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Abstract

The Agabus bipustulatus complex includes one of Europe’s most widely distributed and common diving beetles. This
complex, which is known for its large morphological variation, has a complex demographic and altitudinal variation in
elytral reticulation. The various depth of the reticulation imprint, both in smaller and larger meshes, results in both mat and
shiny individuals, as well as intermediate forms. The West Palearctic lowland is inhabited by a sexually dimorphic form, with
shiny males and mat females. In mountain regions, shiny individuals of both sexes are found intermixed with mat
individuals or in pure populations in central and southern areas, whereas pure populations of mat individuals are exclusively
found in the northern region at high altitude. Sexual selection is proposed as a driving force in shaping this variation.
However, the occurrence of different types of reticulation in both sexes and disjunct geographical distribution patterns
suggest an additional function of the reticulation. Here we investigate the phylogeographical history, genetic structure and
reticulation variation of several named forms within the Agabus bipustulatus complex including A. nevadensis. The molecular
analyses recognised several well-supported clades within the complex. Several of the named forms had two or more
independent origins. Few south European populations were uniform in reticulation patterns, and the males were found to
display large variation. Reticulation diversity and population genetic variability were clearly correlated to altitude, but no
genetic differences were detected among populations with mixed or homogenous forms. Observed reduction in secondary
reticulation in female and increased variance in male at high altitude in South Europe may be explained by the occurrence
of an additional selective force, beside sexual selection. The combined effect of these selective processes is here
demonstrated in an extreme case to generate isolation barriers between populations at high altitudes. Here we discuss this
selective force in relation to thermal selection.
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Introduction

The elytral surface of most diving beetles is covered by a

reticulation pattern impressed on the elytra, often consisting of

small and large meshes – the primary and secondary reticulation

[1–3]. The primary reticulation consists of a more or less regular

fine meshwork, whereas the secondary reticulation is coarser with

larger meshes of a more irregular, often oblong, shape. Sexual

dimorphism is commonly found, especially in geographically

disjunct areas at high altitude or gradually between longitudinal

areas in e.g. the West Palaearctic region. Traditionally, these

reticulation patterns have taxonomically been recognised as a set

of characters used to identify and separate species, subspecies and

varieties within several species complexes [1,4–8]. However, little

effort has been taken to understand the evolutionary significance

of the sexual and altitudinal variation in elytral microsculpture and

reticulation patterns occurring within a single species complex.

This view changed when Bergsten and co-workers [9] nicely

demonstrated an ongoing arms-race including female elytral

sculpture and the number and size of adhesive male pro- and

mesotarsal setae in several dytiscine genera. Miller [10] and

subsequent studies [11–14] strengthened these observations and

argued with support from the general model of sexual conflict

[15–16] that the first step of a female response to increased mat-

ing cost is the occurrence of an increased female reticulation

compared to males with tarsal modifications.

Accordingly, these findings provide an explanation of the sexual

dimorphism and increased modification of female reticulation in

dytiscids. However, the observation that both males and females in

some water beetles display a large variation in primary and

secondary reticulation indicates that the microsculpture most likely

has evolved for some other reason. Moreover, the occurrence of

similar reticulation patterns at high altitude in different mountain

ranges across large geographical areas also indicates the presence

of an additional selective agent or common evolutionary history

[17–19]. Sexual selection could therefore be a selective mechanism

that enhances or contributes secondary to the diversification of

reticulation patterns at high altitude in some species [20–22].

Clearly, several underlying evolutionary factors need to be

considered in order to understand why different aberrant reticulation
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patterns, such as a more strongly impressed male secondary

reticulation and more shiny females, occur at high altitude in

contrast to the more homogeneous reticulation pattern normally

observed at lower altitudes [19,23–24]. Here we will focus on the

phylogeographic history of different reticulation patterns and genetic

differences between populations consisting of various reticulation

forms in relation to altitude observed in the Agabus bipustulatus

(Linnaeus, 1767) species complex.

This species complex is known to display a pronounced

individual shape variation in combination with an elytral reticula-

tion that varies both between and within sexes, especially at higher

altitudes [1–8,13,25–26]. The pronounced morphological, geo-

graphical and altitudinal variation is reflected taxonomically in the

23 available junior synonyms of uncertain taxonomic status [8]. The

montane form named Agabus solieri Aubé, 1837 has a body-shape,

especially seen on the pronotum, which is more slender than in the

widely distributed topotypic lowland form bipustulatus [25,27]. Most

of the other named forms are montane, and found in populations

imbedded in areas dominated by the solieri-like form. Main

differences between the forms, which taxonomically often have

been dealt with as subspecies or varities of either bipustulatus or solieri,

are the shininess of the elytra and different patterns in their

secondary reticulation (Fig. 1). In particular, the kiesenwetterii form

stands out since both sexes have wider meshes in the secondary

reticulation, and the elytra are more shining relative to the regular

solieri form. The geographical distribution of these two forms is

interesting since the kiesenwetterii form commonly is found at high

altitude in central and south Europe imbedded in populations

dominated by the duller solieri form, whereas solieri is the only form

occurring in North Europe [1]. These forms are suggested to be

subjected to sexual selection which is seen in populations where

males evolve wider tarsi and attached suckers in the presence of

modified reticulated females [13]. In other known forms, only the

male displays reticulation variation, whereas the females are

homogenous for a given pattern.

The Iberian endemic Agabus nevadensis Hå. Lindberg, 1939 is

here of interest due to its geographically restricted high-altitude

occurrence in the Sierra Nevada and morphological similarity to

A. bipustulatus. This local endemic has a reticulation pattern

identical to that of the kiesenwetterii form in both sexes [28]. Its

species status has been questioned and it is commonly included

within the A. bipustulatus-complex [7,26].

Methods

Sample Collection
A total of 717 specimens representing six of the named forms of

A. bipustulatus were collected from 37 sample sites across its West

Palearctic distribution area in order to capture as large genetic and

morphological variation as possible (Table 1, Fig. 2). All specimens

used in the population genetic analysis were also included in the

morphological analysis of the secondary reticulation.

In France, 14 A. bipustulatus populations were sampled near

Grenoble, Guillestre, and Montcenisio. The type locality of A.

solieri lies within the Grenoble region, and Guignot [7] described A.

solieri var. falcozi from Montcenisio. Seidlitz [29] described A. solieri

var. kiesenwetterii from Illyria, Piemonte and the Pyrenees, and it is

according to Guignot [7] now also found it at high altitudes in the

French Alps. One Italian locality, from which A. bipustulatus

dolomitanus Scholz, 1935 is known, was visited [26]. Five

populations were sampled in the Spanish Pyreenes near Vall de

Boı́ in Catalunya, including the water system from which A. solieri

pyrenaeus was described [30]. A total of 413 A. nevadensis specimens

from eight populations were sampled near its type locality in

central Sierra Nevada [28] (Table 1, Fig. 2).

To analyse the evolutionary background of different reticulation

forms we utilised two A. nevadensis specimens and 30 A. bipustulatus

specimens representing the reticulation pattern of 16 bipustulatus,

two kiesenwetterii, three falcozi, one dolomitanus, one pyrenaeus and

seven solieri forms. Individual specimens were collected to

represent different secondary reticulation forms from different

geographical regions with the aim to maximise the haplotypic

(mtDNA) variation. The optimal outgroup taxa for the A. tristis

species group is A. bipustulatus and A. nevadensis, according to

molecular analyses of the Agabini, species from the A. nebulosus

group [31]. Two A. nebulosus (Forster, 1771) specimens were

therefore included, together with one A. affinis (Paykull, 1798) and

one A. guttatus (Paykull, 1798). The former represents a basal clade

of the subgenus Gaurodytes, whereas the latter belongs to the sister

group of the A. nebulosus plus A. tristis groups [31]. Seven specimens

of the A. tristis group not belonging to the A. bipustulatus complex

were also included in the phylogenetic analysis (Table 1):

representing the European Madeiran endemic A. wollastoni Sharp,

1882 the North Palearctic A. melanarius Aubé, 1837 and the

Holarctic A. tristis Aubé, 1838.

Collected specimens that were used in the population genetic

and phylogenetic analyses were transported alive in damp moss to

the laboratory, where they were sexed and frozen at 270uC.

Morphologically analysed specimens were stored in 96% ethanol

in a refrigerator at 4uC.

Reticulation Patterns
The reticulation patterns of the sampled forms are as follows; in

North Europe, from the high mountains of Scandinavia to the

lowland region below the Alps and the Pyrenees, the A. bipustulatus

complex is represented by a sexually dimorphic form with a more

or less constant elytral reticulation pattern. The males are shinier

than the females and the secondary reticulation of both sexes

consists of longitudinally stretched meshes. In the montane

Figure 1. Agabus bipustulatus secondary elytral reticulation
patterns. (1) Reticulation classified as type A and found within the
topotypic male bipustulatus form, (2) as type B found within kiesenwet-
terii, (3) as type G found within the pyrenaeus form. Reticulation classes
are coded as in table 2.
doi:10.1371/journal.pone.0009034.g001

Elytra Reticulation Evolution
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Table 1. Sampled species and collection sites along with their respective locality code.

Species Country Locality Locality code Collector Map code

A. AFFINIS Sweden Västerbotten; Umeå, Nydalasjön Aff1 AN

A. bipustulatus France Grenoble; Huez, NW of Lac Blanc BipFra1 MD 1

Grenoble; Huez, N of Lac Blanc BipFra2 MD 2

Grenoble; Chamrouse, la Botte BipFra3 MD 3

Grenoble; Chamrous, Chet de I’Oursiere BipFra4 MD 4

Grenoble; Séchilienne, Pas de I’Envious BipFra5 MD 5

Grenoble; Séchilienne, Mont-Sec BipFra6 MD 6

Grenoble; Séchilienne, le Couvênt BipFra7 MD 7

Guillestre; Col de Vars BipFra8 MD 8

Guillestre; Pic de Balart, Lac de Néal BipFra9 MD 9

Guillestre; Bois Noir, Lac du lauzet sup. BipFra10 MD 10

Guillestre; Bois Noir, Lac du lauzet inf. BipFra11 MD 11

Montcenisio; les Coulours, Lacs Giaset BipFra12 MD 12

Montcenisio; les Coulours, le Lac Blance BipFra13 MD 13

Montcenisio; les Coulours, Savins Runes BipFra14 MD 14

Iceland Eyjafjörður sýsla; Akureyri airport BipIce1 SE 15

Eyjafjörður sýsla; South of Akureyri BipIce2 SE 16

Iran Fars; Shiraz BipIra1 SH 17

Italy Cuneo; Monte Mongioie, Brignola BipIta1 MD 18

Morocco Tafraoute; Oued Åit Baha Ait Iftene BipMor1 IR 19

Portugal Guarda; Sa da Estrele BipPor1 IR 20

Portalegre, Serra de São Mamede BipPor2 IR 21

Russia Volgograd Oblast; Volgograd BipRus1 AN 22

Volgograd Oblast; Volgograd BipRus2 AN 23

Spain Tortosa; El Pinell de Brai BipEsp1 MD 24

Catalonia, Coll de Perves BipEsp2 MD 25

Catalonia; Vielha, Port de la Bonaigua BipEsp3 MD 26

Catalonia; Vielha, Lacs de Colomers BipEsp4 MD 27

Catalonia; Vall de Boı́, N of Estany Nere BipEsp5 MD 28

Catalonia; Vall de Boı́, Estany de Durro BipEsp6 MD 29

Catalonia; Vall de Boı́, Estany del Bergús BipEsp7 MD 30

Granada; Sierra Nevada, Hotel del Buque BipEsp8 CSC 31

Sweden Lycksele lappmark; Tärna, Atoklinten BipSwe1 MD 32

Lycksele lappmark; Tärna, Djuptjärn BipSwe2 MD 33

Lycksele lappmark; Tärna, Gröndal BipSwe3 MD 34

Lycksele lappmark; Tärna, Stintbäcken BipSwe4 MD 35

Lycksele lappmark; Lycksele, Näslandsmyren BipSwe5 MD 36

Lycksele lappmark; Tärna, Kråkberget BipSwe6 MD 37

A. GUTTATUS Sweden Ångermanland; Nordmaling, Mullsjö Gutt1 AN

A. melanarius Sweden Lycksele lappmark; Tärna, Atoklinten Mel1 MD

Ångermanland; Nordmaling, Hummelholm Mel2 MD

A. NEBULOSUS Sweden Skåne; Potten Neb1 BA

Skåne; Revinge by Neb2 BA

A. nevadensis Spain Granada; Sierra Nevada, Laguna de Rio seco Nev1 MD

Granada; Sierra Nevada, Laguna de la Caldera Nev2 MD

A. tristis Canada Alberta; Hinton Tri1 JB

Alberta; Sundre Tri2 JB

Alberta; Sundre Tri3 JB

A. wollastoni Portugal Madeira; Pico do Arierio Woll1 MD

Madeira; Rabacal Woll2 MD

Collectors of the populations/specimens are: Anders Nilsson (AN), Bertil Andrén (BA), Carmen E. Sainz Cantero (CSC), Ignacio Ribera (IR), Johannes Bergsten (JB), Marcus
K. Drotz (MD), Stefan Ericsson (SE), and Shidi O. Hosseinie (SH). Map codes are given for A. bipustulatus collection sites, which are shown in figure 2. Collection sites in
bold were used both in the morphological and population genetic studies.
doi:10.1371/journal.pone.0009034.t001
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kiesenwetterii form both sexes have wide meshes in the secondary

reticulation and the elytra are shinier than in topotypic A.

bipustulatus from Sweden. Guignot [7] observed that falcozi males

have wider secondary reticulation and are not as shining as those

of kiesenwetterii, whereas the females are similar to the normal

bipustulatus form. Only the males of pyrenaeus are shiny and have a

more isomorphic secondary reticulation, and females have been

described as similar to those of bipustulatus [30]. The latter

information is not fully correct, however, and we will here

demonstrate that the pyrenaeus females also display a similar

variation as the males. The dolomitanus form is similar to falcozi, but

it has the pronotal shape of lowland bipustulatus [32]. Franciscolo

[32] also concluded, without any quantitative analysis, that the

variation in secondary reticulation in kiesenwetterii and dolomitanus is

so similar that they have to be conspecific.

Individual variation in the secondary elytral reticulation was

classified after the total sample was screened for common patterns.

Seven categories (A - G) ranging from tightly packed longitudinally

elongated meshes to more or less isomorphic meshes were

recognised (Fig. 1). Of these categories, the A, B, C and G

patterns cover most of the total surface of the elytra (Table 2). The

remaining categories D, E and F describe intermixed patterns of

longitudinally elongated and isomorphic meshes. The A reticula-

tion pattern is found in the bipustulatus and solieri forms. The B

pattern is found in kiesenwetterii, falcozi and within the dolomitanus

form. Within pyrenaeus we recognised three reticulation patterns: C,

F and G.

The Simpson index (D), which measures the probability that

two individuals randomly selected from a sample will belong to the

same reticulation category, was used to calculate reticulation

diversity per population [33].

Genetic Analysis
A total of eleven enzyme systems coding for nine loci gave

quantitatively reliable results: Hexokinase (Hk), Triosephosphate

isomerase (Tpi), a-Glycerophosphate dehydrogenase (a-Gpdh),

Figure 2. Agabus bipustulatus collecting sites. Map codes and corresponding locality codes are given in table 1.
doi:10.1371/journal.pone.0009034.g002
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Isocitrate dehydrogenase (Idh), Malate dehydrogenase (Mdh), Malic

enzyme (Me) and Esterase (Est-1 & Est-2). In addition, Alkaline

phosphate (Alp) was screened in A. bipustulatus from France and

Italy, and so were Phosphoglucoisomerase (Pgi), Phosphogluconate

dehydrogenase (Pgd) and Xanthine dehydrogenase (Xdh) in A.

bipustulatus and A. nevadensis from Spain. Staining recipes and gel

buffers are modified from those of Shaw and Prasad [34]. The

beetles were prepared and the alleles named by migration distance

to the most common allele as described in Drotz et al. [27].

Population structure was calculated as described by Weir and

Cockerham [35] and genotypic linkage disequilibrium was tested

for between loci per population. To evaluate if reticulation

patterns influence population differentiation as assumed by sexual

conflict in combination with assortative mating [36–37], we tested

for differences in gene diversity, observed heterozygosity and FST

among groups consisting of specimens within populations with

mixed and homogeneous reticulation patterns. Populations were

grouped according to their variability in secondary reticulation

observed as described above. Significant levels were calculated via

a permutation scheme of 5000 replicates where the total sample is

allocated at random to groups. The P-value is based on a two-

tailed probability test of the proportion of the randomised data sets

that gives larger mean values than the observed. All analyses were

conducted in the FSTAT v2.91 software [38]. Pearson’s

correlation coefficient was estimated between altitude and mean

heterozygosity and FIS.

DNA Amplification and Sequencing
DNA was extracted from one hind leg or the thoracic flight

muscles of the frozen or alcohol preserved beetles, with a Qiagen

DNeasy protocol for animal tissues. Partial cytochrome b (Cyt b)

sequences were amplified with the two flanking primers CB-J-

10933 and CB-N-11367, partial cytochrome c oxidase subunit I

(COI) with CI-J-2195 and TL2-N-3014, and cytochrome oxidase II

(COII) with C2-J-3279 and C2-N-3661 as described in Simon et al.

[39] using the following polymerase chain reaction (PCR)

program: denaturation 94uC (90 s), annealing at 50uC (30 s) and

extension at 72uC (60 s). This cycle was repeated 30 times,

followed by an extension period of 5 minutes. The PCR products

obtained were single clear bands with no signs of non-specific

amplification. The amplified product was approximately 430 bp in

length for Cyt b, 730 bp for COI, and 400 bp for COII. The

product was run on a 1.0 % agarose gel and then removed from

the gel and purified with a Jetsorb DNA extraction kit. Sequencing

reactions were performed with the DYEnamic ET terminator kit.

Each sequence was sequenced from both its 39 and 59 ends.

Corresponding accession number for the three partial mtDNA

genes are AF439354-55, AF439359, AF439362, AF439365,

AF439367-68, AF439372-77, and AY535285-400.

Phylogenetic Analysis
The mtDNA sequences were aligned with the ClustalW

multiple alignment option in BioEdit, version 4.8.10 [40]. No

gaps were inserted within the alignment. Congruence among data

sets was tested with the partition homogeneity test [41].

Unweighted parsimony analysis was performed by applying

heuristic search with tree bisection-reconnection branch swapping.

A total of 3000 searches were done with 100 replicates and ten

random-addition sequence iterations per search started from a

random tree. Branches were collapsed if branch length was

minimum zero. All characters were nonadditive, and uninforma-

tive characters were excluded before the analysis. To evaluate if

the data set is subjected to ‘long branch attraction’ we compared

the strict consensus tree topology between two phylogenetic

analysis; the first including all sequences from all outgroups and

the second analysis including only the sequences from the ingroup

as described by Bergsten [42]. The second dataset was also

analysed with a maximum likelihood analysis. The Akaike

Information Criterion in Modeltest [43] was used to find, the

best evolutionary model given the data. Cladograms were rooted

between the ingroup and outgroup according to Nixon and

Carpenter [44]. Nodal support within the phylogenetic trees

within the parsimony analysis was assessed with bootstrap

percentage after 1000 re-sampling steps [45] and within the

maximum likelihood analysis with jackknife percentage after 1000

re-sampling steps with 30% character deletion [46]. The number

of extra steps required to collapse each clade was also calculated as

described by Bremer [47]. Measures of how well all individual

character fit on a phylogenetic tree is measured by the consistency

index (CI). The average value is calculated by dividing the

minimum possible number of steps by the observed number of

steps on the tree. The retention index (RI) measures the amount of

Table 2. Agabus bipustulatus classification of secondary elytral reticulation after the total sample was screened for common
patterns.

Code Description

A Longitudinally elongated meshes more or less straight, narrow and a majority are long. Isomorphic meshes can be observed at the elytral apex.

B Longitudinally elongated meshes more or less straight, wide and a majority are long. Isomorphic meshes are observed commonly at the elytral apex
and occasionally along the anterior parts of the elytra suture.

C Longitudinally elongated meshes more or less straight, wide and a majority are short.

D Longitudinally elongated meshes more or less straight, wide and a majority are long. Isomorphic meshes are observed from elytral apex to K or L of
its length.

E Longitudinally elongated meshes more or less straight, wide and a majority are long. Isomorphic meshes are observed from elytral apex to K or L of
its length and at the anterior parts of the suture.

F Longitudinally elongated meshes more or less straight to K of elytral length after that the meshes bend out towards suture J from apex. Isomorphic
meshes at the elytral apex and along anterior parts of the suture.

G Isomorphic meshes cover the whole elytra, giving an impression that the longitudinally elongated meshes bend out towards suture J from apex.

Seven categories (A-G) ranging from tightly packed longitudinally elongated meshes to more or less isomorphic meshes were recognised in Agabus bipustulatus. Type A
is found in the bipustulatus and solieri forms, type B in kiesenwetterii, falcozi and dolomitanus, and type C, F and G in pyrenaeus. The categories D, E and F describe
intermixed patterns.
doi:10.1371/journal.pone.0009034.t002
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synapomorphy expected from a data set that is retained as

synapomorphy on a tree. The above analyses were run in both

PAUP v.4.0b10 [48] and WinClada ver. 0.9.99 [49]. Tajima’s

Neutrality test for the mtDNA sequence data [50] was performed

with DNAsp [51] and the assumption of a local or global

molecular clock was tested with PHYHYP v. 1 [52]. The Kishino

and Hasegawa [53] test was used to test for two competing trees of

equal length. To evaluate differences between tree topologies of

unequal length we performed a permutation test where character

states are randomly reassigned within characters of all taxa.

Length differences between all permutated trees generate a null

distribution that is used to compare the observed length differences

of the original topologies. Significant level is gained in both

analyses from a two-tailed probability test in PAUP v.4.0b10 [48].

Reticulation patterns were not optimised as a character on any of

the parsimonious fundamental trees. Instead we here utilized the

strict consensus to study the within and between clade distribution of

reticulation patterns over all parsimonious fundamental trees. This

method is well suited to distinguish if reticulation patterns have

evolved multiple times within different monophyletic clades [23].

Results

Reticulation Diversity
The secondary reticulation varies noticeably within almost all

populations from France, Italy and Spain (Table 3). In three

populations (BipFra4, 6 and 7), all at an altitude below 2000 m

a.s.l near Grenoble, all specimens of the same sex had similar

reticulation patterns. The other populations, sampled at higher

altitudes, consisted of a mix of A and B patterns in various

frequencies with one or several individuals representing the D, E

or F patterns. The exceptional Spanish population BipEsp5 did

not have any males of neither the A nor B type, and instead we

here found the C, F and G patterns dominating in both sexes

(Table 3). Some geographically very close populations, separated

by altitude, as BipFra5 and BipFra6 or BipFra13 and BipFra14,

had different dominating male elytral patterns (A and B,

respectively). In males the variation is significantly correlated with

altitude (p,0.001, adj-R2 = 60.2%, b = 0.79). Increased diversity

of reticulation patterns is seen in several independently parallel

areas in Spain and France (Fig. 3). In females, a similar pattern,

however not significant, of high diversity at high altitude is also

observed.

Genetic Variability
The within population variation in reticulation pattern made it

difficult to assign a population into a given form. Populations were

therefore divided into four groups based on the most frequent

reticulation pattern in order to test for genetic differentiation

between groups: (1) type A in all females and males (BipFra4, 6

and 7); (2) type A in all females and .50% type A in males

(BipFra3, 8, 9 and 14); (3) type A in all females and .50% type B

in males (BipFra9, 10, 12 and 13); (4) both sexes with variable

reticulation patterns (BipFra1, 2, 5 and 11).

Population mean heterozygosity and the mean number of alleles

per locus, within the total sample (BipFra1-14, BipIta1 and

BipEsp3-7) of A. bipustulatus, ranged between 0.158–0.299 and 1.9

– 3.1, respectively in the French Alps populations, and between

0.148 – 0.293 and 1.8 – 2.3 in the Spanish populations. The single

Italian dolomitanus population exhibits similar values to those

Table 3. Agabus bipustulatus population variation of secondary elytral reticulation.

Locality code Alt Males Females

A B C D E F G N A B C D E F G N

BipFra1 2750 2 5 1 3 1 8 20 17 2 1 1 21

BipFra2 2640 4 6 2 4 7 1 24 20 1 2 1 25

BipFra3 2080 14 3 2 18 13 13

BipFra4 1820 13 13 14 14

BipFra5 2040 6 15 3 6 30 6 9 2 1 18

BipFra6 1049 30 30 28 28

BipFra7 1580 5 5 8 8

BipFra8 2080 21 4 25 27 27

BipFra9 2240 7 1 1 11 16 16

BipFra10 2250 5 17 1 1 3 28 30 30

BipFra11 2450 2 20 1 1 2 26 22 3 25

BipFra12 2560 2 22 1 4 1 30 30 30

BipFra13 2638 4 1 4 1 5 19 19

BipFra14 2225 14 9 2 25 19 19

BipIta1 2207 2 1 1 2 6 5 5

BipEsp3 2070 4 1 5 8 8

BipEsp4 2465 1 2 2 5 4 4

BipEsp5 2500 2 3 2 7 4 6 5 15

BipEsp6 2250 6 4 10 0

BipEsp7 2440 1 1 6 1 7

Male and female variation is given separately in different columns. Total number of specimens (N), altitude (Alt) is given in meters above sea level, and locality codes
follow table 1. Elytral reticulation codes follow table 2.
doi:10.1371/journal.pone.0009034.t003
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observed in Spain (Table 4). In addition, the mean heterozygosity

(r = -0477, p = 0.033, R2-adj = 18.5%) and inbreeding coefficient

within population (FIS; r = 0.461, p = 0.041, R2-adj = 16.8%) were

both significantly correlated to altitude (Fig. 4).

No significant differences were detected between the above

described reticulation groups in observed heterozygosity (p = 0.67),

or genetic diversity (p = 0.44) or FST (p = 0.45). Significant

genotypic disequilibrium was only found between the Idh and

Mdh loci in one French population (392 000 permutations, p-value

0.00001; adjusted P-value for 5% nominal level 0.000128).

Agabus nevadensis displays a significant deviating pattern in

observed heterozygosity (p = 0.0054), genetic diversity (p = 0.0008)

and allele frequencies in relation to A. bipustulatus. The mean

heterozygosity of A. nevadensis is H = 0.13460.044 and the mean

number of alleles per locus is 1.9. Of the compared enzyme

systems, the allele frequencies of Hk and Pgd stand out. The Pgd

Figure 3. Relationship between male secondary elytral reticulation diversity and altitude in Agabus bipustulatus. Reticulation diversity
was estimated with the Simpson diversity index (D) based on the data given in table 3. Low index value (1-D) indicates small level of variation in the
secondary reticulation. Geographically close populations are connected with lines. Altitude is given in meters. Locality codes follow table 1.
doi:10.1371/journal.pone.0009034.g003

Table 4. Summary of genetic variability in Agabus bipustulatus.

Locality code Mean ind./locus Mean # of alleles / locus FIS Mean heterozygosity 6 SE

BipFra1 2661 2.360.4 0.437 0.19260.04

BipFra2 2661 2.160.4 0.363 0.20160.07

BipFra3 1861 2.660.6 0.258 0.29560.07

BipFra4 1661 2.360.3 0.282 0.23560.05

BipFra5 4262 2.560.5 0.298 0.24660.06

BipFra6 3963 3.160.4 0.276 0.25860.07

BipFra7 1161 1.960.2 0.095 0.29960.09

BipFra8 3764 3.060.6 0.333 0.22160.06

BipFra9 1162 2.360.4 0.530 0.15860.05

BipFra10 3465 2.860.6 0.234 0.26060.06

BipFra11 3666 2.060.3 0.328 0.21160.06

BipFra12 4064 2.160.4 0.324 0.19660.05

BipFra13 1362 2.360.5 0.342 0.19860.06

BipFra14 2963 2.860.5 0.330 0.22760.07

BipIta1 961 1.860.3 0.358 0.19860.08

BipEsp3 1361 2.160.2 0.260 0.27460.04

BipEsp4 1461 2.160.2 0.353 0.19960.04

BipEsp5 2261 2.160.2 0.476 0.14860.04

BipEsp6 1261 2.360.3 0.251 0.29360.05

BipEsp7 661 1.860.2 0.203 0.19360.08

Including mean number of successfully scored individuals per population over all loci, mean number of alleles per locus including 61 standard error (SE), mean
observed heterozygosity estimated as direct count including 61 SE, and inbreeding coefficient per population measured by FIS. Locality codes follow table 1.
doi:10.1371/journal.pone.0009034.t004
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locus has three alleles in the Spanish A. bipustulatus sample, but only

two in A. nevadensis. The allele that is missing in A. nevadensis is,

interestingly, the most commonly found in A. bipustulatus in north

Spain (Pgd 97), and the most commonly found allele in A. nevadensis

(Pgd 102) is the least frequently found in A. bipustulatus in north

Spain. A similar difference is seen in the allele frequency of the Hk

locus. Throughout A. bipustulatus populations in Spain and France

this locus consists of two alleles with a higher occurrence of allele

Hk 100 in most populations, whereas in A. nevadensis this locus is

more or less monomorphic for the Hk 102 allele in the eight studied

populations. There is clearly a reproductive barrier between these

two species.

Sequence Variation
Combined, the three mtDNA data sets COI, COII and Cyt b

included 1236 base pairs. A total of 214 sites were parsimony-

informative over all taxa, 150 within the A. tristis group, and 33

within the A. bipustulatus complex. Of the 214 informative

characters, 174 were from the third, 34 from the first, and 6 from

the second position. Translation of nucleic acid to amino acid

sequences revealed very few parsimony-informative characters; i.e.

most of the variation seen represents silent mutations. The

incongruence length difference test was not significant between

any combination of the three data sets. Most of the character

conflicts in the data are within the separate sets, and only 2.33–

4.19 % increased homoplasy was found in the total data set

including all taxa.

Tajima’s test of the neutral mutation hypothesis of the A.

nevadensis and the A. bipustulatus complex sequences showed no

significant deviation (p.0.10) between the amount of segregating/

polymorphic sites and the average number of nucleotide

differences, number of segregating sites (S) = 52, Theta per

sequence = 13.16036 and 0.01066 per site, nucleotide diversity,

Pi = 0.00826 and Tajima’s D = 20.83312.

Elytral Reticulation and Phylogeny
Parsimony analysis of the combined data set, including all

outgroup taxa, resulted in 13 most parsimonious (MP) trees with a

length of 400 steps (uninformative characters excluded), and CI

and RI of 0.65 and 0.83, respectively. These fundamental trees are

combined into a strict consensus (Fig. 5). The subsequent

phylogenetic analysis only including the A. bipustulatus complex

and A. nevadensis specimens resulted in four MP trees with a tree

length of 48 steps, CI and RI of 0.90 and 0.97, respectively. Main

differences between these fundamental trees were the position of

three haplotypes (BipSwe2, BipFra3 and BipPor2) and the

grouping of the two clades consisting of the BipIce1, BipIce2,

BipFra12, BipFra13 and the A. nevadensis, BipFra5, BipIra1, and

BipMor1 specimens. The topology and subclades of the strict

consensus tree from both analyses were identical, which provides

strong evidence that no long branch attraction is affecting the

results. The Kishino and Hasegawa test of the four MP

fundamental trees of the A. bipustulatus complex resulted in one

phylogenetic hypothesis with the lowest likelihood value. This tree

is hereafter referred to as the ‘‘best’’ tree (Fig. 6).

According to the Akaike Information Criterion in Modeltest,

the Translational model (TIM), with a proportion of invariable

sites equal to 0.8199 and a gamma distribution shape parameter of

0.7877 is the best evolutionary model, within the maximum

likelihood analysis, given the data only including the A. bipustulatus

complex and A. nevadensis specimens (-lnL 2954.8911 and AIC

score 4125.7822). Nucleotide frequencies; (A) 0.3368, (C) 0.1501,

(G) 0.1214 and (T) 0.3917 and evolutionary model parameters; A-

C: 1.0000, A-G: 11.6809, A-T: 0.1441, C-G: 0.1441, C-T: 6.3908

and G-T: 1.0000. The maximum likelihood analysis resulted in six

trees after 75166 rearrangements tried from a starting Neigbour

Joining tree. From these trees the Kishino-Hasegawa (KH) test

selected significantly one tree (ln 348.43962) to be the most likely

representing the evolutionary history of the data (Fig. 7).

Two main evolutionary lineages are present within the ‘‘best’’

MP tree (Fig. 6) and the ML tree (Fig. 7), hereafter referred to as

group I and II. These two groups are separated by 10

unambiguous unique nucleotide transformations, which result in

both a 100% bootstrap (BS) and Jackknife support (JS). Group I

includes specimens from two haplotypes from Russia, two from

Sweden and one from France, whereas all other specimens from

Figure 4. Relationship between observed mean heterozygosity and estimated inbreeding over populations, and altitude in Agabus
bipustulatus. Estimated (N) observed mean heterozygosity (R2-adj = 0.185, P = 0.033); (#) estimated inbreeding coefficient (FIS) over populations
(R2-adj = 0.168, P = 0.041). Altitude is given in meters.
doi:10.1371/journal.pone.0009034.g004
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Sweden, France, Spain, Island, Italy, Morocco, and Iran belong to

group II. The ‘‘best’’ MP tree (Fig. 6) and the ML tree (Fig. 7)

differ chiefly in the position of the BipSwe2 haplotype and the

presence or absence of the subclade including the haplotypes

BipIce1, BipIce2, BipFra12 and BipFra13, and the subclade

including BipEsp4 and BipEsp5. These differences do not change

the evolutionary interpretation of the morphological results of this

study, however. Both kinds of phylogenetic analyses of the A.

Figure 5. Strict consensus tree from parsimony analysis of Agabus bipustulatus complex plus outgroups. The combined unweighted
parsimony analysis includes all three genes (cytochrome b, cytochrome c oxidase subunit I and cytochrome oxidase II) and the outgroup species
Agabus nebulosus, A. affinis and A. guttatus. Number of fundamental trees = 13. Bootstrap values above 50% are reported above branches. Bremer
support values are reported below branches. Locality codes follow table 1.
doi:10.1371/journal.pone.0009034.g005
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bipustulatus complex clearly demonstrate a multiple independent

origin of different reticulation patterns. This pattern is evident in

the kiesenwetterii form (B type) that is found in several of the

monophyletic groups in the MP strict consensus tree together with

haplotypes of the bipustulatus form (A type) (Fig. 5 and Fig. 7). The

falcozi form also displays a similar pattern and is found within two

well-supported subclades (71 and 63% BS, respectively) within the

MP analysis, and basally of group II and in one of its subclades in

the ML (75% JS). The dolomitanus form (B type) from Italy (BipIta1)

forms a strongly supported subclade (96% BS and 99 % JS)

together with the bipustulatus form (A type) from France (BipFra6)

and Spain (BipEsp3). Moreover, the grouping of bipustulatus, solieri

and kiesenwetterii as sister forms within several well supported

subclades (BS and JS 53–93%) strengthens the argument of

adaptation to altitudinal environments.

Forcing the kiesenwetterii, falcozi or solieri forms on the ‘‘best’’ MP

fundamental tree (Fig. 6) to be monophyletic resulted in a

dramatic increase in three length of 71.1 % compared to the

fundamental trees. Still an even larger increase (83.3%) is seen

when we add an additional topological constraint assuming A.

nevadensis as sistergroup.

Agabus nevadensis is deeply nested in group II, within the A.

bipustulatus complex (Fig. 5 and Fig. 7). However, the allozyme

differences seen in the population genetic analysis imply that the

adaptation process can lead to assortative mating and the

evolution of a reproductive barrier.

Figure 6.Fundamental tree from parsimony analysis of Agabus bipustulatus complex. The ‘‘best’’ fundamental tree, according to Kishino
and Hasegawa test, from combined unweighted parsimony analysis of all three genes (cytochrome b, cytochrome c oxidase subunit I and
cytochrome oxidase II), rooted with Agabus bipustulatus specimen from BipRus1 in order to visualise the deep split within the complex (group I and
II), and to display unambiguous unique character state transformations, marked with (N), and homoplasious character state transformations with
(#). Bootstrap values above 50% are reported above branches.
doi:10.1371/journal.pone.0009034.g006
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Discussion

We have studied the phylogeographic history and genetic

variation of different reticulation patterns across the A. bipustulatus

complex and A. nevadensis distribution in the West Paleartic in

order to understand the complex variation in elytral reticulation

that occurs in both sexes at high altitudes in Central and South

Europe in contrast to the more homogeneous reticulation pattern

normally observed at lower altitudes across the total distribution

area.

We found that the different secondary reticulation patterns in A.

bipustulatus have evolved independently at several times. The

phylogenetic pattern shown here within the ‘‘best’’ MP funda-

mental and ML tree describes the A. bipustulatus complex as a deep

gene tree with two major lineages broadly sympatric, between

specimens with different reticulation patterns (Fig. 6). This reflects

a species with a large evolutionary effective population size and

high gene flow, with a recent admixture of lineages that have

diverged allopatrically [54]. The geographic mix of sampled

specimens within the recognised monophyletic group I and II, of

A. bipustulatus indicates that the Pyrenees and Alps have not acted

as dispersal barriers in the interglacial periods, which is argued to

be a major potential isolation barrier for the Iberian water beetles

[31]. Instead specimens of A. bipustulatus have been able to disperse

more or less randomly into different areas during the climatic

oscillations that have occurred during the late Pleistocene [55]. In

addition, specimens from both groups I and II co-occur at the

Stintbäcken locality in north Sweden. There is therefore no reason

Figure 7. Maximum likelihood representation of sequence data from Agabus bipustulatus complex. Likelihood representation including
all three genes (cytochrome b, cytochrome c oxidase subunit I and cytochrome oxidase II). The translational model (TIM) was used along with a
proportion of invariable sites equal to 0.8199 and a gamma distribution shape parameter of 0.7877. The tree is rooted with the Agabus bipustulatus
specimen from BipRus1 in order to visualise the deep split within the complex (group I and II). Jackknife values above 50% are reported above
branches.
doi:10.1371/journal.pone.0009034.g007
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to believe that the deep gene tree represents two different

monophyletic genetically isolated entities, since the genetic

structure of the Stintbäcken population does not differ from other

A. bipustulatus populations across its distribution area [56].

Our results also indicate the presence of different selective

regimes at different altitudes. The lack of significant genetic

differences among A. bipustulatus populations representing combi-

nations of reticulation patterns indicates that the historical legacy

of a population does not hinder gene flow [57–58]. However,

decreasing mean heterozygosity and increased population sub-

structure (FIS) at different altitudes regardless of reticulation

patterns shows that the selective process, is strong enough to alter/

change the genetic structure of populations (Fig. 4 and Table 4).

This genetic pattern is congruent with earlier findings in north

Scandinavia [27,56]. Individual response in secondary reticulation

at high altitude is observed as widening of the longitudinally

elongated secondary meshes and increased coverage of isomorphic

meshes from the apex up to half of the elytral length. Males are

more affected than females (Table 3). The occurrence of especially

secondary reticulation type C and G specimens in France and Italy

at very low frequencies together with other reticulation patterns

outside the Vall de Boı́ in Catalunya (Table 3) implies that crosses

between reticulation patterns may give rise to patterns not

observed within parents seen as increased reticulation diversity

at higher altitude. The geographical and altitudinal distribution of

the reticulation types and the genetic variation within the

bipustulatus-complex suggest a complex evolution. The enlarged

isomorphic meshes of the secondary reticulation at high altitude in

females and the evolution of wider male tarsi and attached suckers

in the presence of modified reticulated females could indeed

contribute to the arms-race between sexes proposed by Howe [13].

An alternative explanation for the increased variance in female

reticulation at high altitude could be that it arises as a side effect of

the greater variation of elytral reticulation in males in these

populations.

The high altitudinal populations of A. nevadensis stand out in

comparison to the genetic variation found among populations of A.

bipustulatus and their phylogenetic position deeply nested within the

A. bipustulatus group II (Fig. 6 and 7). The large similarity of the

primary and secondary reticulation in A. nevadensis to that of the

kiesenwetterii form (type B, Table 2) suggests that the initial

altitudinal adaptation follows the same selection process as the

other reticulation patterns in A. bipustulatus (type A). However, the

significant differences in allele frequencies between A. nevadensis in

Sierra Nevada and A. bipustulatus populations in Spain, France,

Italy and Sweden at different altitudes strongly indicate that A.

nevadensis has relatively recently became reproductively isolated in

situ [59–61].

Drotz et al. [27] documented that selection acted on a-

Glycerophosphate dehydrogenase (a-Gpdh) in A. bipustulatus

between the valley floor and above the tree line in Scandinavia.

This selective force is, however, not responsible for the observed

reticulation variation seen in both A. nevadensis and A. bipustulatus

since it occurs across the species total distribution area and affect

all analysed forms of both species regarding their reticulation

pattern [56]. Studies of the leaf beetle Chrysomela lapponica could,

however, give some clue to a possible selective candidate. This

species displays a patchy distribution of elytral colour variation

with large dark black spots in northern Europe and high

mountainous regions in Western Europe. In central Europe,

brightly red coloured beetles are more common at low altitude.

Gross et al. [62] demonstrated empirically that the increase in

melanic elytra in northern Europe and high altitude represent a

selective thermal advantage at low temperatures in relation to the

brightly coloured central European form. Here the size of the dark

black spots regulates the body temperature. Similar demographic

distribution and colour morph variation is seen in Coelophora

inaequalis, Harmonia axyridis and Oreina sulcata [63–65]. The colour

variation within these species is assumed to be driven by solar UV-

b radiation and interestingly solar UV-b radiation normally

increases with increasing altitude. This implies that the strongest

selective effect within a geographical area is overlapping with our

observed deviation in reticulation pattern of A. bipustulatus and A.

nevadensis. The Alps, Pyrenees and Sierra Nevada display the

highest UV levels in Europe as a consequence of their high

altitude, snow-covered surface and low aerosol levels [66]. In

addition, the effect of UV radiation in aquatic environments is

largest in shallow mountain lakes with high incident flux and deep

penetration of UV radiation [67]. This habitat is often associated

with A. bipustulatus species at high altitude [68]. Here different

reticulation patterns may reflect UV radiation differently where

more impressed primary reticulation can lead to increased body

temperature [69].

Further research is needed in order to fully understand the

interplay between the selective forces that clearly plays a part in

forming the reticulation pattern observed within the A. bipustulatus

complex and their combined importance for adaptive/sympatric

speciation. One way to do this could be to address how the relative

strength of sexual and natural selection changes at different

altitudes, by analysing male reticulation and suction cup variation

in relation to the female reticulation patterns at different altitudes.

This, however, is beyond the scope of this paper.
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