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1  |  INTRODUC TION

Aging, a quasi-universal biological phenomenon, is inextrica-
bly linked to the development of cancer (de Magalhães,  2013). 

Understanding the mechanisms underlying the causative role that 
this gradual, time-dependent accumulation of molecular damage 
plays in disease etiology is crucial to designing interventions seek-
ing to improve our healthspan—that is, the lifespan free of disease. 
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Abstract
Aging and cancer are clearly associated processes, at both the epidemiological and 
molecular level. Epigenetic mechanisms are good candidates to explain the molecular 
links between the two phenomena, but recent reports have also revealed consider-
able differences, particularly regarding the loss of DNA methylation in the two pro-
cesses. The large-scale generation and availability of genome-wide epigenetic data 
now permits systematic studies to be undertaken which may help clarify the similari-
ties and differences between aging and cancer epigenetic alterations. In addition, the 
development of epigenetic clocks provides a new dimension in which to investigate 
diseases at the molecular level. Here, we examine current and future questions about 
the roles of DNA methylation mechanisms as causal factors in the processes of aging 
and cancer so that we may better understand if and how aging-associated epigenetic 
alterations lead to tumorigenesis. It seems certain that comprehending the molecu-
lar mechanisms underlying epigenetic clocks, especially with regard to somatic stem 
cell aging, combined with applying single-cell epigenetic-age profiling technologies to 
aging and cancer cohorts, and the integration of existing and upcoming epigenetic evi-
dence within the genetic damage models of aging will prove to be crucial to improving 
understanding of these two interrelated phenomena.
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In this scenario, the field of aging research—and aging epigenetics 
in particular—is experiencing an explosive revolution owing to the 
development and democratization of high-throughput technologies 
and computational methods (Hasin et al.,  2017), which has led to 
the large-scale profiling of sizable cohorts using genome-wide tools. 
Against this background, we can now re-examine the available evi-
dence regarding the molecular parallelisms and differences between 
aging and cancer in order to shed light on the relationship between 
the two processes.

Classically, parallel epigenetic alterations have been described 
for aging and cancer, mainly concerning the local DNA hypermeth-
ylation of CpG islands which is typically marked by bivalent chro-
matin domains in embryonic stem cells (ESCs) (Day et al.,  2013; 
Easwaran et al.,  2012; Fernández et al.,  2015; Heyn et al.,  2012; 
Ohm et al.,  2007; Rakyan et al.,  2010; Schlesinger et al.,  2007; 
Teschendorff et al.,  2010; Widschwendter et al.,  2007) and the 
global loss of DNA methylation (DNAm), particularly at repetitive 
sequencies (Bollati et al., 2009; Ehrlich, 2009; Fuke et al., 2004; Li 
et al., 2014; Wilson et al., 1987).

Nonetheless, these similitudes have recently been challenged, 
particularly in terms of DNA hypomethylation, by studies using 
next-generation sequencing technologies to measure 5mC at the 
genome-wide level (Unnikrishnan et al., 2018). This has been espe-
cially the case with research involving mouse models of aging, which 
have failed to report global DNA hypomethylation in this process, 
across multiple tissues (Cole et al., 2017; Hadad et al., 2019; Hahn 
et al., 2017; Hernando-Herraez et al., 2019; Masser et al., 2017; Sun 
et al., 2014). These observations have prompted systematic studies 
to be undertaken that seek to accurately characterize the similitudes 
and differences between aging- and cancer-associated epigenetic 
alterations, often revealing clear differences between aging, cancer, 
and senescence (Pérez et al., 2018; Xie et al., 2018), some of which 
have been detectable across human and mouse (Pérez et al., 2021). 
There is therefore a need to clarify, within the epigenetic context, 
the functional relationships between the two processes.

Aside from the canonical hyper- and hypomethylation signatures 
of aging and cancer, the recent development of epigenetic clocks 
(Horvath & Raj,  2018) has provided us with a new dimension in 
which to explore aging-associated epigenetic dysregulation and its 
link with carcinogenesis. In this work, we explore the current knowl-
edge regarding the DNAm alterations classically described in aging 
and cancer and consider epigenetic clocks as novel, albeit different, 
tools which may help clarify the complex relationship between the 
two processes, paying particular attention to the phenomenon of 
somatic stem cell epigenetic aging.

2  |  THE ROLE OF CL A SSIC AGING -
A SSOCIATED DNA METHYL ATION 
ALTER ATIONS IN C ANCER

There appear to exist a number of functional connections between 
aging and cancer that involve epigenetic mechanisms. Especially 

with regard to DNA hypermethylation, it seems that the genomic 
loci which experience aging-associated gains in DNAm in healthy 
tissue are in turn aberrantly hypermethylated in cancer (Lin & 
Wagner, 2015; Luebeck et al., 2019), which would seem to indicate 
that tumors present a “hyperaged” phenotype that could be as-
sociated with cancer risk and survival (Klutstein et al., 2017; Lin & 
Wagner, 2015). These epigenetic alterations can be linked to mitotic 
activity and, indeed, epigenetic mitotic clocks have been developed 
by tracking DNAm gains at specific loci (Yang et al., 2016). In this 
same line, more mechanistic studies have shown how spontane-
ous epigenetic lesions accumulated over time can facilitate onco-
genic transformation, for example, in mouse colorectal organoids 
through the repression of key genes (Tao et al.,  2019). Of course, 
time-associated alterations may also reflect the accumulation of 
lifestyle-related aggressions: for instance, long-term exposure to 
cigarette smoke condensate has been shown to produce epigenetic 
alterations leading to tumorigenesis in human lung cells (Belinsky 
et al., 2002; Vaz et al., 2017). With respect to the loss of DNAm, the 
commonalities between aging and cancer again appear to be related 
to cell division, and DNA hypomethylation has been observed at 
late-replicating, lamina-associated domains in both aging and cancer, 
with cancer once again manifesting stronger alterations (Dmitrijeva 
et al., 2018; Zhou et al., 2018). However, the functional impact of 
the gradual loss of methylation at these gene-poor, heterochromatin 
associated loci remains to be fully clarified: while aging-associated 
hypermethylation gives rise to alterations which may indeed facili-
tate the oncogenic process, the canonical global hypomethylation 
often seen in tumors could actually be a consequence, and not a 
cause, of the dramatic cellular expansion occurring after malignant 
transformation.

Thus, it would seem that an important functional epigenetic link 
between aging and cancer relates to DNAm alterations, which partly 
reflect the mitotic history of the tissues involved—an “accelerated” 
history in the case of tumors—and, particularly regarding DNA hy-
permethylation, these changes may functionally influence the on-
cogenic process by dysregulating the expression of cancer-related 
genes. Nonetheless, it is possible that there exist other aging-
associated epigenetic alterations which have an impact on cancer 
development but are otherwise not present, or non-detectable, in tu-
moral tissues: (1) subtle aging changes could be masked, or reverted, 
by global epigenetic reconfiguration in tumors (Pérez et al., 2018); (2) 
aging-related alterations in the tumor microenvironment may have 
oncogenic roles (Marks et al.,  2016); (3) epigenetic changes in the 
immune system brought about by immunosenescence could also 
modify the risk of, and response to, cancer in more indirect ways 
(Pawelec, 2017).

In addition, other aging-associated phenomenon may con-
tribute to concealing the putative functional characteristics of 
aging-related epigenetic alterations, including the existence of a 
stochastic component inherent to age-associated DNAm alterations 
(Seale et al.,  2022) and the occurrence of age-associated changes 
in cellular composition (Campagna et al.,  2021). Nonetheless, the 
phenotypic and epigenetic variability brought about by aging via 
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mechanisms such as tissue disruption may in itself causally con-
tribute to the oncogenic process, as has been recently proposed 
(Capp & Thomas, 2021). To tackle these concerns, systematic meta-
analysis studies focusing on multi-tissue common alterations in aging 
and cancer (Chen et al., 2016; Pérez et al., 2018) and also the use 
of single-cell epigenetic profiling technologies (Cheung et al., 2018; 
Hernando-Herraez et al., 2019) are clearly needed.

3  |  DNA METHYL ATION CLOCKS A S NE W 
TOOL S IN THE STUDY OF DISE A SE

The past decade has been witness to a revolution in the field of 
aging epigenetics: the development of epigenetic clocks. Epigenetic 
clocks are mathematical algorithms which can, with great precision, 
predict the chronological age of subjects by combining measured 
DNAm levels at multiple CpG sites of their genome (Horvath & 
Raj, 2018). There is now clear evidence of the association between 
alterations in the predictions made by epigenetic clocks and lifestyle 
factors, disease—including cancer—or outright mortality (Fransquet 
et al., 2019; Levine et al., 2018; Lu et al., 2019; Marioni et al., 2015; 
Oblak et al., 2021), indicating that these algorithms capture a combi-
nation of chronological and biological age, the latter being a measure 
of the “healthiness” of an individual in terms of their risk of develop-
ing age-associated adverse outcomes (Jylhävä et al., 2017). For in-
stance, supercentenarian or long-lived subjects, who display reduced 
incidence, or delayed onset, of diseases (Andersen et al., 2012) also 
manifest younger epigenetic ages (Armstrong et al., 2017; Horvath 
et al., 2015). Moreover, there is incipient evidence of epigenetic clock 
rejuvenation through pharmacological- or lifestyle-based clinical in-
terventions in human (Fahy et al., 2019;Gensous et al., 2020; Noreen 
et al., 2020; Fiorito et al., 2021; Fitzgerald et al., 2021). Thus, current 
data support the importance of epigenetic clocks as biomarkers of 
aging, although studies focusing on the direct modification of clock 
components will be necessary to demonstrate whether these sets 
of CpGs can directly modulate the aging process. That said, because 
these clocks seem to so accurately capture information related to 
internal or environmental aggression which may be associated with 
disease, their close examination may help clarify the putative causal 
relationships between aging and cancer.

3.1  |  Functional meaning of the epigenetic 
clocks and somatic stem cell aging

What—if any—is the functional meaning of epigenetic clocks? Recent 
reports have indicated that the CpG sites which make up different 
clocks often share core functional characteristics in terms of their 
association with genomic elements or with gene expression levels 
(Jonkman et al., 2022; Liu et al., 2020), and in vitro models have been 
built that partially link cellular passage clocks with organismal aging 
(Minteer et al., 2022), supporting the notion that these algorithms 
are not merely abstract constructs but rather reflect underlying 

biological processes. Indeed, the intrinsic characteristics of DNAm 
clocks in relation to their differing “ticking rates” during lifes-
pan, which are accelerated during development and subsequently 
slow down during aging, (Horvath & Raj,  2018) suggest that they 
may be particularly linked to an underlying biological system. Stem 
cells display a youthful—pre-natal in fact—epigenetic phenotype 
(Horvath, 2013) and there are experimental observations indicating 
that the rejuvenation of the epigenetic clock occurs during embry-
onic development (Kerepesi et al., 2021) and can be achieved through 
the transient expression of reprogramming factors in human and 
mouse models (Chondronasiou et al., 2022; Gill et al., 2022; Sarkar 
et al.,  2020). Thus, the ticking rate of the epigenetic clocks could 
in fact reflect those developmental and tissue-homeostasis main-
tenance processes driven by stem cells—and involving alterations 
in cell composition—that occur throughout life, processes, which 
can in turn be modified by internal or external factors during aging 
(Horvath & Raj, 2018; Raj & Horvath, 2020). A recent review sum-
marized three hypotheses regarding the biological processes which 
could be responsible for the ticking of the clock CpGs whereby 
the gradual accumulation of DNAm alterations could reflect (Seale 
et al., 2022): (1) the life-long tissue turnover via asymmetric stem cell 
division; (2) the decay of circadian mechanisms during aging, which 
could be linked to metabolic dysregulation; or (3) the genomic re-
localization of epigenetic enzymes to DNA damage sites, which ap-
pear and accumulate with aging. Nevertheless, these systemic views 
of epigenetic clocks need to be reconciled with recent evidence 
demonstrating that epigenetic aging can be measured in individual 
cells (Trapp et al.,  2021). This new clock, termed “scAge”, was ac-
tually built from bulk-tissue derived aging CpGs, and thus, fits well 
with models of aging-associated increases in tissue heterogeneity 
(Rudolph, 2021), but the development of higher-resolution DNAm 
profiling in single cells will allow for the construction of epigenetic 
predictors directly from these data. After all, DNAm is a discrete/
binary molecular mark, and it remains to be explored whether there 
is a mechanistic basis to how, or in what order, CpG sites may be 
altered with age in individual cells.

In addition, the relationship between epigenetic aging and “stem-
ness”, or plasticity, must be more clearly defined. Adult stem cells, 
which reside in tissue-specific niches and are responsible for the 
maintenance of tissue homeostasis (Cheung & Rando, 2013), show 
evident signs of aging-associated decline (Oh et al., 2014), including 
epigenetic alterations (Bork et al., 2010; Fernández et al., 2015). A 
recent report that studied hematopoietic stem cell (HSC) transplan-
tation has shown that transplanted HSCs give rise to reconstituted 
blood which manifests a DNAm age similar to that of the HSC donor 
(Søraas et al., 2019), suggesting that the initial stem cells carry a spe-
cific age signature. Thus, the question of whether somatic stem cells 
display epigenetic clock aging still needs to be clarified. To tackle this 
issue, we compiled DNAm data from various independent studies 
profiling different types of somatic stem cells and progenitors (see 
Methods for full list of datasets) and determined their epigenetic 
ages using the Horvath clock (Horvath,  2013). Our results clearly 
show that somatic stem cells display DNAm clock aging across a 
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wide range of tissues (Figure 1 a-b), as opposed to embryonic stem 
cells and fetal tissues. In an epigenetic clock model, it makes sense 
that aging somatic stem cells accumulate a DNAm age signature 
which is then propagated to tissues during homeostasis and regen-
eration. Studies that dissect somatic stem cells at the single-cell 
level in particular are needed to clarify this issue, and there is in-
deed an example of muscle stem cells showing low epigenetic ages 
in mouse (Hernando-Herraez et al., 2019), but more data is clearly 
required.

3.2  |  Alterations in epigenetic clocks and the 
epigenetic age of tumors

With regards to the alterations—acceleration or deceleration—
observed in the clocks, various associations have been investi-
gated, particularly the aforementioned links with environmental 
factors and disease (Fransquet et al., 2019; Levine et al., 2018; Lu 
et al., 2019; Marioni et al., 2015; Oblak et al., 2021), to ascertain 
whether the DNAm alterations which occur during these processes 

could drive the changes observed in the clocks. For instance, a re-
cent study investigating DNAm age acceleration in the non-tumoral 
breast tissue of breast cancer patients demonstrated that the ob-
served alteration in the epigenetic clock could be explained by a 
subset of the clock CpGs that suffer from the well-known cancer-
associated hypermethylation of Polycomb associated loci (Rozenblit 
et al.,  2022). Indeed, clocks have been constructed which partly 
reflect the DNAm alterations induced by cancer-related lifestyle 
factors such as smoking (Lu et al.,  2019). There are also genetic 
factors, some of which also regulate the biology of the aging pro-
cess, which are associated with the ticking rate of epigenetic clocks 
(Lu et al., 2018; McCartney et al., 2021). However, a recent report 
using Mendelian randomization methods to explore the possible 
causal role of epigenetic clocks in cancer development has demon-
strated that there were few causal associations between the ticking 
rates of these clocks and increased cancer risk (Morales Berstein 
et al., 2022). Thus, at this stage there is little evidence to suggest 
that epigenetic clocks are primary drivers of aging or age-related 
disease as opposed to being biomarkers that reflect the influence 
of genetic or environmental factors, or other underlying processes 

F I G U R E  1 Somatic stem cells and progenitors display epigenetic aging. (a) Scatterplot depicting the correlation between chronological 
and epigenetic age (Horvath clock) across various types of somatic stem cells and progenitors, embryonic stem cells, and derived embryonic 
tissues. The R-squared coefficient and line of fit are given for the correlation involving non-embryonic tissues (HSC: hematopoietic stem cell, 
from peripheral blood; MSC: mesenchymal stem cell, from adipose or bone marrow tissue; ESC: embryonic stem cell). (b) Boxplots showing 
the epigenetic age estimations of different types of somatic stem cells and progenitors for which measurements of chronological age were 
unavailable (ESC: embryonic stem cell; iPSC: induced pluripotent stem cell; MSC: mesenchymal stem cell; DFPC: dental follicle progenitor 
cell; DPSC: dental pulp stem cell; PDLSC: periodontal ligament stem cell; SSC: spermatogonial stem cell; HSC: hematopoietic stem cell; MPP: 
multipotent progenitor; L-MPP: late multipotent progenitor; CMP: common myeloid progenitor; GMP: granulocyte-macrophage progenitor; 
MEP: megakaryocyte-erythroid progenitor).
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(Drew, 2022). Nonetheless, it may also be that some form of cancer-
specific clock dysregulation with functional meaning occurs directly 
during the process of oncogenic transformation, meaning that the 
tracking of age acceleration in healthy tissues, as done in most stud-
ies, would not yield valuable insight.

In addition to the aforementioned findings, we should consider 
the following observations (Figure 2): (1) the classic aging-associated 
DNAm alterations described in studies are very different from 
clock-associated DNAm changes with aging: clock-DNAm changes 
with age are actually very subtle (Horvath, 2013) and the CpG sites 
involved could in fact be considered “stable enough” to be able to 
track time-dependent alterations in spite of internal or external as-
saults occurring through lifespan, while aging-DNAm changes are 
much stronger and specific in terms of their biological associations 
(Day et al.,  2013; Fernández et al.,  2015; Pérez et al.,  2018), and, 
moreover, there are even aging-DNAm signatures which acceler-
ate with age (Sziráki et al.,  2018); (2) as already mentioned, aging 
DNAm signatures—especially DNA hypermethylation—are typically 
augmented in cancer (Lin & Wagner, 2015; Luebeck et al., 2019) to 
the extent that, in this sense, tumors may appear to have an aged 
phenotype.

On the other hand, we know little regarding the specific re-
configuration of the clock DNAm within tumoral cells: they ap-
pear to also have an hyperaged phenotype (Horvath, 2013; Pérez 
et al., 2018) but this could be related to cancer-associated dramatic 
hypermethylation events affecting a subset of the clock CpGs. In 
fact, tumors such as thyroid cancer, for which age is actually a prog-
nosis indicator (Kazaure et al.,  2018), show reduced clock-DNAm 
dysregulation—i.e. they age more “naturally” (Horvath, 2013; Pérez 
et al., 2018; Yang et al., 2016). It is possible that the age accelera-
tion observed in tumors may partly be caused by epigenetic clocks 
capturing the mitotic, proliferative history of tissues, which is evi-
dently amplified in cancer. This issue has been tackled by comparing 
the behavior of a mitotic clock and the Horvath clock in the con-
text of B-cell tumors to show that epigenetic age can sometimes 
be independent of epigenetic proliferative history (Duran-Ferrer 
et al.,  2020), thus suggesting that there may be mechanisms un-
derlying epigenetic clocks which are not entirely connected with 
cellular division. Furthermore, if we acknowledge that tumoral 
cells—and not exclusively cancer stem cells—have an increased 
quality of stemness, or plasticity, which increases their prolifera-
tion and dissemination potential (Batlle & Clevers,  2017), should 
we expect them to have a higher or lower epigenetic age? There 
is evidence that some stem-related traits such as telomerase ex-
pression do not lead to the rejuvenation of the epigenetic clock (Lu 
et al., 2018), while, as mentioned previously, the induction of plurip-
otent reprogramming factors does (Chondronasiou et al., 2022; Gill 
et al., 2022; Sarkar et al., 2020).

Altogether, it seems that aging-DNAm and clock-DNAm dysreg-
ulation present distinct molecular features, and more studies, again 
particularly those focusing on the single-cell dissection of epigenetic 

aging in healthy and tumoral tissues, will be needed to clarify these 
issues.

4  |  FUTURE DIREC TIONS: GENETIC AND 
EPIGENETIC AGING

It is becoming increasingly accepted, in what is known as the “so-
matic mutation” theory of aging (Kennedy et al.,  2012), that the 
unifying mechanism of aging is the time-dependent accumulation 
of DNA damage (Schumacher et al., 2021). Indeed, there are recent 
compelling results suggesting that mutational rates may define lifes-
pan across mammalian species (Cagan et al.,  2022), and that this 
could be partly controlled by differences in the efficiency of DNA 
repair mechanisms (Gorbunova et al.,  2014; Tian et al.,  2019). In 
this same line, recent observations indicate that aging-associated 
epigenetic dysregulation—including epigenetic clock acceleration—
could be a consequence of DNA damage via the re-localization of 
epigenetic modifiers during DNA repair (Hayano et al., 2019; Kane & 
Sinclair, 2019). This would suggest that features of epigenetic aging 
may be brought about by the accumulation of aging-associated DNA 
damage and, indeed, the stochastic accumulation of genomic al-
terations is consistent with the epigenetic noise typically observed 
during the aging process (Tejedor & Fraga, 2017). The recent devel-
opment of multispecies epigenetic profiling technologies (Arneson 
et al., 2022) is starting to provide insight into these questions. New 
studies conducted by the Mammalian Methylation Consortium 
have provided very interesting results that support the notion that 
aging mechanisms are evolutionarily conserved: (1) DNA methyla-
tion clocks have been successfully built for the prediction of age 
across mammalian species that may be associated with developmen-
tal processes (Lu et al., 2021); (2) epigenetic markers of maximum 
lifespan have also been developed which are quite different from 
aging-associated DNAm alterations (Li et al.,  2021), although new 
analytical approaches can be used to define CpG sites that inte-
grate information from both aging and lifespan, which may be par-
ticularly useful as biomarkers of anti-aging interventions (Haghani 
et al., 2022).

Results from epigenetic studies often point towards the exis-
tence of development-associated mechanisms underlying the uni-
versal features of aging; however, they will have to be reconciled 
with the existing genetic evidence positing that the accrual of DNA 
damage is the main driver of this process. Furthermore, with regards 
to the links between aging mechanisms and the development of 
cancer, they will have to be examined in the light of recent power-
ful evidence indicating that, while cancer is also a universal disease 
across mammals, differences in cancer risk across species are largely 
independent of longevity—and body mass—and could be related to 
lifestyle factors such as diet (Vincze et al., 2022). Thus, epigenetic 
mechanisms may still hold the key to revealing how universal bio-
logical processes such as aging or cancer— which may in themselves 
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be reflected through DNAm biomarkers—are modulated by environ-
mental, non-genetic factors.

5  |  METHODS/DATA SETS

To explore the dynamics of DNAm aging in somatic stem cells, we 
retrieved DNAm values in the form of beta values or intensity meas-
urements from 13 publicly available array-based datasets: GSE52114 
and GSE17448, containing mesenchymal stem cells (MSCs) 
from bone marrow (Bork et al.,  2010; Fernández et al.,  2015); E-
MTAB487, containing CD34 + hematopoietic stem cells (HSCs) from 
peripheral blood (Bocker et al., 2011) (reanalyzed samples of MSCs 
from GSE17448 were removed); GSE202067, containing MSCs and 
osteoblasts from bone marrow (Giesche et al., 2022); GSE138311, 
containing MSCs from adipose tissue (Serena et al.,  2020) (only 
healthy subjects were used); GSE26519, containing MSCs from adi-
pose tissue (Schellenberg et al., 2011; 5-passage samples were used 
while redundant 10passage samples from the same individuals were 
removed); GSE116754, containing embryonic stem cells (ESCs) and 
derived embryonic tissue (Colunga et al.,  2019); GSE34688, con-
taining MSCs from bone marrow, derived induced pluripotent stem 
cells (iPSCs) and ESCs (Shao et al.,  2013); GSE56491, containing 
erythroblasts derived from CD34 + progenitors from fetal liver and 
adult bone marrow (Lessard et al.,  2015); GSE112933, containing 
periodontal stem cells (pooled from various patients); GSE72444, 
containing spermatogonial stem cells and sperm samples (Struijk 
et al., 2020); GSE41933, containing MSCs from adipose tissue, bone 
marrow, umbilical cord, and dermal fibroblasts (Reinisch et al., 2015); 
and GSE63409, containing various hematopoietic progenitors (Jung 
et al., 2015).

Data were handled with the R statistical software (v4.0.5) 
and graphs were constructed using the ggplot2 package (v3.3.3; 
Wickham, 2016). DNAm ages were estimated using the Horvath clock 
(Horvath, 2013) via the ENmix package (v1.26.10; Xu et al., 2021).
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