which proceeds as follows. First, the degree ki of each
node i=1, : : : , n is specified such that the sum of ki is an odd number. Each node i is given a total
of ki stubs, or demiedges. Then, we repeatedly choose pairs of stubs uniformly at random, without
replacement, and connect the selected pairs to form an edge. The simple graph is obtained either
by discarding the multiple edges and self-loops (an erased configuration model), or by repeating
the above sampling until obtaining a simple graph. In our case, we have an infinite set of
(potential) nodes and do not prespecify the node degrees. Furthermore, each node in the pair
.Uk1, Uk2/ is drawn from a normalized CRM rather than the pair being selected uniformly at
random. However, at a high level, there is a similar flavour to our construction.

5.5.2. Urn-based simulation of graph restrictions
We now describe an urn formulation that allows us to obtain a finite dimensional generative
process. Recall that, in practice, we cannot sample Wα ∼ CRM.ρ,λα/ if the CRM is infinite
activity since there will be an infinite number of jumps.

Let .U ′
1, : : : , U ′

2DÅ
α
/ = .U11, U12, : : : , UDÅ

α1, UDÅ
α2/. For some classes of Lévy measure ρ, it is

possible to integrate out the normalized CRM μα = Wα=WÅ
α in expression (30) and to derive

the conditional distribution of U ′
n+1 given .WÅ

α , U ′
1, : : : , U ′

n/. We first recall some background
on random partitions. As μα is discrete with probability 1, variables U ′

1, : : : , U ′
n take k � n

distinct values θ̃j, with multiplicities 1 � m̃j � n. The distribution on the underlying partition
is usually defined in terms of an exchangeable partition probability function (EPPF) (Pitman,
1995) Π.k/

n .m̃1, : : : , m̃k|WÅ
α / which is symmetric in its arguments. The predictive distribution of

U ′
n+1 given .WÅ

α , U ′
1, : : : , U ′

n/ is then given in terms of the EPPF:

U ′
n+1|.WÅ

α , U ′
1, : : : , U ′

n/∼ Π.k+1/
n+1 .m̃1, : : : , m̃k, 1|WÅ

α /

Π.k/
n .m̃1, : : : , m̃k|WÅ

α /

1
α
λα

+
k∑

j=1

Π.k/
n+1.m̃1, : : : , m̃j +1, : : : , m̃k|WÅ

α /

Π.k/
n .m̃1, : : : , m̃k|WÅ

α /
δθ̃j

: .32/

Using this urn representation, we can rewrite our generative process as

WÅ
α ∼PWÅ

α
,

DÅ
α|WÅ

α ∼Poisson.WÅ 2
α /,

.Ukj/k=1,:::,DÅ
α;j=1,2|WÅ

α ∼urn process .32/,
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Dα=
DÅ
α∑

k=1
δ.Uk1,Uk2/, .33/

where PWÅ
α

is the distribution of the CRM total mass WÅ
α . Representation (33) can be used to

sample exactly from our graph model, assuming that we can sample from PWÅ
α

and evaluate the
EPPF. In Section 6 we show that this is indeed possible for specific CRMs of interest.

5.5.3. Approximate simulation of graph restrictions
If we cannot sample from PWÅ

α
in expression (33) and evaluate the EPPF in expression (32), we

resort to approximate simulation methods. In particular, we harness the directed multigraph
representation and approximate the draw of Wα. For our undirected graphs, we simply transform
the (approximate) draw of a directed multigraph as described in Section 3.3.

One approach to approximate simulation of Wα, which is possible for some Lévy measures ρ,
is to resort to adaptive thinning (Lewis and Shedler, 1979; Ogata, 1981; Favaro and Teh, 2013).
A related alternative approximate approach, but applicable to any Lévy measure ρ satisfying
condition (9), is the inverse Lévy method. This method first defines a threshold " and then
samples the weights Ω={wi|wi > "} by using a Poisson measure on [", ∞]. One then simulates
Dα using these truncated weights Ω.

A naive application of this truncated method that considers sampling directed or undirected
edges as in expression (12) or expression (6) respectively can prove computationally problematic
since a large number of possible edges must be considered (one Poisson or Bernoulli draw for
each .θi, θj/ pair for the directed or undirected case). Instead, we can harness the Cox process
representation and resulting sampling procedure of expression (29)–(30) to sample first the total
number of directed edges and then their specific instantiations. More specifically, to simulate
approximately a point process on [0,α]2, we use the inverse Lévy method to sample

Πα," ={.w, θ/∈Π, 0 <θ�α, w >"}: .34/

Let Wα," =ΣK
i=1wiδθi be the associated truncated CRM and WÅ

α," =Wα, ".[0,α]/ its total mass.
We then sample DÅ

α," and Ukj as in expression (29)–(30), and set Dα," = Σ
DÅ
α,"

k=1 δ.Uk1,Uk2/. The
undirected graph measure Zα," is set to the manipulation of Dα," as in expression (12).

6. Special cases

In this section, we examine the properties of various models and their link to classical random-
graph models depending on the Lévy measure ρ. We show that, in the GGP case, the resulting
graph can be either dense or sparse, with the sparsity tuned by a single hyperparameter. Fur-
thermore, exact simulation is possible via expression (33). We focus on the undirected graph
case, but similar results can be obtained for directed multigraphs and bipartite graphs.

6.1. Poisson process
Consider a Poisson process with fixed increments w0 > 0:

ρ.dw/= δw0.dw/:

This measure ρ defines a finite activity CRM. Recalling the definition ρ̄.x/= ∫ ∞
x ρ.dw/, in this

case, we have

ρ̄.x/=
{

1 if x< w0,
0 otherwise:
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Ignoring self-edges, the graph construction can be described as follows. To sample Wα ∼
CRM.ρ,λα/, we generate n∼ Poisson.α/ and then sample θi ∼ Unif.[0,α]/ for i= 1, : : : , n. We
then sample edges according to expression (6): for 0 <i<j<n, set zij =zji =1 with probability
1− exp.−2w2

0/ and 0 otherwise. The model is therefore equivalent to the Erd´́os–Rényi random-
graph model G.n, p/ with n ∼ Poisson.α/ and p = 1 − exp.−2w2

0/. Therefore, this choice of ρ
leads to a dense graph, as our theory suggests, where the number of edges grows quadratically
with the number of nodes n.

6.2. Compound Poisson process
A compound Poisson process is a process where

ρ.dw/=h.w/dw

and h : R+ → R+ is such that
∫ ∞

0 h.w/dw = 1 and defines a finite activity CRM. In this case,
we have ρ̄.x/ = 1 − H.x/ where H is the distribution function that is associated with h. Here,
we arrive at a framework that is similar to the standard graphon. Leveraging the Kallenberg
representation (16), we first sample n∼Poisson.α/. Then, for i=1, : : : , n we set zij =zji =1 with
probability M.Ui, Uj/ where Ui are uniform [0, 1] variables and M is defined by

M.Ui, Uj/=1− exp{−2H−1.Ui/H
−1.Uj/}:

This representation is the same as with the Aldous–Hoover theorem, except that the number
of nodes is random and follows a Poisson distribution. As such, the resulting random graph is
either trivially empty or dense, again agreeing with our theory.

6.3. Generalized gamma process
The GGP (Hougaard, 1986; Aalen, 1992; Lee and Whitmore, 1993; Brix, 1999) is a flexible two-
parameter CRM with interpretable parameters and remarkable conjugacy properties (James,
2002; Lijoi and Prünster, 2003; Lijoi et al., 2007; Caron et al., 2014). The process is also known
as the Hougaard process (Hougaard, 1986) when λ is the Lebesgue measure, as in this paper,
but we shall use the more standard term GGP in the rest of this paper. The Lévy measure of the
GGP is given by

ρ.dw/= 1
Γ.1−σ/

w−1−σ exp.−τw/dw, .35/

where the two parameters .σ, τ / satisfy

.σ, τ /∈ .−∞, 0]× .0, ∞/ or .σ, τ /∈ .0, 1/× [0, ∞/: .36/

The GGP has different properties if σ�0 or σ<0. When σ<0, the GGP is a finite activity CRM
(i.e. a compound Poisson process); more precisely, the number of jumps in [0,α] is finite with
probability 1 and drawn from a Poisson distribution with rate −.α=σ/τσ whereas the jumps wi

are IID gamma.−σ, τ /.
When σ� 0, the GGP has an infinite number of jumps over any interval [s, t]. It includes

as special cases the gamma process (σ= 0, τ > 0), the stable process (σ ∈ .0, 1/, τ = 0) and the
inverse Gaussian process (σ= 1

2 , τ > 0).
The tail Lévy intensity of the GGP is given by

ρ̄.x/=
∫ ∞

x

1
Γ.1−σ/

w−1−σ exp.−τw/dw =

⎧⎪⎨
⎪⎩
τσΓ.−σ, τx/

Γ.1−σ/
if τ > 0,

x−σ

Γ.1−σ/σ
if τ =0,
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(a) (b)

(c) (d)

Fig. 7. Sample graphs: (a) Erd ´́os–Rényi graph G.n, p/ with n D 1000 and p D 0.05, and GGP graphs
GGP.α, τ ,σ/ with (b)–(d) αD 100, τ D 2 and (b) σD 0, (c) σD 0:5 and (d) σD 0.8 (the size of a node is
proportional to its degree; the graphs were generated with the software Gephi (Bastian et al., 2009))

where Γ.a, x/ is the incomplete gamma function. Example realizations of the process for various
values of σ�0 are displayed in Fig. 7 alongside a realization of an Erdös–Rényi graph.

6.3.1. Exact sampling via an urn approach
In the case σ>0, WÅ

α is an exponentially tilted stable random variable, for which exact samplers
exist (Devroye, 2009). As shown by Pitman (2003) (see also Lijoi et al. (2008)), the EPPF
conditional on the total mass WÅ

α = t depends only on the parameter σ (and not τ and α) and
is given by

Π.n/
k .m̃1, : : : , m̃k|t/= σkt−n

Γ.n−kσ/gσ.t/

∫ t

0
sn−kσ−1gσ.t − s/ds

k∏
i=1

Γ.m̃i −σ/

Γ.1−σ/
, .37/
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where gσ is the probability density function of the positive stable distribution. Plugging the EPPF
(37) into expression (32) yields the urn process for sampling in the GGP case. In particular, we
can use the generative process (33) to sample exactly from the model.

In the special case of the gamma process (σ=0), WÅ
α is a gamma.α, τ / random variable and

the resulting urn process is given by (Blackwell and MacQueen, 1973; Pitman, 1996)

U ′
n+1|.WÅ

α , U ′
1, : : : , U ′

n/∼ α

α+n

λα

α
+

k∑
j=1

m̃j

α+n
δθ̃j

: .38/

When σ< 0, the GGP is a compound Poisson process and can thus be sampled exactly.

6.3.2. Sparsity
Appealing to theorem 2, we use the following facts about the GGP to characterize the sparsity
properties of this special case.

(a) For σ< 0, the CRM is finite activity with
∫ ∞

0 wρ.dw/ < ∞; thus theorem 2 implies that
the graph is dense.

(b) When σ� 0 the CRM is infinite activity; moreover, for τ > 0,
∫ ∞

0 wρ.dw/ <∞, and thus
theorem 2 implies that the graph is sparse.

(c) For σ> 0, the tail Lévy intensity has the asymptotic behaviour

ρ̄.x/
x↓0∼ 1

σΓ.1−σ/
x−σ

and, as such, is regularly varying with exponent σ and constant slowly varying function.

We thus conclude that

N.e/
α =

⎧⎨
⎩

Θ.N2
α/ if σ< 0,

o.N2
α/ if σ=0, τ > 0,

O.N
2=.1+σ/
α / if σ∈ .0, 1/, τ > 0,

.39/

almost surely asα→∞, i.e. the GGP parameterσ tunes the sparsity of the graph. The underlying
graph is sparse if σ�0 and dense otherwise.

Remark 2. The proof technique of theorem 2 requires
∫ ∞

0 wρ.dw/ < ∞ and thus excludes
the stable process .τ =0,σ∈ .0, 1//, although we conjecture that the graph is also sparse in that
case.

Additionally, applying theorem 5, we obtain

E[Nα]
α↑∞∼

⎧⎪⎪⎨
⎪⎪⎩
α

−τσ
σ

if σ< 0,

α log.α/ if σ=0,

α1+σ 2στσ.σ−1/

σ
if σ> 0, τ > 0:

6.3.3. Empirical analysis of graph properties
For the GGP-based formulation, we provide an empirical analysis of our network properties in
Fig. 8 by simulating undirected graphs by using the approach that was described in Section 5.5
for various values of σ and τ . We compare with an Erd´́os–Rényi random graph, preferential
attachment (Barabási and Albert, 1999) and the Bayesian non-parametric network model of
Lloyd et al. (2012). The particular features that we explore are as follows.

(a) Degree distribution: Fig. 8(a) suggests empirically that the model can exhibit power law
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Fig. 8. Examination of the GGP undirected network properties (averaging over graphs with various α)
in comparison with an Erd ´́os–Rényi G.n, p/ model with p D 0:05 ( ), the preferential attachment model of
Barabási and Albert (1999) ( ) and the non-parametric formulation of Lloyd et al. (2012) ( ): (a) degree
distribution on a log–log-scale for (a) various values of σ ( , σD0.2; , σD0.5; , σD0.8) (τ D10�2) and (b)
various values of τ ( , τ D 10�1; , τ D 1; , τ D 5) (σD 0.5) for the GGP; (c) number of nodes with degree
1 versus number of nodes on a log–log-scale ( , σD0.2; , σD0.5; , σD0.8) (note that the Lloyd method
leads to dense graphs such that no node has only degree 1); (d) number of edges versus number of nodes
( , σD0.2; , σD0.5; , σD0.8) (here we note growth at a rate o.n2/ for our GGP graph models, and Θ.n2/
for the Erd ´́os-Rényi and Lloyd models (dense graphs))
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behaviour providing a heavy-tailed degree distribution. As shown in Fig. 8(b), the model
can also handle an exponential cut-off in the tails of the degree distribution, which is an
attractive property (Clauset et al., 2009; Olhede and Wolfe, 2012).

(b) Number of degree 1 nodes: Fig. 8(c) examines the fraction of degree 1 nodes versus the
number of nodes.

(c) Sparsity: Fig. 8(d) plots number of edges versus number of nodes. The larger σ, the
sparser the graph is. In particular, for the GGP random-graph model, we have network
growth at a rate O.na/ for 1 < a < 2 whereas the Erdös–Rényi (dense) graph grows as
Θ.n2/.

6.3.4. Interpretation of hyperparameters
On the basis of the properties derived and illustrated empirically in this section, we see that our
hyperparameters have the following interpretations.

(a) σ—from Figs 8(a) and 8(d),σ relates to the slope of the degree distribution in its power law
regime and the overall network sparsity. Increasing σ leads to higher power law exponent
and sparser networks.

(b) α—from theorem 5, α provides an overall scale that affects the number of nodes and
directed interactions, with larger α leading to larger networks.

(c) τ—from Fig. 8(b), τ determines the exponential decay of the tails of the degree distribu-
tion, with τ small looking like pure power law. This is intuitive from the form of ρ.dw/ in
equation (35), where we see that τ affects large weights more than small weights.

7. Posterior characterization and inference

In this section, we consider the posterior characterization and MCMC inference of parameters
and hyperparameters in our statistical network models.

Assume that we have observed a set of undirected connections .zij/1�i,j�Nα or directed con-
nections .nij/1�i,j�Nα where Nα is the observed number of nodes with at least one connection.
Without loss of generality, we assume that the locations of these nodes 0<θ1 <: : :<θNα <α are
ordered, and we write wi =W.{θi}/ as their associated sociability parameters. For simplicity, we
are overloading notation here with the unordered nodes in W =Σi wiδθi of equation (7).

We aim to infer the sociability parameters wi, i= 1, : : : , Nα, for each of the observed nodes.
We also aim to infer the sociability parameters of the nodes with no connections (the difference
between the set of potential nodes and those with observed interactions). We refer to these as
unobserved nodes. Under our framework, the number of such nodes is either finite but unknown
or infinite. The observed connections, however, provide information about only the sum of
their sociabilities, denoted wÅ. The node locations θi of both observed and unobserved nodes
are also not likelihood identifiable and are thus ignored. We additionally aim to estimate α and
the hyperparameters of the Lévy intensity ρ of the CRM; we write φ for the set of hyperpar-
ameters. We therefore aim to approximate the posterior p{w1, : : : , wNα , wÅ,φ|.zij/1<i,j<Nα} for
an observed undirected graph and p{w1, : : : , wNα , wÅ,φ|.nij/1<i,j<Nα} for an observed directed
graph. (Formally, this density is with respect to a product measure that has a Dirac mass at 0
for wÅ, as detailed in Appendix F.)

7.1. Directed multigraph posterior
In theorem 6, we characterize the posterior in the directed multigraph case. This plays a key role
in the undirected case that is explored in Section 7.2 as well.
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Theorem 6. For Nα�1, let θ1 <: : :<θNα be the set of support points of the measure Dα such
that Dα=Σ1�i,j�Nαnijδ.θi,θj/. Let wi =Wα.{θi}/ and wÅ =WÅ

α −ΣNα
i=1wi. We have

P{.wi ∈dwi/1�i�Nα , wÅ ∈dwÅ|.nij/1�i,j�Nα ,φ}

∝ exp
{

−
(

Nα∑
i=1

wi +wÅ

)2}{
Nα∏
i=1

wmi
i ρ.dwi/

}
GÅ
α.dwÅ/ .40/

where mi =ΣNα
j=1.nij + nji/ > 0 for i = 1, : : : , Nα are the node degrees of the multigraph and

GÅ
α is the probability distribution of the random variable WÅ

α , with Laplace transform

E[exp.−tWÅ
α /]= exp{−αψ.t/}: .41/

Additionally, conditionally on observing an empty graph, i.e. Nα=0, we have

P.wÅ ∈dwÅ|Nα=0,φ/∝ exp.−w2
Å/GÅ

α.dwÅ/: .42/

The proof builds on posterior characterizations for normalized CRMs (James, 2002, 2005;
Prünster, 2002; Pitman, 2003; James et al., 2009) using the hierarchical construction of expres-
sion (29)–(30). See Appendix E.

The conditional distribution of .w1, : : : , wNα , wÅ/ given .nij/1�i,j�Nα does not depend on the
locations .θ1, : : : , θNα/ because we considered a homogeneous CRM. This fact is important
since the locations .θ1, : : : , θNα/ are typically not observed, and our algorithm outlined below
will not consider these terms in the inference.

7.2. Markov chain Monte Carlo sampling for generalized gamma process based
directed and undirected graphs
We now specialize to the case of the GGP, for which we derive an MCMC sampler for posterior
inference. Let φ= .α,σ, τ / be the set of hyperparameters that we also want to estimate. We
assume improper priors on the hyperparameters:

p.α/∝1=α,
p.σ/∝1=.1−σ/,

p.τ /∝1=τ :

}
.43/

To emphasize the dependence on the hyperparameters of the Lévy measure and distribution of
the total mass wÅ, we write ρ.w|σ, τ / and GÅ

α,σ,τ .dwÅ/.
In the case of an undirected graph, we simply impute the missing directed edges in the graph.

For each i � j such that zij = 1, we introduce latent variables n̄ij = nij + nji with conditional
distribution

n̄ij|z, w ∼
{
δ0 if zij =0,
tPoisson.2wiwj/ if zij =1, i �= j,

.44/

and nii|zii = 1, wi ∼ tPoisson.w2
i /, where tPoisson(λ) is the zero-truncated Poisson distribution

with probability mass function

λk exp.−λ/

{1− exp.−λ/}k!
, for k =1, 2, : : : :

By convention, we set n̄ij = n̄ji for j< i and mi =ΣNα
j=1n̄ij.

For scalable exploration of the target posterior, we propose to use HMC (Duane et al., 1987;
Neal, 2011) within Gibbs sampling to update the weights .w1, : : : , wNα/. The HMC step requires
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computation of the gradient of the log-posterior, which in our case, letting ωi = log.wi/, is given
by

[∇ω1:Nα
log{p.ω1:Nα , wÅ|Dα/}]i =mi −σ−wi

(
τ +2

Nα∑
j=1

wj +2wÅ

)
: .45/

For the update of the total mass wÅ and hyperparameters φ, we use a Metropolis–Hastings
step. Unless σ=0 or σ= 1

2 , GÅ
α,σ,τ .dwÅ/ does not admit any tractable analytical expression. We

therefore use a specific proposal for wÅ based on exponential tilting of GÅ
α,σ,τ that alleviates

the need to evaluate this probability density function in the Metropolis–Hasting ratio (see the
details in Appendix F). To summarize, the MCMC sampler is defined as follows.

Step 1: update the weights .w1, : : : , wNα/ given the rest by using an HMC update.
Step 2: update the total mass wÅ and hyperparameters φ= .α,σ, τ / given the rest by using a
Metropolis–Hastings update.
Step 3: (undirected graph) update the latent counts .n̄ij/ given the rest by using the conditional
distribution (44) or a Metropolis–Hastings update.

The computational bottlenecks lie in steps 1 and 3, which roughly scale linearly in the number
of nodes and edges respectively, although one can parallelize step 3 over edges. If L is the number
of leapfrog steps in the HMC algorithm and niter the number of MCMC iterations, the overall
complexity is in O{niter.LNα+N.e/

α /}. We show in Section 8 that the algorithm scales well to
large networks with hundreds of thousands of nodes and edges. To scale the HMC algorithm to
even larger collections of nodes of edges, one could explore the methods of Chen et al. (2014).

8. Experiments

8.1. Simulated data
We first study the convergence of the MCMC algorithm on simulated data where the graph is
simulated from our model. We simulated a GGP undirected graph with parametersα=300, σ=
0:5 and τ =1, which places us in the sparse regime. The sampled graph resulted in 13995 nodes
and 76605 edges. We ran three MCMC chains each with 40000 iterations and with different
initial values and L=10 leapfrog steps; the step size of the leapfrog algorithm was adapted during
the first 10000 iterations to obtain an acceptance rate of 0.6. Standard deviations of the random-
walk Metropolis–Hastings steps for log.τ / and log.1 − σ/ were set to 0.02. The computing
time for running the three chains successively was 10 min using a MATLAB implementation
on a standard computer (central processor unit at 3.10 GHz; four cores). Trace plots of the
parameters α, σ, τ and wÅ are given in Fig. 9. We computed the potential scale factor reduction
(Brooks and Gelman, 1998; Gelman et al., 2014) for all 13999 parameters .w1:Nα , wÅ,α,σ and
τ / and found a maximum value of 1.01, suggesting convergence of the algorithm. This is quite
remarkable as the MCMC sampler actually samples from a target distribution of dimension
13995 + 76605 + 4 = 90604. Posterior credible intervals of the sociability parameters wi of
the nodes with highest degrees and log-sociability parameters log.wi/ of the nodes with lowest
degrees are displayed in Figs 10(a) and 10(b) respectively, showing the ability of the method to
recover sociability parameters of both low and high degree nodes accurately.

To show the versatility of the GGP graph model, we now examine our approach when the
observed graph is actually generated from an Erd´́os–Rényi model with n= 1000 and p= 0:01.
The generated graph had 1000 nodes and 5058 edges. We ran three MCMC chains with the
same specifications as above. In this dense graph regime, the following transformation of our
parameters α, σ and τ is more informative: ς1 =−.α=σ/τσ, ς2 =−σ=τ and ς3 =−σ=τ2. When
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(a) (b)

(c) (d)

Fig. 9. MCMC trace plots of parameters (a) α, (b) σ, (c) τ and (d) w* for a graph generated from a GGP
model with parameters αD 300,σD 0.5 and τ D 1: , chain 1; , chain 2; , chain 3; ,
true

σ<0, ς1 corresponds to the expected number of nodes, ς2 to the mean of the sociability parame-
ters and ς3 to their variance (see Section 6.3). In contrast, the parameters σ and τ are only weakly
identifiable in this case. The potential scale reduction factor is computed on .w1:Nα , wÅ, ς1, ς2, ς3/,
and its maximum value was 1.01, suggesting convergence.

The value of ς1 converges around the true number of nodes and ς2 to the true sociability
parameter

√{− 1
2 log.1−p/} (constant across nodes for the Erd´́os–Rényi model), whereas ς3 is

close to 0 as the variance over the sociability parameters is very small. The total mass is also
very close to 0, indicating that there are no nodes with degree 0.

Posterior credible intervals for the nodes with highest and lowest degrees are in Fig. 11,
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(a) (b)

Fig. 10. 95% posterior intervals ( ) of (a) the sociability parameters wi of the 50 nodes with highest degree
and (b) the log-sociability parameter log.wi / of the 50 nodes with lowest degree, for a graph generated from
a GGP model with parameters αD300,σD0.5 and τ D1: , true values

(a) (b)

Fig. 11. 95% posterior intervals ( ) of (a) sociability parameters wi of the 50 nodes with highest degree
and (b) log-sociability parameters log.wi / of the 50 nodes with lowest degree, for a graph generated from
an Erd ´́os-Rényi model with parameters n D 1000 and p D 0.01: in this case, all nodes have the same true
sociability parameter

p{� 1
2 log.1�p/} . /

showing that the model can accurately recover sociability parameters of both low and high
degree nodes in the dense regime as well.

8.2. Assessing properties of real world graphs
We now turn to using our methods to assess properties of a collection of real world graphs,
including their degree distributions and aspects of sparsity. For the latter, evaluation based on
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a single finite graph is notoriously challenging as sparsity relates to the asymptotic behaviour
of the graph. Measures of sparsity from finite graphs exist but can be costly to implement
(Nešetřil and Ossona de Mendez, 2012). On the basis of our GGP-based formulation and
associated theoretical results described in Section 6, we consider Pr.σ� 0|z/ as informative
of the connectivity structure of the graph since the GGP graph model yields dense graphs for
σ<0, and sparse graphs for σ∈ [0, 1/ (see equation (39)). For our analyses, we consider improper
priors on the unknown parameters .α,σ, τ /. We report Pr.σ � 0|z/ based on a set of observed
connections .zij/1<i,j<Nα , which can be directly approximated from the MCMC output. We
consider 12 different data sets:

(a) facebook107—social circles in Facebook (https://snap.stanford.edu/data/
egonets-Facebook.html) (McAuley and Leskovec, 2012);

(b) polblogs—political blogosphere (February 2005) (http://www.cise.ufl.edu/res
earch/sparse/matrices/Newman/polblogs) (Adamic and Glance, 2005);

(c) USairport—US airport connection network in 2010 (http://toreopsahl.com/data
sets/) (Colizza et al., 2007);

(d) UCirvine—social network of students at the University of California, Irvine (http://tor
eopsahl.com/datasets/) (Opsahl and Panzarasa, 2009);

(e) yeast—yeast protein interaction network (http://www.cise.ufl.edu/research/
sparse/matrices/Pajek/yeast.html) (Bu et al., 2003);

(f) USpower—network of the high-voltage power grid in the western states of the USA
(https://snap.stanford.edu/data/email-Enron.html) (Watts and Strogatz,
1998);

(g) IMDB—actor collaboration network based on acting in the same movie (http://www.
cise.ufl.edu/research/sparse/matrices/Pajek/IMDB.html);

(h) cond-mat1—co-authorship network (https://snap.stanford.edu/data/email-
Enron.html) (Newman, 2001), based on preprints posted to condensed matter of arXiv
between 1995 and 1999, obtained from the bipartite preprints–authors network using a
one-mode projection;

(i) cond-mat2—as in cond-mat1, but using Newman’s projection method;
(j) Enron—Enron collaboration network from a multigraph e-mail network (https://

snap.stanford.edu/data/email-Enron.html);
(k) internet—connectivity of Internet routers (http://www.cise.ufl.edu/research/

sparse/matrices/Pajek/internet.html);
(l) www—linked World Wide Web pages in the nd.edu domain (http://lisgi1.engr.

ccny.cuny.edu/∼makse/soft data.html).

The sizes of the various data sets are given in Table 2 and range from a few hundred nodes
or edges to a million. The adjacency matrices for these networks are plotted in Fig. 12 and
empirical degree distributions in Fig. 13 (red).

We ran three MCMC chains for 40000 iterations with the same specifications as above and
report the estimate of Pr.σ�0|z/ and 99% posterior credible intervals of σ in Table 2; we addi-
tionally provide run times. MCMC trace plots suggested rapid convergence of the sampler. Since
sparsity is an asymptotic property of a graph, and we are analysing finite graphs, our inference
of σ here simply provides insight into some structure of the graph and is not formally a test of
sparsity. From Table 2, we note that we infer negative σ-values for many of the smaller networks.
This might indicate that these graphs have dense connectivity; for example, our facebook107
data set represents a small social circle that is probably highly interconnected and the polblogs
data set represents two tightly connected political parties. We infer positive σ-values for three of
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Table 2. Size of real world data sets and posterior probability of sparsity

Data set Number of Number of Time Pr(σ�0|z) 99% credible
nodes edges (min) interval σ

facebook107 1034 26749 1 0.00 [−1:06,−0:82]
polblogs 1224 16715 1 0.00 [−0:35,−0:20]
USairport 1574 17215 1 1.00 [0:10, 0:18]
UCirvine 1899 13838 1 0.00 [−0:14,−0:02]
yeast 2284 6646 1 0.28 [−0:09, 0:05]
USpower 4941 6594 1 0.00 [−4:84,−3:19]
IMDB 14752 38369 2 0.00 [−0:24,−0:17]
cond-mat1 16264 47594 2 0.00 [−0:95,−0:84]
cond-mat2 7883 8586 1 0.00 [−0:18,−0:02]
Enron 36692 183831 7 1.00 [0:20, 0:22]
internet 124651 193620 15 0.00 [−0:20,−0:17]
www 325729 1090108 132 1.00 [0:26, 0:30]

the data sets (USairport, Enron and www); note that two of these data sets are in the top three
largest networks considered, where sparse connectivity is more commonplace. In the remaining
large network, internet, a question is why the inferred σ is negative. This may be due to dense
subgraphs or spots (for example, spatially proximate routers may be highly interconnected, but
sparsely connected outside the group) (Borgs et al., 2014b). This relates to the idea of commu-
nity structure, though not every node need be associated with a community. As in many sparse
network models that assume no dense spots (Bollobás and Riordan, 2009; Wolfe and Olhede,
2013), our approach does not explicitly model such effects. Capturing such structure remains a
direction of future research that is likely to be feasible within our generative framework. How-
ever, our current method has the benefit of simplicity with three hyperparameters tuning the
network properties. Finally, we note in Table 2 that our analyses finish in a remarkably short
time although the code base was implemented in MATLAB on a standard desktop machine,
without leveraging possible opportunities for parallelizing and other mechanisms for scaling
the sampler (see Section 7 for a discussion).

To assess our fit to the empirical degree distributions, we used the methods that were described
in Section 5.5 to simulate 5000 graphs from the posterior predictive distribution in each scenario.
Fig. 13 provides a comparison between the empirical degree distributions and those based on
the simulated graphs. In all cases, we see a reasonably good fit. For the largest networks, Figs
13(j)–13(l), we see a slight underestimate of the tail of the distribution, i.e. we do not capture as
many high degree nodes as truly present. This may be because these graphs exhibit a power law
behaviour, but only after a certain node degree (Clauset et al., 2009), which is not an effect that is
explicitly modelled by our framework. Instead, our model averages the error in the low and high
degree nodes. Another reason for underestimating the tails might be dense spots, which we also
do not explicitly model. However, our model does capture power law behaviour with possible
exponential cut-off in the tail. We see a similar trend for cond-mat1, but not cond-mat2. Based on
the bipartite articles–authors graph, cond-mat1 uses the standard one-mode projection and sets
a connection between two authors who have co-authored a paper; this projection clearly creates
dense spots in the graph. In contrast, cond-mat2 uses Newman’s projection method (Newman
et al., 2001). This method constructs a weighted undirected graph by counting the number of
papers that were co-authored by two scientists, where each count is normalized by the number
of authors on the paper. To construct the undirected graph, an edge is created if the weight is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 12. Adjacency matrices for various real world networks: (a) facebook107; (b) polblogs; (c) USairport;
(d) UCirvine; (e) yeast; (f) USpower; (g) IMDB; (h) cond-mat1; (i) cond-mat2; (j) Enron; (k) internet; (l) www
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13. Empirical degree distribution ( ) and posterior predictive ( ) for various real world networks:
(a) facebook107; (b) polblogs; (c) USairport; (d) UCirvine; (e) yeast; (f) USpower; (g) IMDB; (h) cond-mat1;
(i) cond-mat2; (j) Enron; (k) internet; (l) www
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equal to or greater than 1; cond-mat1 and cond-mat2 thus have a different number of edges
and nodes, as only nodes with at least one connection are considered. It is interesting that the
projection method that was used for the cond-mat data set has a clear influence on the sparsity
of the resulting graph, cond-mat2 being less dense than cond-mat1 (see Figs 13(h) and 13(i)).
The degree distribution for cond-mat1 is similar to that of internet, thus inheriting the same
issues as previously discussed. Overall, it appears that our model better captures homogeneous
power law behaviour with possible exponential cut-off in the tails than it does a graph with
perhaps structured dense spots or power law after a point behaviour.

9. Conclusion

We proposed a class of statistical network models building on exchangeable random measures.
Using this representation, we showed how it is possible to specify models with properties that
are different from those of models based on exchangeable adjacency matrices. As an example, we
considered a model building on the framework of CRMs that can yield sparse graphs while main-
taining attractive exchangeability properties. For a choice of CRMs, our fully generative formu-
lation can yield networks ranging from dense to sparse, as tuned by a single hyperparameter.

In this paper, exchangeability is in the context of random measures for which we appealed to
the Kallenberg representation in place of the Aldous–Hoover theorem for exchangeable arrays.
Using this framework, we arrived at a structure that is analogous to the graphon, which opens up
new modelling and theoretical analysis possibilities beyond those of the special case that is con-
sidered herein. Importantly, through the exchangeability of the underlying random measures
and leveraging HMC sampling, we devised a scalable algorithm for posterior computations.
This scheme enables inference of the graph parameters, including the parameter determining
the sparsity of the graph. We examined our methods on a range of real world networks, demon-
strating that our model yields a practically useful statistical tool for network analysis.

We believe that the foundational modelling tools and theoretical results that we presented
represent an important building block for future developments. Such developments can be
divided along two dimensions:

(a) modelling advances, such as incorporating notions of community structure and node
attributes, within this framework and

(b) theoretical analyses looking at the properties of the corresponding class of networks.

For the latter, we considered just one simplified version of the Kallenberg representation; exam-
ining a more general form could yield graphs with additional structure. Building on an initial
version of this paper (Caron and Fox, 2014), initial forays into advances on the modelling side
can be found in Herlau et al. (2016) and Todeschini and Caron (2016) and theoretical analyses
in Veitch and Roy (2015) and Borgs et al. (2016).
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Appendix A: Further background

A.1. Aldous–Hoover theorem and graphons
In theorem 7, we present the Aldous–Hoover theorem for the case of joint exchangeability—i.e. symmetric
permutations of rows and columns—which is applicable to matrices Z where both rows and columns
index the same set of nodes. Separate exchangeability allows for different row and column permutations,
making it applicable to scenarios where one has distinct node identities on rows and columns, such as in
the bipartite graphs that we considered in Section 3.4. Extensions to higher dimensional arrays are likewise
straightforward. For a more general statement of the Aldous–Hoover theorem, which holds for separate
exchangeability and higher dimensional arrays, see Orbanz and Roy (2015).

Theorem 7 (Aldous–Hoover representation of jointly exchangeable matrices (Aldous, 1981; Hoover,
1979)). A random matrix .Zij/i, j∈N is jointly exchangeable if and only if there is a random measurable
function f : [0, 1]3 →Z such that

.Zij/
d=.f.Ui, Uj , Uij//, .46/

where .Ui/i∈N and .Uij/i, j>i∈N with Uij =Uji are a sequence and matrix respectively of IID uniform[0, 1]
random variables.

For undirected graphs where Z is a binary, symmetric adjacency matrix, the Aldous–Hoover repre-
sentation can be expressed as the existence of a graphon M : [0, 1]2 → [0, 1], symmetric in its arguments,
where

f.Ui, Uj , Uij/=
{1 Uij <M.Ui, Uj/,

0 otherwise:
.47/

A.2. Regularly varying Lévy measures
Here we provide a formal definition of a regularly varying Lévy measure ρ that is referred to in theorems
2 and 5.

Definition 1 (regular variation). A Lévy measure ρ on .0, ∞/ is said to be regularly varying if its tail
Lévy intensity ρ̄.x/=∫ ∞

x
ρ.dw/ is a regularly varying function (Feller, 1971), i.e. it satisfies

ρ̄.x/
x↓0∼ l.1=x/x−σ .48/

for σ∈ [0, 1/ and l a slowly varying function satisfying limt→∞ l.at/=l.t/=1 for any a> 0.
For example, constant and logarithmic functions are slowly varying.

Appendix B: Proof of proposition 1

The proof of proposition 1 follows from the properties of W ∼CRM.ρ,λ/. Let Ai = [h.i−1/, hi] for h> 0
and i∈N: We have

.W.Ai//
d= .W.Aπ.i/// .49/

for any permutation π of N. As D.Ai ×Aj/∼Poisson{W.Ai/W .Aj/}, it follows that

.D.Ai ×Aj//
d= .D.Aπ.i/ ×Aπ.j/// .50/

for any permutation π of N. Joint exchangeability of Z follows directly.

Appendix C: Proofs of results on the sparsity

C.1. Probability asymptotics notation
We first describe the asymptotic notation that is used in the remainder of this section, which follows the
notation of Janson (2011). All unspecified limits are as α→∞.
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Let .Xα/α�0 and .Yα/α�0 be two [0, ∞/-valued stochastic processes defined on the same probability
space and such that limα→∞ Xα = limα→∞ Yα =∞ almost surely. We have

Xα =O.Yα/ almost surely⇔ lim sup
α→∞

Xα=Yα <∞ almost surely,

Xα =o.Yα/ almost surely⇔ lim
α→∞

Xα=Yα =0 almost surely,
Xα =Ω.Yα/ almost surely⇔Yα =O.Xα/ almost surely,
Xα =ω.Yα/ almost surely⇔Yα =o.Xα/ almost surely,

Xα =Θ.Yα/ almost surely⇔Xα =O.Yα/ and Xα =Ω.Yα/ almost surely:

The equivalence notation f.x/∼x↓0 g.x/ is used for limx→0 f.x/=g.x/ = 1 (not to be confused with the
notation ‘∼’ alone for ‘distributed from’).

C.2. Proof of theorem 3
Assume the moment condition 0 <

∫ ∞
0 w ρ.dw/<∞: Let

Z̃ij =
{1 if Z.[i−1, i]× [j −1, j]/> 0,

0 otherwise .51/

and D̃ij =D.[i−1, i]× [j −1, j]/. Then, almost surely for any k ∈N,∑
1�i<j�k

Z̃ij �N
.e/
k � ∑

1�i,j�k

D̃ij: .52/

As Z is a jointly exchangeable point process, .Z̃ij/i,j∈N is a jointly exchangeable binary matrix, and so∑
1�i<j�k

Z̃ij =Θ.k2/ almost surely as k →∞: .53/

Moreover, we have

D̃ij|W ind∼ Poisson{W.[i−1, i]/W.[j −1, j]/} .54/

So lemma 1 in Appendix D and the strong law of large numbers for V -statistics (Arcones and Giné, 1992;
Giné and Zinn, 1992) imply that∑

1�i,j�k

D̃ij =Θ.k2/ almost surely as k →∞: .55/

We therefore conclude that N
.e/
k =Θ.k2/ almost surely as k →∞: Finally, for any k �α� k +1,

k2

.k +1/2

N
.e/
k

k2
� N.e/

α

α2
� .k +1/2

k2

N
.e/
k+1

.k +1/2

and as .k +1/=k →1 we conclude that

N.e/
α =Θ.α2/ almost surely as α→∞: .56/

C.3. Proof of theorem 4
C.3.1. Finite activity case
We first consider the case of a finite activity CRM. In this case, the number of nodes is bounded below by the
square root of the number of edges, and bounded above by the (finite) number of jumps of the CRM. Let T =∫ ∞

0 ρ.dw/, 0<T<∞. Let Jα denote the number of points .wi, θi/ such that θi <α. .Jα/α�0 is a homogeneous
Poisson process of rate T , and thus Jα=α→T almost surely. Since

√
N.e/
α �Nα�Jα almost surely, it follows

from result (56) that Nα =Θ.α/ almost surely as α→∞.

C.3.2. Infinite activity case
We now consider the infinite activity case where

∫ ∞
0 ρ.dw/=∞. First note that, by monotone convergence,

limt→∞ ψ.t/=∞.
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Fig. 14. Illustration of the proof of theorem 4 in the infinite activity case ( , support points of the measure
D): in this example, the coloured regions indicate the intersection of A2n�1 with S.2/

n for n D 1 ( ), n D 2 ( ),
and nD3 ( ); from this, we see that X1 D0 (the count in blue), X2 D2 (the count in red) and X3 D1 (the count
in green)

Consider sets Ak = [.k −1/=2, k=2/ for k =1, 2, : : : , and let S.1/
n =∪n

k=1A2k−1 and S.2/
n =∪n

k=1A2k. S.1/
n and

S .2/
n define a partition of [0, n]. For n∈N, define the random variable Xn as

Xn =#{θi ∈A2n−1|D.{θi}×S.2/
n /> 0} .57/

and let

Ñα =
�α�∑
n=1

Xn:

See Fig. 14 for an illustration. Clearly, Ñα is a lower bound for the number of nodes:

Ñα � Nα almost surely: .58/

Using the notation S.1/ =∪∞
k=1A2k−1 and S.2/ =∪∞

k=1A2k, let W.1/ and W.2/ be respectively the restriction
of W to the set S .1/ and S.2/. As S.1/ and S.2/ are non-overlapping and W is a CRM, W.1/ and W.2/ are
independent. Integrating over W.1/ and using the marking theorem for Poisson processes (see below for
more details), we obtain for n�1

Xn|W.2/ ind∼ Poisson[ 1
2ψ{W.S.2/

n /}]: .59/

Lemma 1 thus implies that

n∑
k=1

Xk

1
2

n∑
k=1

ψ{W.S.2/
k /}

→1 almost surely: .60/

We have λ.S .2/
n /=n=2 and, using the law of large numbers,

W.S.2/
n /

n=2
→

∫ ∞

0
w ρ.dw/ almost surely: .61/

Therefore ψ{W.S.2/
n /}→∞ almost surely. Its Cesàro mean also diverges and

n∑
k=1

ψ{W.S.2/
k /}

n
→∞ almost surely, .62/

which, together with result (60), implies that .1=n/Σn
k=1Xk →∞ almost surely. We conclude that Ñα=α→

∞ almost surely and, using inequality (58), Nα=α→∞ almost surely.
Consider now the case where ρ̄.x/∼x↓0 l.1=x/x−σ where σ ∈ .0, 1/ and l.t/ is a slowly varying function

such that lim inf t→∞ l.t/ > 0: Then lemma 2 in Appendix D implies that lim inf t→∞ ψ.t/=tσ > 0 and thus,
using result (61),
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lim inf
n→∞

ψ{W.S.2/
n /}

nσ
> 0 almost surely:

Riemann integration and the Stolz–Cesàro theorem then imply that

lim inf
n→∞

n∑
k=1

ψ{W.S.2/
k /}

nσ+1
= lim inf

n→∞

n∑
k=1

ψ{W.S.2/
k /}

.σ+1/
n∑

k=1
kσ

> 0 almost surely

and finally Nα =Ω.ασ+1/ almost surely as α→∞.

C.3.2.1. Proof of result (59). Let n�1. For any θi ∈A2n−1, let ui be a binary mark such that

Pr.ui =1|W/=1− exp{−wi W.S.2/
n /}:

Conditionally on W.2/
n , the marking theorem for Poisson processes implies that the set of points {.wi/|θi ∈

A2n−1, ui =1} is drawn from a Poisson process of intensity 1
2ρ.dw/[1− exp{−wW.S.2/

n /}] and the number
Xn of those points is Poisson distributed with rate∫ ∞

0

1
2ρ.dw/[1− exp{−w W.S.2/

n /}]= 1
2ψ{W.S.2/

n /}:

Finally, independence of the Xns follows from the complete randomness of W.1/
n .

C.4. Proof of theorem 5

E[DÅ
α ]=E[E[DÅ

α |W ]]=E[WÅ2
α ]=E[WÅ

α ]2 +var.WÅ
α /

=α2

{∫ ∞

0
wρ.dw/

}2

+α

∫ ∞

0
w2ρ.dw/

where the last line follows from Campbell’s theorem.

E[N.e/
α ]=E[E[N.e/

α |W ]]=E[
∑

i

[{1− exp.−w2
i /}+ 1

2

∑
j �=i

{1− exp.−2wiwj/}1θj�α]1θi�α]

=E[
∑

i

[{1− exp.−w2
i /}− 1

2 {1− exp.−2w2
i /}]1θi�α]+ 1

2 E[
∑

i

[
∑

j

{1− exp.−2wiwj/}1θj�α]1θi�α]:

Using the Palm formula for Poisson point processes (Bertoin, 2006; Daley and Vere-Jones, 2008)

E[
∑

i

[
∑

j

{1− exp.−2wiwj/}1θj�α]1θi�α]=α

∫ ∞

0
E[{1− exp.−2w2/}+∑

j

{1− exp.−2wwj/}1θj�α] ρ.dw/

and the final expression is obtained by applying Campbell’s theorem. Finally, the expected number of
nodes

E[Nα]=E[E[Nα|W ]]=E[
∑

i

{1− exp.−2wi

∑
j

wj1θj�α +w2
i /}1θi�α]

=α

∫ ∞

0
E[{1− exp.−2w

∑
j

wj1θj�α −w2/}]ρ.dw/

=α

∫ ∞

0
.1−E[exp.−2w

∑
j

wj1θj�α −w2/]/ρ.dw/

=α

∫ ∞

0
[1− exp{−w2 −αψ.2w/}]ρ.dw/

where we successively used the Palm formula and Campbell’s theorem. By dominated convergence,
E[Nα]∼α↑∞ α

∫ ∞
0 ρ.dw/ if the CRM is finite activity. Consider now that the CRM is infinite activity.

Using integration by parts, we have
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E[Nα]=α

∫ ∞

0
{2w +2αψ′.2w/} exp{−w2 −α ψ.2w/}ρ̄.w/dw: .63/

The Laplace exponent is a strictly increasing function with ψ.0/=0 and limt→∞ ψ.t/=∞ and therefore
admits a well-defined inverse, denoted ψ−1 : [0, ∞/→ [0, ∞/. Using the change of variable u=ψ.2w/, we
obtain ∫ ∞

0
2ψ′.2w/ exp{−w2 −αψ.2w/}ρ̄.w/dw =

∫ ∞

0
exp[−{ψ−1.u/=2}2 −αu]ρ̄{ψ−1.u/=2}du:

Assume that
∫ ∞

0 wρ.dw/<∞. Now note thatψ.t/∼t↓0 t
∫ ∞

0 wρ.dw/ and thereforeψ−1.t/∼t↓0 t=
∫ ∞

0 wρ.dw/.
If ρ is a regularly varying Lévy measure, then

ρ̄.x/
x↓0∼ l.1=x/x−σ

where σ∈ [0, 1/ and l is a slowly varying function, and it therefore follows from lemma 3 in Appendix D
and ψ−1.0/=0 that

g.u/ := exp[−{ψ−1.u/=2}2]ρ̄{ψ−1.u/=2} u↓0∼ l.1=u/u−σ
{

2
∫ ∞

0
w ρ.dw/

}σ

where g is a monotone decreasing function. Applying the Tauberian theorem of proposition 2 in Appendix
D, we therefore have∫ ∞

0
exp.−αu/g.u/du

α↑∞∼ ασ−1l.α/Γ.1−σ/

{
2
∫ ∞

0
wρ.dw/

}σ

:

Finally, combining the above asymptotics with equation (63), and noting that∫ ∞

0
w exp{−w2 −αψ.2w/}ρ̄.w/ dw =o.1/

by dominated convergence, and limα→∞ ασl.α/> 0 for σ∈ [0, 1/, we obtain

E[Nα]
α↑∞∼ α1+σl.α/Γ.1−σ/

{
2
∫ ∞

0
wρ.dw/

}σ

:

Appendix D:Technical lemmas

The following lemma is a corollary of theorem 3, page 239, in Feller (1971).

Lemma 1. Let .Xn/n=1,2,::: be a sequence of mutually independent random variables with arbitrary
distribution and such that var.Xn/�E[Xn] <∞. Let Sn =Σn

k=1Xk. If

lim
n→∞

E[Sn]=∞
then

Sn=E[Sn]→1 almost surely as n→∞:

Proof. Assume for simplicity that E[Xn] > 0 for all n (otherwise, consider the subsequence of random
variables with strictly positive mean). We have

n∑
k=1

var.Xk/

1+E[Sk]2
�

n∑
k=1

E[Xk]
1+E[Sk]2

�
∫ ∞

0

1
1+x2

dx<∞

by Riemann integration. The result then follows from theorem 3, page 239, in Feller (1971) with bn =E[Sn].

Lemma 2 (relating tail Lévy intensity and Laplace exponent) (Gnedin et al. (2007), propositions
17 and 19). Let ρ be a Lévy measure, ρ̄.x/ = ∫ ∞

x
ρ.dw/ be the tail Lévy intensity and ψ.t/ = ∫ ∞

0 {1 −
exp.−wt/}ρ.dw/ its Laplace exponent. The following conditions are equivalent:

ρ̄.x/
x↓0∼ l.1=x/x−σ, .64/



1332 F. Caron and E. B. Fox

ψ.t/
t↑∞∼ Γ.1−σ/tσl.t/ .65/

where 0�σ< 1 and l is a function slowly varying at ∞, i.e. satisfying l.cy/=l.y/→1 as y →∞ for every
c> 0.

Lemma 3 (Resnick (1987), chapter 0, proposition 0.8). If U is a regularly varying function at 0 with
exponent σ ∈ R, and f is a positive function such that f.t/∼t↓0 tc, for some constant 0 < c < ∞, then
U{f.t/}∼t↓0 cσU.t/.

Proposition 2 (Tauberian theorem) (Feller (1971), chapter XIII, section 5, theorems 3 and 4). Let U.dw/
be a measure on .0, ∞/ with density u monotone in some interval .0, x0/. Assume that

L.t/=
∫ ∞

0
exp.−tw/u.w/dw

exists for t > 0. If l is slowly varying at ∞ and 0 < a <∞, then the following two relationships are equiv-
alent:

L.t/
t↑∞∼ t−al.t/, .66/

u.x/
x↓0∼ 1

Γ.a/
xa−1l

(
1
x

)
: .67/

Appendix E: Proof of theorem 6

The proof of theorem 6 relies on results on posterior characterization with models involving normal-
ized CRMs. We first state a corollary of lemma 5 by Pitman (2003) and theorem 8.1 by James (2002).
Similar results appear in Prünster (2002), James (2005) and James et al. (2009). The corollary involves
the introduction of a discrete random variable R, conditional on which the CRM has strictly positive
mass.

Corollary 1. Let Wα be a (finite or infinite) CRM on [0,α] without fixed atoms nor deterministic
component, with mean measure ρ.dw/ dθ. Denote WÅ

α =Wα.[0,α]/, with probability distribution GÅ
α . Let

R∈{0, 1, 2, : : :} be a discrete random variable such that, for r �0,

ζr.t/ :=Pr.R= r|WÅ
α = t/

with ζ0.0/ = 1. The condition Pr.R = 0|WÅ
α = 0/ = 1 ensures that, conditionally on R > 0, WÅ

α > 0 almost
surely, and the normalized CRM below is properly defined.

Conditionally on R = r > 0, let X1, : : : , Xr∼IIDWα=WÅ
α . Let θ̃1, : : : , θ̃k, k � r, be the unique values in

.X1, : : : , Xr/, in order of appearance, with multiplicities 1 � m̃j � r, w̃i =Wα.{θ̃i}/ the associated weights
and Πr = {A1, : : : , Ak} with Ai = {j|Xj = θ̃i} be the associated random partition of {1, : : : , r}. Let wÅ =
WÅ
α −Σi w̃i. For r> 0, we have

Pr[R= r, ΠR ={A1, : : : , Ak}, .w̃i ∈dw̃i/i=1,:::k, wÅ ∈dwÅ]

=
(

wÅ +
k∑

i=1
w̃i

)−r

ζr

(
wÅ +

k∑
i=1

w̃i

)
GÅ
α .dwÅ/αk

k∏
i=1

w̃m̃i
i ρ.dw̃i/ .68/

and

Pr.R=0, wÅ ∈dwÅ/= ζ0.wÅ/GÅ
α .dwÅ/:

We now prove theorem 6. Consider the conditionally Poisson construction that was described in Section
5.5:

DÅ
α |WÅ

α ∼Poisson.WÅ 2
α /,

.U ′
1, : : : , U ′

2DÅ
α
/|DÅ

α , Wα
IID∼ Wα=WÅ

α :
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First, define, for r ∈{0, 2, 4, : : :} and t �0,

ζr.t/ :=Pr.2DÅ
α = r|WÅ

α = t/= tr exp.−t2/

.r=2/!

with ζ0.0/ = 1. Conditionally on 2DÅ
α = r > 0, U ′

1, : : : , U ′
r are IID from Wα=WÅ

α . The variables U ′
1, : : : ,

U ′
r take Nα � r distinct values θ̃j , with multiplicities 1 � m̃j � r. Let Πr ={A1, : : : , ANα} be the associated

partition of {1, : : : , r}. From corollary 1 we have, for r ∈{2, 4, 6, : : :},

Pr[DÅ
α = r=2, Π2DÅ

α
={A1, : : : , ANα}, .w̃i ∈dw̃i/i=1,:::Nα , wÅ ∈dwÅ]

= 1
.r=2/!

exp
{

−
(

wÅ +
Nα∑
i=1

w̃i

)2}
GÅ
α .dwÅ/αNα

Nα∏
i=1

w̃m̃i
i ρ.dw̃i/ .69/

and

Pr.DÅ
α =0, wÅ ∈dwÅ/= exp.−w2

Å/GÅ
α .dwÅ/: .70/

Finally, let π be the permutation of {1, : : : , Nα} such that θ̃π.1/ < θ̃π.2/ < : : :< θ̃π.Nα/ and let wi = w̃π.i/ and
mi = m̃π.i/. As the θ̃i are IID and independent of w̃i, π is uniformly distributed over the set of permutations
of {1, : : : , Nα}. The vector .m1, : : : , mNα / corresponds to the sizes of the partition Π2DÅ

α
in exchangeable

random order (Pitman (2006), equation (2.7), page 39), and, for r ∈{2, 4, 6, : : :},

Pr{DÅ
α = r=2, .m1, : : : , mNα /, .wi ∈dwi/i=1,:::Nα , wÅ ∈dwÅ}

= r!

.r=2/!Nα!
Nα∏
i=1

mi!
exp

{
−

(
wÅ +

Nα∑
i=1

wi

)2}
GÅ
α .dwÅ/αNα

Nα∏
i=1

wmi
i ρ.dwi/: .71/

Appendix F: Details on the Markov chain Monte Carlo algorithms

The undirected graph sampler that was outlined in Section 7.2 iterates as follows.

Step 1: update w1:Nα given the rest with HMC sampling.
Step 2: update .α,σ, τ , wÅ/ given the rest by using a Metropolis–Hastings step.
Step 3: update the latent counts n̄ij given the rest by using either the full conditional or a Metropolis–
Hastings step.

F.1. Step 1: update of w1:Nα
We use an HMC update for w1:Nα via an augmented system with momentum variables p. See Neal (2011)
for an overview. Let L�1 be the number of leapfrog steps and ">0 the step size. For conciseness, we write

U ′.w1:Nα , wÅ,φ/=∇ω1:Nα
log{p.ω1:Nα , wÅ,φ|Dα/}|w1:Nα ,wÅ ,φ

the gradient of the log-posterior in equation (45). The algorithm proceeds by first sampling momentum
variables as

p∼N .0, INα /: .72/

The Hamiltonian proposal q.w̃1:Nα , p̃|w1:Nα , p/ is obtained by the following leapfrog algorithm (for sim-
plicity of exposition, we omit indices 1:Nα). Simulate L steps of the discretized Hamiltonian via

p̃.0/ =p+ "

2
U ′.w, wÅ,φ/,

w̃.0/ =w

and, for l=1, : : : , L−1,

log.w̃.l//= log.w̃.l−1//+ "p̃.l−1/,
p̃.l/ = p̃.l−1/ + "U ′.w̃.l/, wÅ,φ/

and finally set
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log.w̃/= log.w̃.L−1//+ "p̃.L−1/,
p̃=−

{
p̃.L−1/ + "

2
U ′.w̃, wÅ,φ/

}
w̃ = w̃.L/:

,

Accept the proposal .w̃, p̃/ with probability min.1, r/ with

r =

(
Nα∏
i=1

w̃mi
i

)
exp

{
−

(
Nα∑
i=1

w̃i +wÅ

)2} Nα∏
i=1

w̃i ρ.w̃i/(
Nα∏
i=1

wmi
i

)
exp

{
−

(
Nα∑
i=1

wi +wÅ

)2} Nα∏
i=1

wi ρ.wi/

exp
{

− 1
2

Nα∑
i=1

.p̃2
i −p2

i /

}

=
{

Nα∏
i=1

(
w̃i

wi

)mi−σ}
exp

{
−

(
Nα∑
i=1

w̃i +wÅ

)2

+
(

Nα∑
i=1

wi +wÅ

)2

− τ

(
Nα∑
i=1

w̃i −
Nα∑
i=1

wi

)}
exp

{
− 1

2

Nα∑
i=1

.p̃2
i −p2

i /

}
:

F.2. Step 2: update of w*,α,σ and τ
Let gÅ

α,σ,τ denote the density of GÅ
α,σ,τ with respect to the reference measure λα + δ0, where we recall that

λα denotes the Lebesgue measure over [0,α]. For our Metropolis–Hastings step, we propose (α̃, σ̃, τ̃ ,w̃Å)
from q.α̃, σ̃, τ̃ , w̃Å|α,σ, τ , wÅ/ and accept with probability min.1, r/ where

r =
exp

{
−

(
Nα∑
i=1

wi + w̃Å

)2 }
exp

{
−

(
Nα∑
i=1

wi +wÅ

)2 } {
Nα∏
i=1

ρ.wi|σ̃, τ̃ /

ρ.wi|σ, τ /

}
gÅ
α̃, σ̃, τ̃ .w̃Å/

gÅ
α,σ,τ .wÅ/

p.α̃, σ̃, τ̃ /

p.α,σ, τ /

q.α,σ, τ , wÅ|α̃, σ̃, τ̃ , w̃Å/

q.α̃, σ̃, τ̃ , w̃Å|α,σ, τ , wÅ/
: .73/

We shall use the proposal

q.α̃, σ̃, τ̃ , w̃Å|α,σ, τ , wÅ/=q.τ̃ |τ /q.σ̃|σ/q.α̃|σ̃, τ̃ , wÅ/q.w̃Å|α̃, σ̃, τ̃ , wÅ/

where

q.τ̃ |τ /= lognormal{τ̃ ; log.τ /,σ2
τ},

q.σ̃|σ/= lognormal{1− σ̃; log.1−σ/,σ2
τ},

q.α̃|σ̃, τ̃ , wÅ/=gamma{α̃; Nα,ψσ̃, τ̃ .2
∑

i

wi +2wÅ/}, .74/

q.w̃Å|α̃, σ̃, τ̃ , wÅ/=gÅ
α̃, σ̃, τ̃+2Σiwi+2wÅ

.w̃Å/: .75/

The choice of the proposal for wÅ and α is motivated as follows. From equations (71) and (43), the
conditional density of .α, wÅ/ given the rest is given by

p.α, wÅ|rest/∝αNα−1gÅ
α,σ,τ .wÅ/ exp{−.wÅ +∑

i

wi/
2}

which is not of a standard form because of the square in the exponential. Motivated by a first-order Taylor
approximation around the current MCMC value wÅ,

.w̃Å +∑
i

wi/
2 � .wÅ +∑

i

wi/
2 +2.w̃Å −wÅ/.wÅ +∑

i

wi/,

we use a proposal

q.α̃, w̃Å|σ̃, τ̃ , wÅ/∝ α̃Nα−1gÅ
α̃, σ̃, τ̃ .w̃Å/ exp{−2w̃Å.wÅ +∑

i

wi/}

which corresponds to the product of the proposals (74) and (75). The proposal for wÅ can be written as
an exponential tilting of the probability density function gÅ

α̃, σ̃, τ̃ .w̃Å/ :

gÅ
α̃, σ̃, τ̃+2Σwi+2wÅ

.w̃Å/= exp{−2w̃Å.
∑

wi +wÅ/}gÅ
α̃, σ̃, τ̃ .w̃Å/

exp{−α̃ψσ̃, τ̃ .2
∑

i

wi +2wÅ/}
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which will allow the terms involving the intractable probability density function gÅ to cancel in the
Metropolis–Hastings ratio (73). gÅ is either a gamma density .σ=0/, a Poisson mixture of gamma densities
(σ< 0) or an exponentially tilted stable density (σ> 0) for which efficient samplers exist (Devroye, 2009;
Hofert, 2011).

Under the improper priors (43), the acceptance probability reduces to having

r = exp
{

−
(

Nα∑
i=1

wi + w̃Å

)2

+
(

Nα∑
i=1

wi +wÅ

)2}
exp

{
− .τ̃ − τ +2wÅ −2w̃Å/

Nα∑
i=1

wi

}

×
(

Nα∏
i=1

wi

)−σ̃+σ
⎧⎨⎩

Γ.1−σ/ψσ,τ .2w̃Å +2
∑

i

wi/

Γ.1− σ̃/ψσ̃, τ̃ .2wÅ +2
∑

i

wi/

⎫⎬⎭
Nα

:

F.3. Step 3: update of the latent variables Nnij
Concerning the latent n̄ij , the conditional distribution is a truncated Poisson distribution (44) from which
we can sample directly. An alternative strategy, which may be more efficient for a large number of edges,
is to use a Metropolis–Hastings random-walk proposal.
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Discussion on the paper by Caron and Fox

Ginestra Bianconi (Queen Mary University of London)
I am delighted and honoured to open the discussion on this paper which provides an ideal starting point
to reflect on the benefits provided by the interdisciplinary character of network science.

From brain research to social networks ‘big data’ in the form of networks are permeating the sciences and
our own everyday life. Therefore there is an urgent need to develop new methods and techniques to extract
information from network data. Network science has developed as the fast growing interdisciplinary field
that addresses this problem with the aim of obtaining predictive models for social, physical and biological
phenomena occurring in networks.

The success of network science (Barabási, 2016; Newman, 2010; Dorogovtsev and Mendes, 2002) is
rooted in the following two characteristics of the field:

(a) the ubiquitous presence of networks describing complex interacting systems in social, technological
and biological contexts;

(b) the ability of the field to adopt methods and techniques coming from different theoretical disciplines
such as statistical mechanics, graph theory and statistical network modelling.

Although already at the beginning of the field the first aspect was shown to be essential for the charac-
terization of the universal properties of networks (Barabási and Albert, 2009; Watts and Strogatz, 1998),
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more recently it has become clear that network science can lead to a comprehensive understanding of
network phenomena only if the methods and techniques that are used to study networks reflect different
theoretical perspectives.

Initially statistical mechanics has been the most prosperous and successful approach to network mod-
elling. In this framework we distinguish between a non-equilibrium approach of growing network models
evolving through the preferential attachment rule (Dorogovtsev and Mendes, 2002; Barabási and Albert,
2009) and equilibrium approaches characterizing network ensembles enforcing either hard constraints
(such as the configuration model) or soft constraints (such as exponential random graphs) (Park and
Newman, 2004; Anand and Bianconi, 2009, 2010).

Most statistical mechanics models describe the regime in which the average degree 〈k〉 does not depend
on the number of nodes N , i.e. 〈k〉=O.1/. Particular focus has been addressed to scale-free networks in this
regime having degree distribution P.k/�Ck−γ for k �1 and a power law exponent in the range γ ∈ .2, 3].
The particular emphasis given to the regime in which the average degree is constant with increasing
network size is justified by the fact that indeed the vast majority of network data from the Internet to actor
collaboration networks belong to this class of networks (Barabási, 2016).

However, there is evidence that several network data from social on-line networks (Seyed-Allaei et al.,
2006) to neuroscience (Bonifazi et al., 2009) have a power law degree distribution P.k/�Ck−γ with γ∈ .1, 2]
implying very heterogenous degrees, very significant hubs and a diverging average degree. Despite the recent
interest in these classes of networks (Seyed-Allaei et al., 2006; Lambiotte et al., 2016; Timár et al., 2016)
historically these networks have been disregarded or neglected in the statistical mechanics community
(Barabási, 2016; Del Genio et al., 2011).

From the statistical perspective, recently we have been witnessing a new renaissance of network modelling
(Goldenberg et al., 2010) emphasizing the relevance of having exchangeable and projective network models.
Exchangeable models guarantee that the order in which nodes are sampled is irrelevant. Projective models
guarantee that a network inference performed on a sample of N nodes can be used to infer properties
of a sample obtained including more nodes. Interestingly the statistical mechanics models including non-
equilibrium growing network models and network ensembles do not have either of these two properties.

Exchangeable projective models generated by a joint exchangeable adjacency matrix are described by
the graphon and generate dense networks where the average degree is increasing linearly with the network
size, i.e. 〈k〉=O.N/. Given a joint exchangeable adjacency matrix the Aldous–Hoover representation can
be expressed as the existence of a graphon, implying that the network is dense 〈k〉=O.N/. Since the vast
majority of real network data sets are sparse and have an average degree increasing sublinearly with the
number of nodes, one of the major problems of the field was to overcome this limitation of the graphon.

In their paper Caron Fox formulate for the first time a generative exchangeable and projective model
for sparse networks.

The major step to overcome the limitation of the graphon has been considering a point process on the
plane instead of an exchangeable matrix. Thanks to the Kallenberg representation theorem for random
measurable functions this model admits a representation as a mixture of random functions that naturally
extend the graphon to the sparse regime.

Caron and Fox’s model, based on the assumption of the existence of a latent space (the sociability of a
node), achieves the following three major results.

(a) The model generates either dense networks with 〈k〉=O.N/ or sparse networks with 〈k〉=O.Nθ/
and θ∈ .0, 1/. Therefore the model constitutes a significant advance on exchangeable and projective
statistical network modelling.

(b) The model generates scale-free networks with diverging average degree

P.k/�Ck−γ .76/

andγ∈.1, 2]. Therefore the model shows that in the framework of statistical network modelling these
networks emerge naturally, enabling us to describe networks that have been historically neglected
in the statistical mechanics approach to networks.

(c) The model enables an efficient method for inference of network data. Analysed network data include
network data sets of sizes up to N = 300000 nodes. It should be noted that the code is freely available
from the author’s Web page.

In conclusion Caron and Fox’s paper opens a new scenario in statistical network modelling enabling
the treatment of exchangeable and projective sparse network models. Additionally this work is a beautiful
example of the benefits that can be obtained by an interdisciplinary approach to network science.
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Many prospects can be envisaged for future research. These include the extension to more general
latent spaces (Todeschini and Caron, 2016), the proposal of new network exchangeable models to preserve
privacy (Borgs et al., 2015) and the investigation of the regime 〈k〉=O.1/ for exchangeable network models
that would finally clarify whether it is possible to have a global framework to study both networks with
constant average degree and diverging average degree.

It therefore gives me great pleasure to propose the vote of thanks.

Karthik Bharath (University of Nottingham)
I applaud Caron and Fox’s efforts in the paper for developing a novel approach to represent and model
networks based on point processes, which since its first version in 2014 has inspired several new forays into
the literature on graph limits. In a certain sense the authors’ approach is reminiscent of the objective method
(Aldous and Steele, 2004) for combinatorial objects, and continuum limits of discrete objects, wherein of
chief interest is the study of local properties of the graphs unlike global properties like sparsity. However,
the utility of such probabilistically interesting continuous objects as statistical models for network or graph
data is suspect; this was recently explored in Bharath et al. (2017) in the context of tree-structured data
(acyclic graphs) using the continuum random tree (Aldous, 1993). My own view is that statistical models
that aim to capture and quantify variability in characteristics of real world networks need necessarily be
compatible with its inherently discrete nature, and the fundamental statistical notion of sampling from a
population network (e.g. adding or deleting vertices).

I am hence sceptical of the conceptual underpinning of their approach from a purely modelling perspec-
tive: the appropriateness of the notion of exchangeability—which is the leitmotiv of the paper—of point
processes (within the Kallenberg framework) for network models is unclear. Depending on the question
of interest the basic statistical datum on a network is identified (vertex, edge, triangle or other motifs),
and exchangeability is then defined as (probabilistic) invariance to their labelling, which usually is arbi-
trary. The authors’ continuous space representation of a network as a point process Z=Σi,j zijδ.θi, θj/ on
the plane implies that the distribution of the number of points that fall within rectangles Ai × Aj where
Ai := [h.i − 1/, hi], h > 0, is invariant to relabelling of the rectangles formed by intervals. This begs the
question: what exactly is exchangeable on an observed network with vertices and edges represented by the
measure-valued process {Za,α> 0}? The answer becomes trickier when isolated vertices are deleted, as
done in the paper. In fact the sequence of networks {Zα,α> 0} is unlabelled for the observed atoms! A
similar issue also arises in the desirable notion of projectivity under subsampling: forα2 <α1 projectivity of
the restriction of the law of Zα1 to [0,α2]2 is not compatible with operations such as deletion and addition
of vertices or edges, and I am unsure whether a sensible analogous interpretation is available within the
point process setting. In this context recently developed notions of edge and relational exchangeability
appear particularly cogent (Crane and Dempsey, 2015, 2016).

The flexibility in their approach to generate dense and sparse graphs governed by the choice of the
Lévy measure is attractive and points towards development of interesting inferential tools for networks.
The data sets that are considered in the paper are pregnant with interesting questions on functional
relationships between vertices and transport phenomena in networks that are indicative of its functionality.
Disappointingly, the authors restrict their attention only to assessing whether a network is sparse. The
apparent utility (or lack thereof) of the point process representation for inference on real networks is not
examined at all. For example, extreme events on the USairport or www data sets could be formulated by
using random walks on the network. A vertex could be classified as experiencing an extreme event if the
average number of walks traversing it at a given time is greater than some threshold (Kishore et al., 2011).
The average then could be computed with respect to the stationary distribution of a Markov chain with
an n-step transition probability of a walk from vertex i to vertex j, given by

Pij.n+1/=∑
r

{1− exp.2wrwj/}Pir.n/:

Posterior samples of wi could conceivably be used in estimating the stationary distribution, which then
allows for probabilistic statements of such extreme events. Assessing power law behaviour through the
double-logarithm plot is shown to be dubious in Clauset et al. (2009); surprisingly, the authors use this
method of assessment despite referring to Clauset et al. (2009). Can the overall model fit be assessed
through a posterior predictive check?

The interpretation (and identifiability) of α in Zα within the context of an observed network is not clear
since α is the upper bound for the θis—this is exacerbated in the sparse regime when α→∞. The inter-
pretation of the credible intervals for the σ-parameter (and hence the question of sparsity) is also unclear
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since the parameter α is unobserved and is estimated. It might be interesting to explore the structural
properties of the graphs if the completely random measure W is allowed to be inhomogeneous such that
v.dw , dθ/=ρ.dw , θ/λ.dθ/; indeed, this brings about additional computational and interpretability issues.
Despite the elegant theoretical foundation, the point process model for a finite network is perhaps ‘too
rich’—whereas the Lévy measure ρ and jumps wi are profitably used, the latent parameters θi (whose natu-
ral ordering on R+ is discarded in the interests of the exchangeability) andα throw up some uncomfortable
questions on model interpretability and identifiability.

The vote of thanks was passed by acclamation.

Wilfrid S. Kendall (University of Warwick, Coventry)
Caron and Fox are to be congratulated on producing an inspiring and elegant blend of the creative
probabilistic theory of exchangeability and the practical demands of statistical network analysis. I am
impressed by the way in which practical considerations of tunability guide them towards exchangeable and
completely random measures and theorems of Kallenberg and Aldous–Hoover.

Here I share recent work on rather different random networks, having a pronounced spatial element.
Aldous (Aldous and Ganesan, 2013; Aldous, 2014) proposed an axiomatization of what one might call
a scale invariant random spatial network (SIRSN). Motivated by on-line maps, one postulates a random
entity producing a unique set of connections N.x1, : : : , xn/ between any prescribed set of points x1, : : : , xn on
the plane: N.x1, : : : , xn/ is composed of routes r.xi, xj/ between each pair of points xi and xj . It is required
that the network be statistically invariant under translation, rotation and scaling, that the mean distance
of a route between two specified points be finite and, finally, that if one considers a network connecting all
points of an (independent) Poisson point process of intensity λ then the ‘long distance’ parts of the routes
(say, r.xi, xj/\ball.xi, 1/\ball.xj , 1/ should form a fibre process of finite mean length per unit area. (This
is the ‘weak SIRSN property’; the ‘strong SIRSN property’ requires the bound on mean length per unit
area to hold uniformly in λ.) In effect, long distance routes are reused by many different point pairs

It is a highly non-trivial matter to prove that SIRSNs can exist, but we now have two different examples.
Aldous (2014) produced a construction based on randomized grids. Kahn (2016) and Kendall (2017)
put together arguments which showed that an SIRSN can be constructed using Poisson line processes—
improper scale invariant line processes marked by speeds, with routes formed using fastest possible paths
in the network. Remarkably, the Poisson line process construction also works in 3-space and beyond.

It is salutary to compare this with the work of Caron and Fox. SIRSNs provide toy models for real
world spatial transportation networks, and a theoretical justification for the helpful notion of ‘transit
nodes’ (Bast et al., 2007). But, although there is typically a single scalar parameter γ expressing the scale
invariance, current SIRSN models cannot be said to be very tunable, nor to accommodate possibilities for
data modelling; a clear challenge for future work.

Benjamin Bloem-Reddy (Columbia University, New York)
Research in this area is progressing rapidly, and there are connections to some concurrent work. See also
Janson (2017a), section 5.1, for related ideas. For every model based on an exchangeable random measure
(ERM) (see also Veitch and Roy (2015, 2016), Borgs et al. (2016) and Janson (2016)), we can construct a
so-called edge exchangeable model (Crane and Dempsey, 2015, 2016; Williamson, 2016; Cai et al., 2016;
Janson, 2017a) that coincides with a finite restriction of the ERM model. The converse is true only in some
cases (see Cai et al. (2016) for an example). I consider the completely random measure (CRM) case for
concreteness.

Let X1, X2, : : : be an exchangeable sequence of edges, and let En be the directed multigraph composed
of the first n edges labelled in order of appearance. If the edge(s) connecting a pair of vertices are given a
unique ‘colour’, Kingman’s paintbox theorem shows that every such graph can be generated by sampling

Φ∼μ and Xi|Φ IID∼ Φ for i=1, : : : , n,

where Φ is a random discrete probability measure sampled from a mixing measure μ (Crane and Dempsey,
2016). Denote such a graph by EΦ

n .
Consider when Φ is the normalized CRM product measure (see section 5.5.1) Φα := Wα × Wα=WÅ2

α .
Then the graph Dα, with DÅ

α edges, and EΦα
DÅ
α

have the same conditional law,

L.Dα|Wα, DÅ
α /=L.EΦα

DÅ
α
|Φα, DÅ

α /:

If μ places mass only on normalized CRMs with mean measure ρ.dw/λα.dθ/, then equality in distribution
holds unconditionally. However, an ERM model and its counterpart edge exchangeable model coincide
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only for a particular α. Dα and EΦα
DÅ
α

grow differently: fix " > 0, and let Dα grow to Dα+", denoting by
DÅ
α," :=DÅ

α+" −DÅ
α the number of additional edges. Then

L.Dα+"|Dα,Wα+", DÅ
α,"/ �=L.EΦα

DÅ
α+DÅ

α,"
|EΦα

DÅ
α

, Φα, DÅ
α,"/:

The inequality reflects a fundamental difference in how the two model classes encode the notion of
growth and offers guidance for choosing an appropriate model class. Edge exchangeable models posit that
graphs grow one edge at a time; growth in ERM models is by a random number of edges as α increases.
As a consequence, in an edge exchangeable graph growing to arbitrary size, an edge may occur between
two vertices that were previously not connected. This is not true for ERM models, which require that new
edges form only between new vertices, inducing a growing population of edges from which to sample.
Conversely, edge exchangeable models sample from a fixed (possibly infinite) population.

Patrick Rubin-Delanchy (University of Bristol)
This is a very creative and thought-provoking paper on network modelling, opening many avenues for future
research. With this second point in mind, it would be useful to set down formally what this new definition
of graph exchangeability should be in general: is an arbitrary model for an infinite graph .zij/i, j=1, 2:::

exchangeable in this sense if there is a coupling ..zij/, .θi/i=i,2,:::/ so that, marginally, z follows the specified
model and (θi) is a unit rate Poisson process, and, jointly, the point process Σzijδ.θi, θj/ is exchangeable?

Some popular approaches to network modelling rely on latent positions .Xi/i=1,2, : : : for each of the
nodes, where, conditionally on Xi, we have zij ∼ind Bernoulli {f.Xi, Xj/} for each i and j for some function
f . Under the usual infinite exchangeability assumption, the Aldous–Hoover theorem suggests a Bayesian
treatment of f , and the Xi are independent uniform positions on [0,1]. However, Hoff et al. (2002) assumed
that f.Xi, Xj/ is logistic in the distance ‖Xi − Xj‖ (ignoring covariates), with the Xi independent and
identically distributed (IID) on Rd (this being part of the prior rather than the model), and the random dot
product graph (Nickel, 2006; Young and Scheinerman, 2007; Athreya et al., 2016) assumes that f.Xi, Xj/=
XT

i Xj , with the Xi IID on a convex set X ⊂Rd . The stochastic block model (Holland et al., 1983) and mixed
membership stochastic block model (Airoldi et al., 2008) can also be written as latent position models. In
the present paper, such models were mentioned as possible extensions where, if I understand correctly,
the θi could represent these latent positions. Instead, I think of the wi as latent positions, and indeed in a
follow-up paper these parameters live in higher dimensions (Todeschini and Caron, 2016). What I expect
in general is that the assumption of IID latent positions, present in each of the earlier models, must be
dispensed with, and instead the Xi must now form a more complicated point process on Rd (or whichever
space is appropriate), just as the wi are not IID but instead form a more complex point process on the
positive line.

It is then interesting to ask how are estimates of these positions affected, starting with the simplest
question of whether even the wi in this paper are estimated consistently? But, to give a more interesting
example, for the random dot product graph, Athreya et al. (2016) have shown that the estimation error
under adjacency spectral embedding goes as the usual rate n−1=2 and is asymptotically Gaussian, but here
the IID assumption on the Xi is important. If the graph is ‘sparsified’, using the ideas of this paper, how
are these spectral estimates affected?

The following contributions were received in writing after the meeting.

Julyan Arbel (Inria Grenoble Rhône-Alpes)
The paper by Caron and Fox is a very fine methodological work which illustrates once again the huge
modelling flexibility and versatility of discrete Bayesian non-parametric priors. They target here sparsity
in graphs, the level of which can be neatly assessed according to the stability parameter σ of the discrete
process under consideration.

The posterior distribution of σ is notoriously highly concentrated in the context of Bayesian non-
parametric inference for species sampling problems. The credible intervals’ narrowness obtained for the
real world graphs suggests that the same holds here. Caron and Fox validate their methodology via posterior
predictive checks such as the fit to the empirical degree distribution. Another type of validation, theoretical
though, which is not considered by them is through posterior consistency. In the present setting, the graph
is given and interest is in assessing graph properties such as sparsity. Posterior consistency here amounts
to asking whether the model is capable of recovering a sparsity index σ, in other words: if the true graph-
generative process is assumed to have a sparsity index σ0, then does the posterior of a contract to a point
mass at σ0 when the size of the graph increases to ∞? The sparsity index σ0 can be defined in the spirit of
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equation (21) by the asymptotic relationship between the number of nodes Nα and the number of edges
N.e/
α :

N.e/
α =N2=.1+σ0/

α →1 .77/

as the graph size grows to ∞. According to the definitions given in equations (17) and (18), the graph size
can be equivalently measured by α, Nα or N.e/

α : The true graph-generative process could be the generalized
gamma process itself (well-specified setting) or any other graph process satisfying condition (77) for some
σ0 (misspecified setting).

In recent research (Arbel et al., 2017), we introduce conditions on the Lévy intensity of the completely
random measure to ensure consistent estimation in species sampling problems. Though the setting is quite
different, our conditions are similar to the tail assumptions made by Caron and Fox in the derivation of
Nα and N.e/

α asymptotic behaviours. Admittedly, the consistency assumption of a true generative model
with a given fixed level of sparsity is an idealized assumption which cannot account for real world graphs
oddities such as local effects underlined by the authors: dense subgraphs (spots) and community structure.
However, we believe that consistency properties could shed some light on why σ were estimated to be
negative for most of the real world applications in the paper, thus concluding on dense graphs.

Sayantan Banerjee (Indian Institute of Management Indore) and Subhashis Ghosal (North Carolina
State University, Raleigh)
Caron and Fox are to be congratulated for an interesting construction of random graphs through com-
pletely random measures on the real line and also for extending the ideas to directed multigraphs through
Poisson processes with intensity measures as the product of completely random measures on the real line.
Sociability parameters are used to generate edges which are further generated through completely random
measures. The most interesting aspect of such constructions is the dichotomy of density or sparsity, de-
pending on finite or infinite mass of the intensity measure of the completely random measure driving the
construction. In particular, the example of the generalized gamma process is fascinating since the whole
spectrum of activity can be captured through a single tuning parameter. In this context, it will be interesting
to characterize the normalized graph Laplacian and its eigenvalues which give valuable information on the
number of connected components. Using some appropriate graph partitioning algorithm (see for example,
Von Luxburg (2007)), different communities in the graph are possible to detect. It will be interesting to
study the probabilistic behaviour of the communities thus obtained from a random graph constructed
by the authors. This may facilitate scale-dependent community detection in graphs, where the different
scales refer to the local or global neighbourhood of the individual nodes of the graph. For example, in the
case of a Swiss roll manifold generated from Gaussian mixtures, some scales can recover the underlying
Gaussian components and some scales can detect communities which respect the underlying geometry of
the manifold.

From a more general perspective, the model proposed by the authors seems to be an interesting way of
selecting a particular graphon model P.zij = 1/ = g.Ui, Uj/ for the probability of an edge through latent
variables U1, U2, : : :. By setting a particular point a reference point, tying the graphon to zero at it and mak-
ing the latent variables concentrate near this point should induce sparsity. Can this general graphon model
be obtained through a transformation on the plane from the model proposed by the authors? If so, can
this connection be used to characterize the sparsity-generating mechanism in the general graphon model?

Another question potentially of interest and topic of further study is the limiting distribution of nor-
malized numbers of edges. A normal approximation in the dense case and a Poisson approximation in the
sparse case are expected.

Marco Battiston (Oxford University) and Stefano Favaro (University of Turin and Collegio
Carlo Alberto, Turin)
We congratulate Caron and Fox for their interesting contribution, which has already attracted much interest
in the statistical community. Here we would like to point to new developments related to privacy issues
in network modelling. Network data usually contain sensitive information about individuals, e.g. medical
status, wages, friendships or sexual or political preferences. A noteworthy example of privacy disclosure
is in Narayanon and Shmatikov (2009), who showed how to identify users in the Netflix data set, which
can be modelled by a weighted bipartite graph, even after users and movies labels had been removed.
Privacy problems are concerned with providing mechanisms to transform raw data into a privatized data
set to be released. A popular measure to check whether a mechanism can privatize a data set is differential
privacy, which was initially proposed in Dwork et al. (2006) and recently considered in graph theory for
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network data. A mechanism A is said to be node private if an intruder looking at the output released by
the mechanism cannot correctly guess with high probability whether a node (individual) is in the data set
or is not and figure out which are his edges (links). A formal definition of ε-node privacy is that, for all
subsets S of the output space, the mechanism A must satisfy

Pr{A.G/∈S}� exp.ε/Pr{A.G′/∈S} .78/

for all graphs G and G′ which can be obtained one from another by removing a vertex and its adjacent
edges.

To our knowledge, the only attempt to study an ε-node private mechanism is in Chayes et al. (2015).
They considered sparse graphs obtained by rescaling a dense graphon with the network size, and they
proposed a mechanism that releases as output a step graphon that satisfies condition (78). We believe
that an interesting line of research would be to study how privacy constraints could be handled within
the sparse graphs setting proposed by Caron and Fox. Specifically, is ε-node privacy a good measure of
disclosure for graphs or are better notions needed in the sparse regime? How do we construct mechanisms
satisfying these privacy notions? Will the privatized network data set that is obtained by this mechanism
preserve enough statistical utility? As pointed out in Narayanon and Shmatikov (2009), sparsity facilitates
disclosure and at the same time it makes statistical inference more difficult. Therefore, on the one hand, we
might need quite a stringent notion of privacy for sparse graphs, but on the other hand this requirement
may drastically affect the statistical utility of the released network data set. As a consequence, a clear
trade-off between privacy guarantees and statistical utility arises, particularly in sparse settings. Natural
questions are how to formalize this trade-off mathematically and then how to solve it.

C. Borgs and J. T. Chayes (Microsoft Research)
This paper is an important contribution to statistical network modelling, giving a framework to formulate
exchangeability for sparse graphs by embedding them in random measures on R2

+ . It has already inspired
several other works, including ours with H. Cohn and N. Holden (Borgs et al., 2016).

We put the Caron–Fox model into a broader context of graphon processes as follows. First, rather than
viewing wi as a ‘sociability’ parameter of node i, we think of it as a feature in some σ-finite space Ω
(e.g. Rd with a locally finite measure, a discrete but not necessarily finite space, or a combination of the
two). Second, rather than a product function, we consider an arbitrary two-variable function (graphon)
W :Ω×Ω→ [0, 1] over the feature space.

We construct a time-dependent family .Gt/t�0 of graphs by first generating a Poisson point process with
intensity tρ, where ρ is an arbitrary σ-finite measure on the feature space, then connecting two points with
features wi and wj with probability W.wi, wj/ and finally deleting points unconnected up to time t.

If we choose the feature space to be R+ and W.w, w′/=1−exp.−2ww′/, we obtain the Caron–Fox model.
If we take the space to be R+ × [k], and W the product of the Caron–Fox graphon with a k × k matrix,
we obtain the block model version of Herlau et al. (2016). Taking it to be R+ times the k-simplex, we
obtain a sparse, degree-corrected mixed membership model, etc. Hence, our work represents a substantial
extension of the modelling aspect of the authors’ work.

Our work also sheds light on the theoretical questions alluded to by the authors. First, it generalizes
both their model and the standard, dense exchangeable model. Second, it completes the Caron–Fox picture
by giving an if and only if characterization of exchangeability, whereas previous work (except for the
simultaneous independent work of Veitch and Roy (2015)) gave only an if statement. Explicitly, labelling
edges by the birth times of their end points, we obtain an exchangeable random measure on R2

+ from an
arbitrary graphon process. More significantly, we prove the only if statement: under mild decay conditions,
all such measures can be obtained from graphon processes, extending the classic Aldous–Hoover theory
for dense graphs to graphon processes.

Alexandre Bouchard-Côté and Creagh Briercliffe (University of British Columbia, Vancouver)
First, we congratulate Caron and Fox for this impressive contribution, which is already starting to have
significant influence in the field. In what follows, we discuss some computational aspects of posterior
inference.

In the general case, the authors describe that the computational bottlenecks of posterior inference lie
in updating the weights wi and the latent counts n̄ij . Although there are more latent count variables than
weight variables, sampling the former can be trivially parallelized, so, for sufficiently sparse graphs, we
expect the weight updates to dominate.

The authors used Hamiltonian Monte Carlo within Gibbs sampling to perform the joint sampling of
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w1:Nα given the rest of the variables, which seems a reasonable approach validated by solid experimental
results. At the same time, given the prevalence of graph data of increasing size, we believe it is productive
also to keep the door open to alternatives. In particular, the target log-density has a simple structure in
the generalized gamma process case, so it is tempting to ask whether this structure can be leveraged.

We investigate one potential direction to do so by using two variants of the bouncy particle sampler (BPS)
algorithm (Bouchard-Côté et al., 2017). Since the local variant of the BPS has been shown to outperform
state of the art Hamiltonian Monte Carlo algorithms in sparse factor graphs, this appears a priori an
appropriate tool for inference in a sparse network model. Surprisingly, however, the factor graph induced
by sampling the wis is in fact fully connected. We therefore resort to the global variant of the BPS algorithm.

We use the same reparameterization as the authors and compute collision times via superposition and
adaptive thinning. We run the global BPS algorithm and Stan (Stan Development Team, 2016), each on a
simulated graph of Nα=2558 nodes, with the other parameters fixed to the values used to generate the data
.wÅ =6:5427, τ =1 and σ=0:5/. We observe that the latter outperformed the former (3.2 and 5.8 effective
samples per second respectively). This is consistent with previous observations that BPS algorithms are
most attractive when they can exploit sparsity (Bouchard-Côté et al., 2017).

Perhaps sparsity of the inference problem might reappear in more complex models that build on the
work of Caron and Fox. For example, it might be interesting to modify the follow-up work of Todeschini
and Caron (2016) to allow some community-specific weights to be 0. Alternative constructions designed
to accommodate covariates or node attributes might also potentially create additional sparsity structure.

Trevor Campbell and Tamara Broderick (Massachusetts Institute of Technology, Cambridge)
We congratulate Caron and Fox on their paper, which has already inspired further theory (Veitch and Roy,
2015; Borgs et al., 2016; Palla et al., 2016), an alternative class of models using independent and identically
distributed data sampling of edges from a fixed random measure (Cai et al., 2016; Crane and Dempsey,
2015, 2016; Campbell et al., 2016a; Janson, 2017a), and models for dynamic networks (Palla et al., 2016),
link prediction (Williamson, 2016), and block structure learning (Herlau et al., 2016).

The authors focus on the case where ‘vertex sociabilities’ are generated by the jumps of a Poisson process
on R+. They marginalize the latent Poisson process to devise an urn scheme and thereby a tractable
Markov chain Monte Carlo sampler. However, in previous work, practitioners have often found it useful
to represent the latent process explicitly: it is required by modern methods such as variational inference and
Hamiltonian Monte Carlo sampling (Blei and Jordan, 2006; Neal, 2011); it can make inference simpler or
tractable for hierarchical models; and it often facilitates parallel computing. The authors’ results, though,
imply that there is a challenge to instantiating the Poisson process in the case of sparse graphs. In particular,
they show that, if a graph sequence is sparse, the Poisson process must have a countable infinity of atoms
in any restriction window [0,α] (theorem 2). But we cannot store infinitely many values in memory, or
update infinitely many values in finite time, and therefore we must use an approximation.

One approximation involves replacing the full Poisson process with only finitely many jumps. The authors
suggest weight-based thresholding (Muliere and Tardella, 1998; Argiento et al., 2016) where jumps x∈ [0, ε/
are removed, but this requires dealing with non-standard truncated probability distributions on R+. We
highlight another option: to truncate a sequential representation of the Poisson process (Campbell et al.,
2016b). This technique has the advantage that it typically involves only well-known exponential family
distributions and thereby allows variational algorithms with simple closed form updates (Blei and Jordan,
2006; Doshi-Velez et al., 2009). The approximation error of truncated sequential representations has
recently been thoroughly characterized (Campbell et al., 2016b). However, these results do not immediately
extend to the present network model, as it involves the product of a Poisson process with itself. Nonetheless,
we conjecture that variational inference based on a truncated sequential representation would enjoy similar
benefits for the network model as for previous applications in Bayesian non-parametrics.

Roberto Casarin (University Ca’ Foscari of Venice), Matteo Iacopini (University Ca’ Foscari of Venice
and Université Paris 1—Panthéon-Sorbonne) and Luca Rossini (University Ca’ Foscari of Venice and
Free University of Bozen-Bolzano)
Caron and Fox are to be congratulated on their excellent research, which has culminated in the development
of a new class of random-graph models. The node degree and the degree distribution fail in giving a unique
characterization of network complexity (Estrada, 2010). For this reason global connectivity measures, such
as communicability (Estrada and Hatano, 2008, 2009) and centrality (Borgatti and Everett, 2006) are used
to analyse a graph. In this discussion we contribute to the analysis of the generalized gamma process
(GGP) model compared with the Erd´́os-Rényi and the preferential attachment (Barabási and Albert,
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Fig. 15. Netwok statistics versus number of nodes for the GGP undirected network (�,σ D 0I�,
σD0.5I�,σD0.8), the Erd ´́os–Rényi (�) and the preferential attachment model of Barabási and Albert (1999)
(�): (a) number of connected components; (b) clustering coefficient; (c) assortativity coefficient; (d) share
nodes core

1999) models. Our analysis is far from being exhaustive but shows that more theoretical aspects of the
GGP model are to be investigated.

A connected component of the n-nodes graph G = .V , E/ is a subgraph in which any two vertices vi

and vj are connected by paths. The number of connected components equals the multiplicity of the null
eigenvalue of the graph Laplacian L, where the .i, j/ entry of L is

Lij =
{

d.vi/ if i= j,
−1 if i �= j and .vi, vj/∈E,
0 otherwise,

with d.vi/ the degree of vi.
The global clustering coefficient measures the tendency of nodes to cluster and is defined as

C = number of triangle loops
number of connected triples of vertices

:

The assortativity coefficient between pairs of linked nodes is given by

r =

n∑
j=1

n∑
k=1

jk.ejk −qjqk/

σ2
q

,
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where qk and ejk are the distribution and the joint excess degree probability of the remaining degrees
respectively, for the two vertices vj and vk, and σq is the standard deviation of qk.

Finally, given the partition of the network into two non-overlapping subgraphs (core and periphery)
that maximizes the number or weight of within-core-group edges, we compute the share of nodes in the
core.

According to Fig. 15 (a), the GGP couples with the preferential attachment model and performs slightly
worse than the Erd´́os–Rényi random graph in terms of the number of connected components. Figs 15(b)
and 15(c) highlight that the clustering structure of GGP does not vary too much with σ. The clustering
coefficient is in line with the two benchmarks while the assortativity of the Erd´́os–Rényi model is not
attained. For σ= 0:5, 0:8, the GGP exhibits a lower share of nodes in the core (Fig. 15(d)) than in the
benchmarks and mimics the preferential attachment model for σ=0.

Overall, the GGP can replicate typical behaviours of real world sparse networks and some fundamental
features of random graphs generated from the preferential attachment model, making it suitable for a
variety of applications in different fields.

We are very pleased to thank the authors for their work.

I. Castillo and T. Rebafka (Université Pierre et Marie Curie—Paris 6)
The random-graph model proposed by Caron and Fox has some remarkable properties, among others
the possibility to combine sparsity and exchangeability and the scalability of computations within the
associated Bayesian framework. In our view, their work raises some interesting questions on statistical
inference. Adopting a frequentist approach, what can be said about posterior convergence assuming the
data have been generated under a ‘true’ parameter?

Form a posterior distribution Π[·|Z] on w ∈ .R+
/N+ =:W from

Z|w ∼
n⊗

i=1

Bernoulli{1− exp.−2wiwj/}=: Pw, w ∼Π:

Consider the behaviour of Π[·|Z] under two frequentist settings:

(a) well specified , where Z ∼P0 =Pw0 for an unknown fixed w0 ∈W , and
(b) possibly misspecified, where Z ∼P0 =Q for an arbitrary graph distribution Q.

In a simulation study, we considered estimation of two simple functionals; the edge density and the
density of triangles,

ψ1 = 1(
n
2

)EP0

[∑
i<j

Zij

]
,

ψ2 = 1(
n
3

)EP0

[ ∑
i<j<k

ZijZjkZki

]
:

We used the default code under the generalized gamma process with improper priors on hyperparameters.
One reason to consider setting .b/ is the specific exponential form of the link function considered in the

paper, which may not hold for the data. Suppose for instance that Z has actually been generated from a
stochastic block model with two groups, equiproportions and connectivity parameters

α=
(0:8 0:1

0:1 0:8

)
:

Simulations suggest that the posterior is consistent for ψ1, but inconsistent for ψ2.
In setting (a), we considered two cases. Case 1 is an equiproportions stochastic block model with con-

nectivity matrix

α=

⎛⎜⎝ 0:8 ≈ 1
3

≈ 1
3

0:1

⎞⎟⎠
compatible with the exponential link function. Bayesian and frequentist behaviours of ψ1 and ψ2 are
remarkably close and rapidly converging (Table 3), suggesting that a Bernstein–von Mises theorem holds.
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Table 3. Stochastic block model with equiproportions and compatible link function, true
ψ1 D0.3938 and ψ2 D0.1026: mean lengths of 95% credible or confidence intervals and
bias of posterior mean and frequentist estimates of ψ1 and ψ2 over 120, 120, 90 and 60
simulated graphs

Number of Credible ψ̂
bayes
1 ψ̂

freq
1 ψ̂

freq
1 Credible ψ̂

bayes
2 ψ̂

freq
2 ψ̂

freq
2

nodes n interval bias interval bias interval bias interval bias
length length length length

30 0.0794 −0:0025 0.0816 −0:0012 0.0502 −0:0058 0.0485 −0:0053
50 0.0470 −0:0011 0.0486 −0:0010 0.0302 −0:0043 0.0322 −0:0037

100 0.0234 0.0003 0.0234 0.0001 0.0153 −0:0018 0.0149 −0:0013
300 0.0078 −0:0003 0.0078 −0:0004 0.0051 −0:0007 0.0054 −0:0005

Fig. 16. 95% credible intervals ( ) for log.wi / and true values (�) in a graph with 100 nodes (nodes
are ordered by increasing values of log(wi ))

Case 2 is a graph with ‘correctly specified’ link function and w a sample from the Cauchy distribution.
The posterior still estimates the functionals ψ1 and ψ2 well but seems to underestimate large values of w0, i
(Fig. 16). To study sparsity, we repeated the two previous experiments but replacing w0 by ρnw0, where
ρn →0. We noted that the posterior on σ was concentrated on negative values, which suggests that σ may
not universally quantify sparsity.

It would be interesting to determine which aspects of w (e.g. real-valued functionals, or the complete
vector w) can be estimated at minimax rate by using priors as in the paper. Another question would be to
extend the model and priors to cover arbitrary link functions, and possibly more general forms of the law
of w.

Suman Chakraborty (University of North Carolina at Chapel Hill)
The model proposed in this paper is aimed at providing a unified framework to incorporate desirable
properties observed in real world networks such as exchangeability and sparsity. The model is defined for
a graph for countably infinite vertices. A typical node i is codified via a function θi where i is a natural
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number and θi lies on the non-negative half of the real line and can be seen as the time that node i entered
the network. Finally the network is represented as the point process

Z =∑
ij

zijδ.θi ,θj /,

where zij =1 indicates that there is an edge between nodes i and j. Interestingly Kallenberg’s exchangeable
completely random measures theory is devised on the appearance time of the nodes; formally the following
distributional equality holds:

Z.Ai ×Aj/=Z.Aπ.i/ ×Aπ̃.j//,

for all natural numbers i and j, π and π̃ are arbitrary permutations of natural numbers .π= π̃ for joint
exchangeability) and Ai = [h.i − 1/, hi] for any h > 0. Finally to introduce node inhomogeneity a set of
parameters {wi} is introduced and particular link probabilities are assumed.

It seems that theorems 2 and 3 are the main advantage of this modelling approach. Roughly it
enables us to produce graphs with the desired level of sparsity by tuning a single parameter. This property
can be appealing for applications. Also the sparsity parameter might be useful to obtain scalings of im-
portant functions of the graph, such as the number of triangles. The projectivity is also a salient feature
of the model as it can be used to draw inference on the unobserved part of the population. It would
be interesting to analyse how much information is necessary to make valid inference about the whole
network.

The form of exchangeability of the model is cleverly devised and enabled the authors to use known
representations of Kallenberg (1990), which is a crucial component of the paper. It will be helpful for the
reader to have a few more comments from the authors on the statistical interpretations and scope of the
notion of exchangeability used here. Finally as suggested by Fig. 8(a) the power-law-like tail behaviour of
the empirical degree distribution, the projectivity and tunable sparsity parameter make the model attractive
to both theoretical and practical applications.

Harry Crane (Rutgers University, Piscataway)
Caron and Fox tout their proposal as

‘the first fully generative and projective approach to sparse graph modelling [: : :] with a notion of
exchangeability that is essential for devising our scalable statistical estimation procedure’

(at the end of Section 4; emphasis added). In calling theirs the first such approach, they brush aside
prior work of Barabási and Albert (1999), whose model is also generative and projective, and produces
sparse graphs. The Barabási–Albert model is not exchangeable, but nor is the authors’. And, although the
Barabási–Albert model is inadequate for most statistical purposes, the model proposed is not obviously
superior, especially with respect to the criteria highlighted above.

Generative
Though amenable to simulation, the obscure connection between Kallenberg’s theory of exchangeable
completely random measures and the manner in which real networks form makes it difficult to glean much
practical insight from this model. At least Barabási and Albert’s preferential attachment mechanism offers
a clear explanation for how sparsity and power law might arise in nature. I elicit no such clarity from the
Caron–Fox model.

Projective
Proiectivity is important for relating observed network to unobserved population and is therefore crucial
in applications for which inferences extend beyond the sample. Without a credible sampling interpretation,
however, the statistical salience of projectivity is moot. Here projectivity involves restricting point processes
in R2

+ to bounded rectangles [0,α]2, whose best-known interpretation via p-sampling (Veitch and Roy,
2016) seems unnatural for most conceivable networks applications, including those in Section 8.

Exchangeability and sparsity
A certain nonchalance about whether and how this model actually models real networks betrays an atti-
tude that sees sparsity as an end in itself and exchangeability as a means to that end. Even the authors
acknowledge that ‘exchangeability of the point process [: : :] does not imply exchangeability of the associ-
ated adjacency matrix’ (on the third page). So why is there all the fuss about exchangeability if its primary
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role here is purely utilitarian? To me, the pervasiveness of ‘exchangeability’ throughout the paper is but
a head fake for unsuspecting statisticians who, unlike many modern machine learners, understand that
exchangeability is far more than a computational contrivance.

Final comment
The Society’s Research Section is all too familiar with the Crane–Dempsey edge exchangeable framework,
which meets the above four criteria while staying true to its intended application of interaction networks.
For brevity I refer the reader to Crane and Dempsey (2015, 2016) for further discussion.

Daniele Durante (University of Padova)
There is increasing interest in modelling network data under a Bayesian non-parametric perspective, and
the paper from Caron and Fox provides an appealing contribution in this direction. In fact, as they effec-
tively demonstrate, many Bayesian non-parametric representations not explicitly motivated by network
data can indeed provide powerful methods for studying relevant patterns underlying real world connectivity
structures.

Consistent with this focus, the growing demand for more flexible and realistic statistical models for
networks is a main motivation underlying the stochastic point process representation of Caron and Fox,
implying less restrictive exchangeability assumptions. Their model is carefully parameterized to provide
flexible inference on sparsity and the degree distribution, which represent the quantities of main interest.
However, a natural question when combining Bayesian non-parametric representations and complex data
is whether the resulting Bayesian formulation induces large support priors for a wider set of expected
network features—e.g. clustering coefficient and average shortest path length. These are relevant measures
in characterizing other realistic properties, such as small world architectures, and an improved character-
ization of prior support may provide insights on which properties the model can flexibly incorporate.

Looking at this problem from a broader perspective, Caron and Fox consider settings in which a single
network is observed. In such cases the information is clearly not sufficient to learn highly flexible represen-
tations, and although restricting the focus to a specific class of distributions—by incorporating reasonable
structure—is a clever approach, it does not protect from misspecification issues. For instance the novel ex-
changeability assumption proposed by the authors effectively improves flexibility in characterizing sparsity
but could substantially restrict the support on other relevant classes of distributions. Therefore, looking at
the model from an applied perspective, it is fundamental to understand the extent to which their Bayesian
non-parametric formulation can be viewed as truly non-parametric. Indeed, without prior support about
the true distribution of the random graph, the posterior can never concentrate around the truth, thereby
affecting quality of inference.

A possible answer to this issue is to generalize the model from Caron and Fox to obtain a fully flexible
characterization of the entire distribution for random graphs. Motivated by the availability of replicated
networks, Durante et al. (2017) addressed this goal with a focus on latent space models (e.g. Hoff et al.
(2002)), and I am excited to see how the inspiring contribution from Caron and Fox can open new avenues
also in this direction.

Chao Gao (University of Chicago)
I congratulate Caron and Fox for their results that give a solid foundation for exchangeable network
analysis. This paper has already inspired some important subsequent works (Veitch and Ray, 2015; Borgs
et al., 2016; Crane and Dempsey, 2016; Broderick and Cai, 2015). My discussion will focus on the potential
influence on the development of methods and algorithms under this new framework.

Within-sample inference
Given a network of finite size Dα, the locations are labelled θ[1:n] = .θ1, : : : , θn/, with n ∼ Poisson.α/,
Consider the problem of estimating w[1:n] = .w1, : : : , wn/ in a frequentist way. The conditional likelihood
function p.{nij}1�i,j�n|θ[1:n], w[1:n], n/ is

∏
1�i�=j�n

.wiwj/
nij

nij !
exp.−wiwj/× ∏

1�i�n

w2nii
i

nii!
exp.−w2

i /:

This is the same likelihood function as in Karrer and Newman (2011) under the node exchangeable
framework (or its non-exchangeable sparse version with a scaling parameter (Bickel and Chen, 2009).
Another important problem is community detection. An analogous block model was proposed by Herlau
et al. (2016) under the framework of exchangeable random measures. Again, given (θ[1:n], w[1:n], n), the
conditional likelihood of Herlau et al. (2016) is the same as that of Karrer and Newman (2011) for degree-
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corrected block models. The two examples show that, for within-sample inference, existing methods,
algorithms and even theorems in the framework of Bickel and Chen (2009) can generally be applied to the
new framework of Caron and Fox without change, at least from a frequentist perspective.

Out-of-sample inference
Given the discussion in the previous paragraph, I believe that the development of new methods and algo-
rithms should be emphasized on out-of-sample inference. The exchangeability framework of Caron and
Fox makes rigorous inference on the population or future observations possible for the first time in sparse
networks, for which they should be congratulated again. After all, the models of Caron and Fox and later
extensions (Herlau et al., 2016; Todeschini and Caron, 2016) are defined on the entire population, whereas
the degree-corrected block model (Karrer and Newman, 2011) is defined only on a finite set of nodes.

Subgraph densities
Recently, it has been shown by Gao and Lafferty (2017) that statistics based on small subgraph frequen-
cies can lead to optimal testing procedures between Erdó́s–Rényi models and stochastic block models.
Empirical studies also illustrate that structures of social networks can be reflected by statistics of small sub-
graph frequencies (Ugander et al., 2013). It is not very clear to me how analogous ideas can be developed
in the framework of exchangeable random measures. For example, let T be the total number of triangles in
a given network Zα. To define the empirical triangle frequency, should T be normalized by .

n
3 /, by . Nα

3 / or
by α3? What is a proper definition of the population triangle density? Inference for population subgraph
densities are out of sample and thus deserves future investigations under the framework of Caron and Fox.

Jim E. Griffin and Fabrizio Leisen (University of Kent, Canterbury)
We congratulate Caron and Fox for this stimulating paper which proposes a new perspective on network
models. The use of completely random measures (CRMs) provides a tractable and rich framework for
modelling graphs. CRMs have been intensively studied in Bayesian non-parametrics and this provides
a ready-made toolkit for the development of novel and tractable network models. One example is the
development of vectors of CRMs; see Leisen and Lijoi (2011), Griffin et al. (2013), Griffin and Leisen
(2017) and the references therein. Section 3.2 of the paper illustrates the use of the methodology for
modelling directed multigraphs. We believe that vectors of CRMs can be employed in this setting for
modelling multiple types of interactions (such as ‘message’, ‘SMS’, ‘like’ and ‘tag’ as in the paper). This
can be achieved by considering different but related multigraphs for each interaction. In the spirit of
compound random measures (Griffin and Leisen, 2017), we model the kth interaction (from p possible
interactions) as

Dk =
∞∑

i=1

∞∑
j=1

nijkδ.θi ,θj /

where

Dk|W1, : : : , Wp ∼PP.Wk ×Wk/ Wk =
∞∑

i=1
wimkiδθi

:

The wis and the mkis are drawn from the directing Lévy measure

W =
∞∑

i=1
wiδθi

∼CRM.ρ,λ/,

and the score distribution h respectively. Extending the interpretation in the paper, the wis represent an
overall sociability and the mkis adjust for differences in the levels of different types of interaction. This
approach has been employed by Todeschini and Caron (2016) for modelling networks with overlapping
communities. An attractive feature of this framework is that the parametric score distribution h can easily
be extended, in standard ways, to include covariates or time variation.

We believe that this paper will become a cornerstone of network modelling as well as a natural application
of Bayesian non-parametric techniques.

Lancelot F. James (Hong Kong University of Science and Technology) and Creighton K. Heaukulani
(Hong Kong)
We congratulate Caron and Fox on a paper that has generated considerable interest. This work has in-
fluenced our thought process on some projects we are working on (Bloem-Reddy et al., 2017), and this
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discussion reflects some of those elements. We ask one question and offer some comments. Generalizing
Section 5.5 (see equation (31)), we can construct processes of the form, for q=1, 2, 3, : : :

Dα,q
d=

∞∑
k=1

bkδ.wk, 1,:::,wk,q/
d=

DÅ
α, q∑

k=1
δ.Uk, 1,:::,Uk,q/

where .bk/|.pk/ ∼ind Bernoulli.pk/, and .pk/ are points of a Poisson process with intensity τ , satisfying∫ 1
0 vτ .v/dv = 1. This implies that DÅ

α,q|WÅ
α is Poisson.WÅq

α /. Hence, for q = 1, we might associate Dα,1
with a hierarchical Indian buffet process, and Dα,2 equates with the marginal structure considered by the
authors. In this regard, we refer to these processes as hierarchical q-latent feature models. A question to the
authors is how might we interpret Dα,q for q�3? Now, by the Bayes rule, there is a conditional density of
WÅ
α |DÅ

α,q = l, given by

f .l,q/
α .t/ := tql exp.−tq/fWÅ

α
.t/

E[WÅql
α exp.−W

Åq
α /]

: .79/

Then, Fα.y/ :=Wα.y/=WÅ
α :=Σ∞

k=1QkI{Vk,α�y} given DÅ
α,q = l is such that .Qk/|DÅ

α,q = l has a mixed Poisson–
Kingman distribution denoted PK.ρ, f .l,q/

α / = ∫ ∞
0 PK.ρ|t/f .l,q/

α .t/dt (see Pitman (2003)). When l > 0,
the density (0.1) also corresponds to that of WÅ

α |G1=q
l =WÅ

α = 1, where Gl is a gamma.l, 1/ variable. So,
for q=2, another contribution of the paper of Caron and Fox is to identify classes of unexplored Poisson–
Kingman distributions that naturally appear in an interesting context. The appearance of PK.ρ, f .l,2/

α / is a
little more obvious in an earlier draft of the authors’ work. In general, one samples U ′

1, : : : , U ′
ql|Fα, DÅ

α,q =
l∼IID Fα, where Fα|DÅ

α,q = l∼PK.ρ, f .l,q/
α /. A subtle point about this sampling scheme, inherent to latent

feature models, is that, unlike the Bayesian non-parametric statistics latent class setting where one sam-
ples n points from Fα, different from ql, the sample size ql, dictated by DÅ

α,q = l, always agrees with the
superscripts in PK.ρ, f .l,q/

α /. This explains the cancellations in equation (71). See James et al. (2009) (and
also James (2002)), which exhibits all the pertinent structures for q=1.

Svante Janson (Uppsala University)
I find the random-graph model introduced here by Caron and Fox very interesting. Apart from its po-
tential use in applications, it has novel and interesting mathematical properties. Moreover, it has been
an inspiration of important generalizations developed after the first version of the present paper by, in
particular, Borgs et al. (2016) and Veitch and Roy (2015).

The relationship with Kallenberg’s characterization of exchangeable random measures is interesting, and
presumably useful in further developments of the theory, but I would like to stress that, for the content of
the present paper, Kallenberg’s highly technical theorem may serve as a (possibly important) inspiration
for the model, but it is not needed for the formal construction of the model and the study of its properties.

Furthermore, the basic construction can be stated in several, equivalent, ways. I prefer to see the basic
construction in the paper as follows, including generalizations by Borgs et al. (2016) and Veitch and Roy
(2015). Let .S,μ/ be a σ-finite measure space, and let F.x, y/ be a fixed symmetric measurable function
S ×S → [0, 1]. Generate a random countable point set .wi, θi/

∞
1 of points in S ×R+ by taking a Poisson

point process in S ×R+ with intensity μ×λ. Regard the θi as (labels of) vertices, and add an edge θiθj with
probability F.wi, wj/, independently for all pairs .θi, θj/ with i � j. (Finally, eliminate isolated vertices.)
The version in the present paper constructs .wi, θi/

∞
1 by a completely random measure, which is equivalent

to choosing S = R+ with μ the Lévy measure; furthermore, F is chosen as F.x, y/ = 1 − exp.−2xy/ (for
x �=y). Kallenberg’s theorem yields the same random graphs by a canonical choice .S,μ/= .R+,λ/, but a
different F ; see Section 5.1. Other choices of F yield generalizations of the model. Other choices of .S,μ/
yield the same random graphs but are sometimes useful, so it seems convenient to allow an arbitrary choice
and not to fix it in advance.

Finally, in connection with theorems 3 and 5, note that, if
∫ ∞

0 wρ.dw/<∞, then N.e/
α =E[N.e/

α ]→1 almost
surely as α→∞. This follows easily because the loops can be ignored and, if N̄

.e/

α denotes the number of
non-loop edges and the edges are defined by the events Uij �F.wi, wj/ for an independent and identically
distributed array .Uij/i�j , then N̄

.e/

α =α2 is a reverse martingale with respect to the σ-fields Ft generated by
.wi/

∞
1 ∪ .Uij/ij ∪ .θi1θi>t/

∞
1 .

Kuldeep Kumar (Bond University, Gold Coast)
One of the important contributions of this paper is the development of a scalable algorithm which enables
inference of the graph parameters determining the sparsity of the graph. For visual graph display the
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graphs can be turned from dense to sparse based on a single parameter for a specific choice of completely
random measure. One of the problems which is inherent in these kinds of algorithms is the choice of
parameters .α, δ, γ/. There are many developments in the area of machine learning algorithms specifically
in the area of tree decomposition like random forests and stochastic gradient boosting (treenet). Have
Caron and Fox compared this algorithm which relies on tree decomposition or the pebble game algorithm
as developed by Lee and Streinu (2008)?

Antonio Lijoi (Bocconi University, Milan), Ramsés H. Mena (Universidad Nacional Autónoma de
México, Mexico City) and Igor Prünster (Bocconi University, Milan)
We congratulate Caron and Fox for proposing a clever construction of random graphs for networks, which
enables us to achieve sparsity in an effective way. This represents another successful instance of Bayesian
non-parametric modelling based on completely random measures (CRMs).

Among several potential developments, of particular interest is the extension to a multisample context
with data recorded from two or more networks. Assuming that the data are still conditionally independent
but not identically distributed, a natural problem is the derivation of testing procedures to verify whether
the probability distributions, or some of their features, are shared across samples. In the generalized gamma
process (GGP) case, the parameter σ plays a pivotal role: it not only controls the sparsity of the graph,
but it also influences posterior clustering of the data. See Lijoi et al. (2007). Hence, homogeneity between
two networks, directed by independent GGPs, may be assessed by testing for equality of their respective
σ-parameters. Along these lines, Lijoi et al. (2008) defined a Bayesian test on the discount parameter of
the Pitman–Yor process, which plays the same role as σ for the GGP.

Alternatively, network comparisons can be faced by assuming a richer model with dependent CRMs
.W1,α, W2,α/ accommodating a wide spectrum of dependence structures across networks, ranging from
exchangeability (i.e. distributional homogeneity) to unconditional independence. In this framework, we
may test whether the two distributions themselves are equal. Recently, unrelated to network applications,
Bacallado et al. (2015) have addressed the issue within a parametric model and provided an insightful
discussion on the notion of approximate exchangeability. A natural model that may serve the purpose
is based on ideas in Rodrı́guez et al. (2008), where the nested Dirichlet process is introduced for clus-
tering probability curves. Similarly, this approach may be useful for clustering networks on the basis of
distributional similarity. Here, however, we need a model that can handle CRMs and a potentially fruitful
approach is proposed in Camerlenghi (2015). Let q̃ be a discrete random probability measure on the space
of boundedly finite measures MR+ on R+, and q0 is the probability distribution of a CRM on R+. If
.WÅ

1 , WÅ
2 , WÅ

0 /|q̃∼ q̃2 ×q0, define .W1,α, W2,α/= .WÅ
1 +WÅ

0 , WÅ
2 +WÅ

0 /. Discreteness of q̃ implies that with
positive probability WÅ

1 =WÅ
2 , which in turn yields W1 =W2. This corresponds to similarity of the networks

as they have the same distribution.

Jorge Mateu (University Jaume I, Castellón) and Matthias Eckardt (Humboldt-Universität zu Berlin)
Caron and Fox are to be congratulated on a valuable contribution and thought-provoking paper on sparse
random graphs which examines the exchangeability for a continuous space representation of networks.
In particular, they propose a new framework to study random-graph models based on the notion of
modelling the graph as an exchangeable random measure, and appealing to a Kallenberg representation
for such exchangeable random measures in connection with planar point processes. For a regularly shaped
square lattice, the authors define a point process to be exchangeable if the counted number of edges per
grid site is exchangeable for any arbitrary square lattice. This is a very timely topic bridging random-graph
models to the field of spatial point processes. Our discussion focuses on the linkage of random-graph
structures to the spatial domain.

For spatial point processes, we consider a realization of a random sequence of locations on a complete
separable metric space equipped with a suitable Borel σ-algebra such that the cardinality of locations
that fell in a given area contained in the observation window can be expressed by means of a random
measure. This counting measure can refer to a purely spatial point process or, more sophisticated, to a
marked spatial point process, e.g. a multivariate spatial point pattern. For such data, one is interested in
the structural exploration and the detection or extraction of the characteristics and features within and
between distinct sets of events. Although a large body of literature on the analysis of spatial point patterns
exists, applications of random-graph models still remain very limited. One example of such random graphs
for spatial point patterns are neighbouring networks which include random structures in the calculation of
planar point pattern characteristics (see, for example, Marchette (2004)). See also some recent approaches
in Eckardt and Mateu (2017a, b, c).
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We note that the concept of exchangeability is quite close to quadrat counting and the definition of
complete spatial randomness in point processes. The authors comment on counting the number of edges
per grid site, whether they are directed or not (see Section 3.2). We have several versions of counting or
sampling in point processes that do have a clear counterpart in the corresponding edge counting process
in graphs. Network data are becoming increasingly available and connections between graph models and
planar point processes are a welcome line of research, together with extensions to spatiotemporal planar
processes.

Matthew Moores and David Firth (University of Warwick, Coventry, and Alan Turing Institute, London)
Caron and Fox have achieved a major breakthrough in computationally tractable inference for random
graphs with hundreds of thousands of nodes. This will enable simulation and Bayesian analysis of data
sets that were previously infeasible. The scalability of their approach is due to the representation of the
discrete graph structure using a latent continuous model, the generalized gamma process. The sociability
parameters wi of each node can be estimated by using Hamiltonian Monte Carlo sampling, since the
gradient of the conditional log-posterior is available in closed form. Further improvements in scalability
might be achieved by taking advantage of parallelism, as well as by rewriting portions of the code in a
compiled language.

The pair potentials Pr.zi,j =1|wi, wj/=Pr.ni,j +nj, i >0|wi, wj/ assume independence between in-degree
and out-degree, even in the case of directed multigraphs. This implies a very different generative process
from models of adversarial networks, where nodes compete with each other for edges. Examples include
the Bradley–Terry model of citation networks (Varin et al., 2016) or the Plackett–Luce model of ranking
data (Gormley and Murphy, 2006). A non-parametric Plackett–Luce model has recently been proposed
by Caron et al. (2014). The contour plot in Fig. 17 compares the distribution of wi for the World Wide
Web data set (Albert et al., 1999) with the PageRank of each node (Brin and Page, 1998). PageRank was
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Fig. 17. Logarithmic contour plot of PageRank against the sociability parameters wi for the World Wide
Web data set, with marginal densities
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computed by using the igraph package (Csárdi and Nepusz, 2006; Kolaczyk and Csárdi, 2014) for R (R
Core Team, 2017). The difference in emphasis between these two approaches might explain why the tail
of the degree distribution was underestimated for this data set, due to violation of the model assumptions.
Nevertheless, the authors have demonstrated close agreement between the posterior predictive and the
empirical degree distributions of a variety of real world graphs, both dense and sparse.

A curious aspect of the generalized gamma process is the parameter wÅ =WÅ
α −ΣNα

i=1wi, which represents
the left-over sociability once all of the nodes with degree 1 or greater have been accounted for. This
parameter is only partially identified, since it conflates degree 0 nodes with the potentially infinite number
of nodes that might enter the network at a future time. Nodes with degree 0 do not contribute to the
likelihood in any way, but it seems feasible to sample sociability parameters for these nodes from the prior,
as with finite network models (Caron and Doucet, 2012). The parameter wÅ could be viewed as an upper
bound on the sociability of these nodes, particularly in the case where the network is assumed to be a
closed system.

Yang Ni and Peter Müller (University of Texas at Austin)
We congratulate Caron and Fox on a very interesting paper. Our discussion highlights a particular use of
the proposed models that we felt was missing in the paper. Implicit in the paper is an assumption that (part
of) the random graph D (or a derived undirected graph Z) is observable. Although this is common for
social network data, it is less common in biomedical inference where the goal is often to infer an unknown
latent network structure.

The typical inference is set up under a hierarchical model

yi ∼p.yi|β/, β∼p.β|D/, p.D|φ/, φ∼p.φ/,

where p.β|D/ maps the graph to the parameters β (Caron and Fox have already used up all other Greek
letters) of the top level sampling model for the observed data y. This could be, for example, a Gaussian
graphical model for protein activation yi. And we discuss another example below. We suggest the use of
the proposed novel models for p.D|φ/. Good prior regularization is more important in this context than
in applications where the network is observed.

We illustrate our suggestion with a small simulation study and an application. Both are based on
directed cyclical graphs (Ni et al., 2016), a special case of reciprocal graphical models (Koster, 1996). The
directed cyclic graph allows inference on a directed graph G, possibly including cycles, by setting up a
simultaneous equation model and interpreting a directed edge .l, i/ in the graph G as an indicator for a
non-zero coefficient of yl in the equation for yi. In this context we explore the use of a generalized gamma
process (GGP) prior p.D|φ/, including a mapping of a multigraph D to a directed graph G by mapping
nij �→ I.nij > 0/.

Table 4 reports summaries for a simulation study with four alternative priors p.D|φ/. The GGP wins.
Fig. 18 shows the estimated graphs in inference for a gene network reported in Ni et al. (2016) under the
sparsity prior used there (thresholded prior) versus the new GGP prior. Also under the realistic conditions
of this data analysis the choice of prior matters. Importantly, implementation of posterior inference was
quite straightforward, as described in the paper.

Peter Orbanz (Columbia University, New York)
Caron and Fox have set out to address misspecification problems of graphon models, described in Orbanz
and Roy (2015). Are they solved? Exchangeable graphs are dense and ‘amorphous’ collections of edges.
Caron and Fox’s non-compact modification makes them sparse, but still amorphous, and I would hence

Table 4. Simulation study: true positive rate TPR and false discovery
rate FDR under four prior models—Erdó́s–Rényi graph with p D 0.5,
ER; Erdó́s–Rényi graph with p � Be.0.5, 0.5/, ER+beta; GGP; thresh-
olded prior, TP

ER( 1
2 ) ER+beta GGP TP

TPR 1.00 1.00 0.87 0.87
FDR 0.58 0.72 0.07 0.18
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(a)

(b)

Fig. 18. Estimated gene networks for TCGA colon cancer data under (a) the GGP prior and (b) the thresh-
olded prior (Ni et al., 2016): the posterior expected false discovery rate is controlled to be less than 10% for
both estimations
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argue it addresses one symptom of a deeper problem. Nonetheless, a complete solution would be much to
ask for, and I believe that Caron and Fox have made a very valuable contribution.

The vague notion that these graphs lack structure can be made more precise (Orbanz, 2017). Start with
a fixed, finite graph gk of size k, invent a randomized algorithm that generates a random subgraph Sn.k/
of size n and take the distributional limit Sn in input size k →∞. If the algorithm selects vertices indepen-
dently and reports the induced subgraph, Sn is exchangeable, and the resulting random graphs are those
represented by graphons. More generally, consider a randomized subsampling algorithm, and ask what
set of transformations leaves the output distribution invariant. This relates the distributional invariance
to experimental design for networks (e.g. Kolaczyk (2009)). Invariance, in turn, explains inference from a
single realization: if only one network is observed, and modelled as a random graph, it constitutes a sample
of size 1. Inference is hence generally ill posed, but invariance can explain averaging within a single graph.
One can obtain laws of large numbers (Orbanz, 2017). Roughly: if the subsampling algorithm generates
output invariant under a nice transformation group G, there is an enumeration φ1,φ2, : : : of the elements
of G such that

1
n

n∑
i=1

f{φi.Sn/} n→∞−→ E[f.S∞/|input graph] almost surely

for any L1-function f .
From this perspective, misspecification of exchangeable graphs is a consequence of selecting vertices

independently of the edge set. To obtain more structure, sampling can ‘follow edges’ (e.g. extract neigh-
bourhoods), but finding concisely represented models then becomes much harder. The subsampling implicit
in Caron and Fox’s model is site percolation (Veitch and Roy, 2016): each vertex is selected or deselected
independently with fixed probability, which can yield sparsity, but still selects vertices ignoring edges.

If it remains to be seen how widely applicable the proposed models are in actual network analysis
problems, I see the merit of this work elsewhere: Veitch and Roy (2016) is a part of a beautiful body of
work (Veitch and Roy, 2015; Borgs et al., 2016; Janson, 2016) expanding Caron and Fox’s non-compact
modification into a fully fledged generalization of graphon theory. Caron and Fox have introduced an idea
that has enriched the landscape of network theory, and I wholeheartedly congratulate them.

Konstantina Palla and Xenia Miscouridou (University of Oxford)
We congratulate Caron and Fox for this excellent work on sparse graphs. It is of great interest to the whole
community in statistical machine learning (and beyond)!

The authors have proposed a novel statistical model for networks that builds on exchangeable ran-
dom measures. Their construction accounts for sparsity; an extremely important property in real world
scenarios. In a graph context, a graph is defined as dense if the number of edges grows quadratically
with the number of nodes and sparse if it scales subquadratically. Then, in the sparse regime, two nodes
chosen at random are unlikely to be connected. Whereas many real world networks are believed to be
sparse (Newman, 2009) most of the popular Bayesian models used in network analysis account for dense
graphs, i.e. the number of edges grows quadratically in the number of nodes. The fundamental reason for
this misspecification is the classical representation of the graph as a random exchangeable array, i.e. the
adjacency matrix (Orbanz and Roy, 2015). Exchangeability in the graphs domain has been historically
defined as distribution invariance to the permutation of the order that the nodes appear, i.e. relabelling the
nodes does not change the distribution of the graph, and is known as vertex exchangeability. However, as a
corollary of the Aldous–Hoover theorem (Aldous, 1981; Hoover, 1979), exchangeable random arrays are
dense or empty and thus not appropriate for most real applications. In an attempt to account for sparse
graphs, several models have been proposed but with undesirable properties. These are models that give
up either exchangeability (Barabási and Albert, 1999) or projectivity (Bollobás et al., 2007; Bollobás and
O’Riordan, 2009; Wolfe and Olhede, 2013; Borgs et al., 2014). In this excellent work, the authors propose
a model that represents graphs as infinite point processes on R2

+ giving rise to a class of random graphs
ranging from dense to sparse, as tuned by a single parameter. For the associated notion of exchangeability
of point processes, Kallenberg (2005), chapter 9, provides a representation theorem as the continuous
space counterpart of the Aldous–Hoover theorem, enabling a strong theoretical foundation.

The work, proposed by François Caron and Emily Fox, has stimulated exciting research: the framework
is being used as the building block for a series of interesting extensions. One example is incorporating
structure in the network in terms of community affiliations of the nodes (Todeschini and Caron, 2016)
or accounting for node attributes. Also, the dynamic version of the model is of interest, where the node
parameters might evolve over time (Palla et al., 2016).
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Daniel M. Roy and Victor Veitch (University of Toronto)
Caron and Fox have made several fundamental contributions, leading to significant progress in our un-
derstanding of statistical network modelling. In particular, their work has inspired the development of
a complete generalization of the dense exchangeable (graphon) framework to a framework that can
also capture sparse graphs (Veitch and Roy, 2015; Borgs et al., 2016; Veitch and Roy, 2016; Janson,
2017).

The new framework makes use of Caron and Fox’s identification of random graphs and random mea-
sures, and the associated notion of exchangeability. An application of Kallenberg’s representation theorem
for exchangeable measures on the plane implies that the distribution of every extremal sparse exchangeable
graph admits a simple representation in terms of a structure we call a graphex, by analogy with the graphon
underlying dense exchangeable graphs.

The essential character of the dense exchangeable model is preserved: edges are formed independently of
one another, conditionally on latent variables associated with each vertex. Whereas graphons are associated
with probability spaces (and independent and identically distributed sequences of latent representations),
graphexes are associated with σ-finite measure spaces (and Poisson point processes of latent representa-
tions). Dense (graphon) models can be seen to correspond to graphexes where the measure space is finite.
Another key difference is the appropriate notion of size: nested dense graph sequences can be indexed by
the integer number of vertices, whereas the number of vertices in nested sparse graph sequences grows by
random increments.

The analysis by Caron and Fox and in follow-up work by other researchers shows that the sparse
exchangeable model can capture a wide range of the empirical phenomena observed in real world networks
but outside the purview of the dense exchangeable model. As dense graphon models are in routine use
in graph limit theory, statistical network analysis and machine learning, sparse exchangeable models
yield novel extensions and generalizations of practical interest. Further, the completely random-measure
approach introduced by Caron and Fox gives a practical method for defining sparse exchangeable models,
which has already been used to extend important model classes (Herlau et al., 2016; Todeschini and Caron,
2016).

Victor Veitch and Daniel M. Roy (University of Toronto)
Caron and Fox identify random graphs with random measures and use this construction to define sparse
exchangeability. This notion of exchangeability is central both to their model and to the generalizations it
has inspired (Veitch and Roy, 2015; Borgs et al., 2016). A different perspective on the random-measure con-
struction and the associated notion of sparse exchangeability helps to clarify the strengths and limitations
of the new modelling approach, and its relationship to exchangeable dense graphs.

Probabilistic symmetries are closely connected to sampling design (Orbanz, 2017). Sparse exchange-
ability can be understood in terms of p-sampling, a subgraph sampling scheme whereby one produces a
subgraph from a larger graph by including each vertex independently with probability p>0, and dropping
any isolated vertices in the induced subgraph (Veitch and Roy, 2016). For every β>α> 0, if ξβ is a size β
graph generated by a graphex W , then an α=β-sampling of ξβ is equal in distribution to a size α graph ξα
generated by W . By contrast, for dense exchangeable graphs, if Gn is an n-vertex random graph generated
by a graphon W , then a random subgraph induced by sampling k vertices at random from Gn is equal in
distribution to a k-vertex graph generated by W .

The sampling perspective highlights a key distinction between the sparse and dense exchangeable models:
the former excludes isolated vertices. This is often not a problem in practice, so the flexibility of the Caron–
Fox model and its descendants seems to come at little cost.

Exchangeability has considerable utility: p-sampling yields a graph analogue of the empirical measure,
which has been shown to be a consistent non-parametric estimator for the graphex parameter underlying
the sparse exchangeable graphs. This estimator is a powerful tool, and its construction relies critically on
sparse exchangeability.

The sampling perspective also highlights a weakness of the sparse exchangeable approach. Independent
vertex sampling schemes, including p-sampling, are rarely good models for the data collection process
underlying real world network data. The sparse exchangeable models thus retain a key pathology of the
dense exchangeable models and, accordingly, seem unlikely to resolve fully the practical problems that
motivated Caron and Fox. However, the dense exchangeable models have proven to be very useful in
practice, so there is reason to believe that the applicability of the sparse exchangeable model goes beyond
its literal remit. The sparse exchangeable model constitutes a significant advancement, and we expect that
its development will point the way towards further novel attacks on the core problems.
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Priyantha Wijayatunga (Umea University)
Sometimes we need to construct network or graph models for systems under study, e.g. for network
representations of stock markets (Boginski et al., 2005) and for functional regionwise connectivity of the
human brain (Simpson et al., 2013). Then edges of the graph among vertices that are subcomponents of
the system, such as returns of stocks and regions of the brain, are inferred by using statistical dependence
measures such as Pearson’s correlation that are applicable for linear associations, mutual information that
can be used for some non-linear associations and so on. Each edge can be attached with a numerical weight
that is determined by the strength of association between two vertices. For subsequent inferential tasks
the use of accurate dependence measures can be important. Therefore, some researchers propose to use
regression functions in place of dependence measures, mainly because of difficulties in measuring non-
linear relationships accurately (Song et al., 2012). For measuring any dependence between discrete random
variables, say X and Y , the so-called Cramer’s V or Tchuprow’s T , or the generalized correlation coefficient
proposed in Wijayatunga (2016) can be used, where Wijayatunga’s coefficient is defined (following Pearson’s
correlation coefficient) as a metric-M-based measure of dependence

ρM.X, Y/= M.pI, p/{ ∏
pX∈PX

M.pI, pX/1=|PX| ∏
pY ∈PY

M.pI, pY /1=|PY |
}1=2

where p is the joint probability distribution of X and Y and pI is that when their independence is assumed,
PX denotes the set of all joint probability distributions, each representing a maximal dependence while
preserving the marginal distribution of X (and similarly for PY ), |A| is the cardinality of set A and M.p, q/
is a distance metric between two probability distributions p and q, e.g. Hellinger distance M.pI, p/ =
. 1

2 Σx,y[
√

p.x, y/ −√{p.x/p.y/}]2/1=2 or similar. Note that this is a normalized metric-M-based distance
between the dependence and the independence, represented by p.x, y/ and p.x/p.y/ respectively. If there
are many maximal dependences (when the respective marginal is fixed), i.e. cardinalities of PX or PY are
big, then one can eliminate some of them subjectively. Ideally these cardinalities are 1.

This can be generalized for continuous variables; however, with Hellinger distance the required normaliz-
ing constant is 1. Therefore one can use the measure ρH.X, Y/= . 1

2

∫
x,y[

√
f.x, y/−√{f.x/f.y/}]2dx dy/1=2

similar to that proposed in Granger et al. (2004), where f represents the respective probability density
functions. In these cases, it is tried to measure strengths of dependences accurately; therefore it is interest-
ing to see differences between network models constructed from such measures and those obtained from
traditional linear measures of dependences.

Mingyuan Zhou (University of Texas at Austin)
I congratulate Professor Caron and Dr Fox for a well-written paper that establishes a novel statistical net-
work modelling framework, which uses completely random measures to model graphs with various levels of
sparsity. Although it has been made clear in the paper that the characteristics of the underlying completely
random measure, e.g. the discount parameter σ<1 of the generalized gamma process, play a crucial role in
determining the levels of sparsity of the generated graphs, I should like to call attention to the potentially
important role played by the link function f.x/=1−exp.−x/, in generating unweighted undirected sparse
graphs with zij|wi, wj ∼ Bernoulli{f.2wiwj/} for i �= j. With this link function, the contribution of zij to
the negative log-likelihood of the model can be expressed as

−zij ln{1− exp.−2wiwj/}+2.1− zij/wiwj ,

which quickly explodes towards ∞ as the product wiwj approaches 0 when zij =1. Thus the choice of this
link function implies an inductive bias towards fitting non-zero edges zij =1, while not strongly penalizing
zero edges zij = 0 even if their corresponding products wiwj are large. The same link function, which
is referred to as the Bernoulli–Poisson link, has also been used in Zhou (2015), which constructs non-
parametric Bayesian network models for overlapping community detection and missing link prediction,
allowing the computation to scale linearly with the number of edges, rather than quadratically with the
number of nodes. It would be of interest to articulate the role of this specific link function in supporting
sparse graphs under the framework proposed.

In addition to controlling for sparse graphs how the number of edges increases as a function of the number
of nodes, another topic worth further investigation is how to introduce structured sparsity patterns to the
graph adjacency matrices, including modelling dense on-diagonal but sparse off-diagonal blocks, sparse
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on-diagonal but dense off-diagonal blocks or a mixture of both. It would be interesting to find out whether
the new notion of exchangeability could be maintained while achieving these network modelling goals.

The authors replied later, in writing, as follows.

We thank the discussants for the very interesting and thought-provoking comments. As recalled by Bian-
coni, one of the successes of network science—besides the ubiquitous presence of network data—lies in
‘the ability of the field to adopt methods and techniques coming from different theoretical disciplines’. We
certainly agree with this statement. The very diverse panel of discussants for this paper, with research inter-
ests in statistical mechanics, graph theory, applied probability, mathematical statistics, Bayesian statistics
and machine learning, demonstrates this and provides a wide range of insights on our paper.

Follow-up theoretical work and generalizations of the graphon
The first version of the paper appeared in arXiv in January 2014, and this work has since inspired several
other works, as pointed out by Borgs and Chayes, Veitch and Roy, Janson and Orbanz. In particular, the
work of Veitch and Roy (2015) and Borgs et al. (2016) showed how the representation of a graph as an
exchangeable point process leads to a natural generalization of the classical (dense) graphon framework as
functions over probability spaces to functions over σ-finite spaces. The class of graphs is called Kallenberg
exchangeable graphs by Veitch and Roy (2015) and graphon processes by Borgs et al. (2016). Starting from
Kallenberg’s representation theorem (theorem 1) in the special case of exchangeable point processes, and
keeping only the first term on the right-hand side of equation (5) which captures most of the interesting
structure (see Veitch and Roy (2015) for an interpretation of the other terms), the point process admits the
representation of equation (1) where

zij|M, .θk,ϑk/k=1,2,::: ∼Bernoulli{M.ϑi,ϑj/}:

Here, {.θi,ϑi/i=1,2,:::} are the points of a unit rate Poisson process on R2
+. The symmetric measurable

function M : R2
+ → [0, 1] (Veitch and Roy (2015) and Borgs et al. (2016) use the notation W, by analogy

with standard graphon notation; for consistency with the rest of the paper, we use M here as in Section
5.l), which must satisfy some integrability conditions, is the analogue of the (dense) graphon and called a
graphex by Veitch and Roy (2015), or just graphon by Borgs et al. (2016). If the function M has compact
support, this corresponds to the classical (dense) graphon framework. Some properties of this general class
of network models, as well as the convergence of the network process to the limiting graphex or graphon
object, are analysed in detail by Veitch and Roy (2015), Borgs et al. (2016) and Janson (2017b).

Borgs et al. (2016) considered a framework where M :S ×S → [0, 1] with S some potentially high dimen-
sional feature space—not necessarily R+—and .θi,ϑi/ the points of a Poisson point process on R+ × S
with mean measure dθμ.dϑ/. Although both constructions lead to the same family of random graphs, it
may be more natural, as noted by Janson, and Borgs and Chayes, to work with the higher dimensional
feature space as this may lead to more interpretable representations.

More structured models based on exchangeable random measures
In this paper, we have introduced the general framework of representing random graphs by exchange-
able random measures. Whereas the graphon framework involves a transformation of uniform random
variables, hence leading to models with random vectors as building blocks, our framework involves trans-
formations of unit rate Poisson processes, hence leading to models with multivariate point processes or
completely random measures as building blocks. We focused on a particular class of models within this
framework, defined by equations (6)–(8). We showed that it is possible to capture both sparse and dense
graphs with interpretable parameters and scalable inference algorithms.

The class of models that we considered is quite simple, with a single parameter wi tuning the sociability of
a node i. Although this model can capture sparsity and heavy-tailed degree distributions, it cannot capture
more local structure, such as latent communities. As shown in Section 5.1, our considered model is just a
particular example within Kallenberg’s representation theorem, which can be used as a recipe to construct
more structured graphs, multigraphs or weighted graphs based on exchangeable random measures. As
discussed by Griffin and Leisen, Palla and Miscouridou, Roy and Veitch, and Rubin-Delanchy, more
structured models have already been proposed within this framework, including a sparse stochastic block
model (Herlau et al., 2016) and a mixed membership stochastic block model (Borgs et al., 2016), and
a generalization to Rp

+ of the model defined by equations (6)–(8) in this paper to capture overlapping
communities (Todeschini and Caron, 2016). Zhou also suggests exploring other stochastic block models
with structured sparsity properties.
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Besides the above work on more structured models for simple graphs, a few discussants mentioned other
possible extensions. Durante, and Lijoi, Mena and Prünster suggest models for collections of networks,
building on dependent completely random measures. James and Heaukulani suggest an extension of the
model to deal with hypergraphs, building on the Indian buffet process. Palla and Miscouridou consider
extensions to dynamic networks. Finally, Bharath and Rubin-Delanchy suggest the use of inhomogeneous
completely random measures to deal with covariates. These ideas represent interesting directions to explore
and demonstrate how our framework provides a foundation on which it is possible to expand in many
ways.

Sampling and projectivity
Many discussants commented on the projectivity properties and sampling mechanism that is associated
with our network process. In our setting, each node i is associated an arrival time θi, and the model is
invariant over any measure preserving transformation of time. Our construction is therefore exchangeable
in this sense. For some α> 0, we consider only interactions between nodes that arrived before time α;
therefore, α tunes the sample size of the graph.

The notion of sampling that is naturally associated with this class of graph processes has been de-
fined in the follow-up work of Veitch and Roy (2016). As recalled in the comments of Veitch and Roy,
and Orbanz: for a given graph, sample a subgraph by choosing each vertex with probability p ∈ .0, 1/;
then discard the isolated nodes. If we consider an exchangeable graph of size α, then p-sampling gives
a subgraph with the same distribution, but of size pα. As mentioned by Bharath, Veitch and Roy,
Orbanz and Crane, this sampling scheme highlights a structural weakness of the exchangeable graph
process approach: independently sampling vertices may appear unrealistic as a network sampling strategy
in some situations.

Nonetheless, as recalled by Veitch and Roy, the (dense) graphon models share the same limitations
but have proven to be extremely useful in a large number of applications. An important advantage of the
approach, which we emphasize in this paper, is that the exchangeability property enables the design of
scalable inference algorithms. We believe that this is a key aspect for the method to be widely applied.

Applications and extensions
We provide a simple illustration of our approach in Section 8.2 by assessing the sparsity of the graph.
As pointed out by Bharath, this applied analysis is rather limited, notably for brevity, and because the
focus of the paper is on the theoretical developments of the exchangeable graph process framework and
its associated Markov chain Monte Carlo (MCMC) sampling. The point of this section is primarily to
demonstrate that the algorithms developed can be applied to quite large real world graphs. We investigate
the fit of the model by looking at posterior predictive degree distributions with the goal of showing that
the model provides a reasonable fit, not to test whether or not the real networks have power law degree
distributions as in Clauset et al. (2009).

As mentioned earlier in this rejoinder, more structured models have been used to uncover latent structure
and to link prediction (Herlau et al., 2016; Todeschini and Caron, 2016). A few discussants mentioned
other interesting areas in which the framework proposed can be applied. Ni and Müller suggest using the
model as a prior for structure learning in probabilistic graphical models, i.e. our graphs encode the latent
conditional independence statements that one aims to infer from a set of observations. Bharath suggests
an application to extreme event detection, whereas Battiston and Favaro discuss an application to privacy
disclosure. We believe that there is a vast set of possible applications where our defined statistical network
model—and extensions thereof—will prove useful.

Related approaches
A few discussants have mentioned connections with various related network models. Bianconi and Crane
discuss the connection of our approach with the Barabasi–Albert (BA) preferential attachment model,
which is a generative model that can capture sparsity and power law degree distributions. As mentioned by
Bianconi, the BA model can achieve asymptotic power law degree distributions with exponent γ ∈ .2, 3].
Follow-up work (Caron and Rousseau, 2017) showed that one can achieve asymptotic power law degree
distributions with exponent γ ∈ .1, 2/ in our framework. Crane questions the usefulness of the proposed
approach compared with the BA model.

(a) As mentioned earlier, this paper is part of a line of work that offers a generalization of graphon
models to sparse graphs and therefore offers a rich framework for building sparse graphs. Many
references have already built on our work to construct more structured models (Herlau et al., 2016;
Borgs et al., 2016; Todeschini and Caron, 2016). Although some extensions of the BA model to
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capture community structure exist, they are not straightforward to define and do not fit in a unified
framework. Therefore, as mentioned by Crane, this has limited their use as statistical models.

(b) In the (non-exchangeable) BA model, one needs to know the ordering of the nodes to make inference
on the parameters of the model. If this ordering is not known, it needs to be imputed as a latent
variable, severely limiting the scalability of the resulting algorithm. Because of the exchangeability
property of our approach, we avoid this issue. The labelling of the nodes is irrelevant in our approach,
and we can additionally make use of the hierarchical structure to design scalable algorithms, as
demonstrated in Section 7.

Another related line of work that was mentioned by several discussants (Bharath, Crane, Campbell and
Broderick, and Bloem-Reddy) are edge exchangeable models (Crane and Dempsey, 2015, 2016; Cai et al.,
2016; Williamson, 2016; Janson, 2017a). This line of work—which first appeared in arXiv (Crane and
Dempsey, 2015) nearly 2 years after our initial arXiv posting—considers a different notion of exchange-
ability for ‘interaction data’ defining multi(hyper)graphs (Crane and Dempsey, 2016); as with our method,
this approach can also produce sparse graphs.

We believe that both approaches have merit, and that one does not subsume nor replace the other. Both
serve as important building blocks for statistical network models. As has been noted by several researchers
(Cai et al., 2016; Janson, 2017a; Williamson, 2016) and in the discussion of Bloem-Reddy, there are some
similarities between the two approaches, especially as relate to our construction of directed multigraphs
in Section 3.2. Although we present a construction for multigraphs, the focus of our paper is on simple
graphs. However, the general framework still provides a notion of exchangeability that applies to both
multigraphs and simple graphs. Interestingly, this is not so for edge exchangeable models. Simple graphs
are obtained from multigraphs by discarding multiple edges (Crane and Dempsey (2016), section 5.4).
Through this process, the edge exchangeability property is lost.

Alternative ideas for constructing non-projective sparse multigraphs are presented by Kumar. Kendall,
and Mateu and Eckardt discuss other related approaches based on stochastic geometry. Mateu and Eckardt
mention the similarities with geometric or neighbour graphs, which also use (spatial) point processes for
random graphs. Finally, Kendall discusses the class of scale invariant random spatial networks, which
has a different notion of (spatial) invariance and uses (improper) Poisson line processes. Though these
constructions are quite different from our own, they offer another illustration of the usefulness of stochastic
processes for building network models.

Further properties of the class of random graphs
In this paper, we focused on the sparsity of the resulting networks defined by equations (6)–(8) when ρ has
finite mean. The sparsity properties are not tied to the specific choice of the link function (see the comment
by Zhou) and follow-up work studied the sparsity properties of general Kallenberg graphs. Veitch and
Roy (2015) studied the expected number of edges and nodes for the general model, showing that sparsity
is achieved whenever the function M is integrable with unbounded support; Caron and Rousseau (2017)
provide strong laws for the asymptotic number of edges and nodes and degree distributions when M is
integrable and satisfies some regular variation assumptions. Bianconi asks whether it is possible to achieve
the extremely sparse regime in this framework, N.e/

α = O.Nα/ almost surely. Caron and Rousseau (2017)
showed that it is possible to obtain rates of N.e/

α = Θ{NαlÅ.Nα/} where lÅ is a slowly varying function
with lÅ.t/→∞. If ρ has finite mean, or more generally if M is integrable, E[Nα]=o.α2/; hence one cannot
achieve the extremely sparse regime.

It would be of interest to characterize other properties of the special class of graphs defined by equa-
tions (6)–(8), and more generally of graphs based on Kallenberg’s representation. Casarin, Iacopini and
Rossini investigate empirically the distribution of the assortativity coefficient and clustering coefficient
(also discussed by Durante and Chakraborty) for the generalized gamma process model. Banerjee and
Ghosal suggest investigating the characterization of the graph Laplacian and the limit distribution of the
normalized number of edges. These represent some important possible directions of exploration.

Consistency and rates of convergence
Questions regarding the convergence of posterior distributions of the parameters, hyperparameters or
functionals have been highlighted by a few discussants. Arbel suggests an approach to show posterior
consistency for the sparsity parameter σ. Such results, in a well-specified and misspecified setting, would
be useful, as this would justify the use of the method that is described in Section 8.1 as a sparsity test.
Castillo and Rebafka also study empirically the asymptotic behaviour of the posterior distribution on σ in
a misspecified scenario, when simulating from a sparse, but non-projective, model. They also investigated
empirically the convergence of the posterior of the edge density and density of triangles.



Discussion on the Paper by Caron and Fox 1363

Gao (see also Rubin-Delanchy and Chakraborty) draws connections with the rich literature on frequen-
tist estimation of the parameters of network models, such as the stochastic block model. It is not obvious
to us, however, how these tools could be applied in the sparse regime. In this case, the number of isolated
nodes with sociability wi > 0 is infinite for any given α, which is different from the framework that was
described by Gao, corresponding closely to the dense case. Let .wi/ be the sociabilities of the nodes such
that θi <α and Nα the number of nodes with at least one edge. Our likelihood, for the directed multigraph,
is given by

Pr{.nij/1�i,j�Nα |.wk/}∝ exp
{

−
( ∞∑

k=1
wk

)2

+
(

Nα∑
i=1

wi

)2} ∏
1�i,j�Nα

.wiwj/
nij

nij !
exp.−wiwj/:

In contrast, the likelihood defined by Gao differs in the first term and corresponds to a model with a finite
number of nodes. This also clarifies a question from Moores and Firth: the weights of isolated nodes with
arrival time θi <α appear in the likelihood, and their sum is identifiable (but not the individual weights).

Although we provided some important analyses of the properties of our modelling framework, there are
many other interesting aspects to study relating to the asymptotic properties of inference and estimation.

Computational aspects
This paper presented an MCMC algorithm with Hamiltonian Monte Carlo (HMC) and Metropolis–
Hastings updates. The key step underlying our scheme is a data augmentation that allows a very simple
expression for the gradient in the HMC update and tailored proposals for the hyperparameters. There is,
however, plenty of room for improvement in the efficiency of our MCMC algorithm. Our HMC imple-
mentation is very simple, with a fixed number of leapfrog steps, and the step size adapted during part of
the burn-in period. More elaborate HMC strategies could be used here. As mentioned by Moores and
Firth and briefly discussed in Section 7.2 of our paper, the algorithm is very amenable to parallelism.
Alternatives to HMC sampling have been implemented by Bouchard-Côté and Briercliffe, showing that
additional gains could be obtained through such modifications as well. Alternatively, Campbell and Brod-
erick suggest using variational Bayesian instead of MCMC algorithms, applying a truncation scheme for
the completely random measure. This also represents a promising alternative to our MCMC algorithm.
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