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Abstract: Cyber-physical systems, which closely integrate physical systems and humans, can be
applied to a wider range of applications through user movement analysis. In three-dimensional (3D)
gesture recognition, multiple sensors are required to recognize various natural gestures. Several
studies have been undertaken in the field of gesture recognition; however, gesture recognition
was conducted based on data captured from various independent sensors, which rendered the
capture and combination of real-time data complicated. In this study, a 3D gesture recognition
method using combined information obtained from multiple sensors is proposed. The proposed
method can robustly perform gesture recognition regardless of a user’s location and movement
directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed
method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced
performance by preventing joint measurement errors and noise due to sensor measurement tolerance,
which has resulted in the enhancement of recognition performance by comparing multiple joint
sequences effectively.
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1. Introduction

Technological advances in computing, communications, and control have enabled the convergence
of physical components and cyberspace. Cyber-physical systems (CPSs), including software, electronic
hardware, sensors, actuators, and embedding systems, are the interface between humans and machines
and other systems. For further advancement of CPSs, it is necessary for other technologies to be
involved, such as advanced interface technologies.

The advancement of sensor technology and machine learning has facilitated a number of studies
on methods to replace the traditional interfaces, which use keyboards, the mouse, and control panels,
with those that recognize users’ natural motions [1,2]. Specifically, since the release of Kinect, which is a
low-priced depth camera, increasing interest has been drawn to the development of gesture recognition
methods that can capture gestures more accurately [3]. In addition, studies have been carried out on
the performance of depth cameras and articulated objects with depth data wherein the experiment
was conducted indoors [4,5].

On comparing Kinect with other cameras used in capturing depth data, such as point grey
bumblebee XB3 and Camcube (regardless of the Camcube´s accuracy in depth data capture), it has
been determined that in terms of flexibility and price, Kinect is the optimum option for capturing
depth data [6].

To enhance the reliability of the data acquired from the depth camera and to obtain various
complicated gestures, a number of studies have been carried out on three-dimensional (3D) expression
and data correction methods. The observations of these studies have resulted in the accurate
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recognition of user gestures and more complicated gestures in diverse environments [7,8]. In recent
years, the domain of gesture recognition-related studies has been expanded to include virtual reality
(which is currently attracting significant interest) and to smart homes based on context awareness.
In a number of dynamic environments, it is not convenient to capture user’s movement using a
single sensor owing to performance limitation and overlapping. Hence, multiple sensors can provide
optimum solutions to such challenges.

In correcting a user’s movements captured using Kinect sensors, there exists a domain where
it is not feasible to correct data owing to the location and direction of the subject. Furthermore,
measurement errors occur owing to the observation direction of the Kinect camera sensor. Measured
values of depth from the overlooking angle of the sensor contain the widest margin of error [4].
This causes a margin of error in the user’s joint information that is extracted from the depth data [9].
Therefore, multiple sensors or additional equipment are required. In this study, gesture recognition
algorithms with multiple sensors are proposed in consideration of the viewpoint-weighted values and
motion-weighted values to develop a 3D gesture recognition algorithm that is applicable to various
environments. In the proposed method, the gesture recognition accuracy is enhanced by providing a
higher-weighted value to the data with a lower margin of error while considering movement directions
and camera locations. Furthermore, it has been determined necessary to differentiate the significance
of each joint in order to recognize the gestures that involve the movement of multiple joints [10].
The proposed method enables this if higher weight values are assigned to joints that require more
dynamic movements to differentiate the criticality of the joints.

In the present study, this challenge is circumvented by capturing the gesture regardless of
the location through camera sensors, by considering the viewing points of the gesture while
calculating the motion weight, and by applying dynamic time warping algorithms to calculate the
appropriate similarities.

2. Gesture Recognition and Dynamic Time Warping

2.1. Gesture Recognition

For recognition of user gestures, studies have been carried out on various pattern recognition
algorithms including dynamic time warping (DTW) [11], the hidden Markov model (HMM) [12], and
conditional random fields (CRF) [13]. DTW is an algorithm that uses the optimized warping route
with dynamic planning method to flexibly compare two sequences. This algorithm is being applied to
various fields ranging from voice recognition to gesture recognition and signature.

The HMM is a probabilistic model that uses the transition probability of sequence data. As it is
adequate for the modeling of sequence data, it is widely used in the gesture recognition field. CRF
is similar to the HMM apart from its use of conditional probability that relaxes the independence
assumption and prevents the bias problem [13]. DTW is a matching algorithm that is more explicit than
the HMM or CRF; however, it involves high computation costs that increase exponentially as a function
of the length of sequences [14–17]. A majority of extant studies on DTW-based gesture recognition
considered a single sequence; therefore, further enhancement is required to effectively process multiple
sequences obtained from multiple sensors. However, DTW provides linear flexibility of sequential
data obtained from multiple sensors, thereby resulting in enhanced accuracy of gesture recognition.

2.2. Dynamic Time Warping

DTW is a matching algorithm that allows for the linear flexibility of a sequence. To compare
two sequences (X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yM}), the study set up the matching path W.
The matching path W can be defined as:

W = {w1, w2, . . . , wK} (1)
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Equation (2), which is designed to minimize the sum of the total distance of the matching path,
calculates the distance between the two sequences:

DTW(A, B) = min
K

∑
k=1

d(wk) (2)

Herein, the function d can be defined as:

d(w) = d(n, m) = ‖xn − ym‖ (3)

Considering that a large quantity of data is required to compute Equation (2), a dynamic
programming method can evaluate it straightforwardly with few constraints. The distance between
the two sequences is calculated using Equation (4) [11]:

D(n, m) = d(n, m) + min[D(n− 1, m− 1), D(n− 1, m), D(n, m− 1)] (4)

Herein, Matrix D is a cost matrix that accumulates the distance between the two sequences.

3. Dynamic Time Warping with Multiple Sensors

This section describes the use of multiple sensors to recognize 3D gestures, which is applicable to
various environments, and the introduction of dynamic time warping with multiple sensors (DTWMS)
to utilize sequences obtained from the multiple sensors in this study. In this experiment, three to
four Kinect sensors, which can cover the entire area of the users’ activities, were installed to observe
the movements of users. Figure 1 illustrates the angle between the installed sensors and the users’
movement trajectory.
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Figure 1 illustrates that the use of a number of sensors provides the advantage of capturing 
numerous points in the blind spot. However, owing to the fact that Kinect uses the infrared (IR) point 
cloud, as the number of sensors increase beyond three, interference occurs between the IR patterns, 
resulting in malfunction. Therefore, owing to the nature of the proposed method, wherein blind spot 
resolution and z-directional motion enhancement are the main goals, three sensors were observed to 
yield appropriate results. Therefore, to circumvent this problem in the present experiment, the 
number of Kinect sensors was reduced to three, and the experiment was conducted in an indoor 
environment. The cameras were set in an area of 4 m2 with 120° angular variation between each 
camera. 

Kinect sensors are capable of collecting users’ movement more effectively than red, green, and 
blue light (RGB) sensors; however, there is a possibility of the existence of a domain where it is not 
feasible to collect data, depending on the location and direction of the subject. Furthermore, 
measurement errors are likely to occur depending on the observation direction of the Kinect sensors; 
for example, measurement values on the z-axis from the overlooking angle of a sensor exhibit the 
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Figure 1 illustrates that the use of a number of sensors provides the advantage of capturing
numerous points in the blind spot. However, owing to the fact that Kinect uses the infrared (IR) point
cloud, as the number of sensors increase beyond three, interference occurs between the IR patterns,
resulting in malfunction. Therefore, owing to the nature of the proposed method, wherein blind spot
resolution and z-directional motion enhancement are the main goals, three sensors were observed to
yield appropriate results. Therefore, to circumvent this problem in the present experiment, the number
of Kinect sensors was reduced to three, and the experiment was conducted in an indoor environment.
The cameras were set in an area of 4 m2 with 120◦ angular variation between each camera.
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Kinect sensors are capable of collecting users’ movement more effectively than red, green, and
blue light (RGB) sensors; however, there is a possibility of the existence of a domain where it is
not feasible to collect data, depending on the location and direction of the subject. Furthermore,
measurement errors are likely to occur depending on the observation direction of the Kinect sensors;
for example, measurement values on the z-axis from the overlooking angle of a sensor exhibit the
widest margins of error [4]. Owing to this problem, the margins of error can exist in the users’ joint
information, which is extracted from the depth data [9]. The proposed method is designed to enhance
the gesture recognition accuracy by assigning higher-weighted values to data with a lower margin of
error in consideration of joint movement directions and camera locations.

In addition, when a gesture involves whole body movement, the concerned joints might not
exhibit an equal level of criticality; therefore, it is necessary to differentiate the significance of each joint
to effectively recognize the gestures that are required to perform the movement of multiple joints [10].
The dynamic movement-based comparison can be feasible if higher weight values are assigned to
joints that require more dynamic movements to differentiate the criticality of joints.

3.1. Multiple Sequence Preprocessing

Considering that the location and overlooking angle of the installed sensors vary, it is necessary
to normalize the joint-related data obtained from all the sensors. The normalization of the roll of the
obtained data is not required because the cameras are installed on flat spots, while normalization is
necessary for pan and tilt.

Considering the outer value of a joint and two vectors, which connect both the shoulders of a user
(A and B in Figure 2), the overlooking direction of a camera is calculated. By using Vector C, the joint
information is normalized to adjust the overlooking direction to the front side (pan and tilt at 0).

After normalization (front rotation and adjustment), certain issues, such as left and right decision,
arise due to the functionality of the software development kit of a few of the sensors as they were
designed for indoor game activities. Therefore, to overcome this, all the sensors joints are considered.
Then, the sequence with adequately-tracked joints is considered as the reference sequence, while
the remaining sequences from the other sensors are to be decided with respect to the reference
joint sequence.

The Figure 3 illustrates that the present experiments were conducted offline. As the purpose of
the present experiment was to enhance accuracy, the online environment was not considered as the
sequences were manually captured given that an online environment would be beyond the scope
of this research. However, using certain methods such as spotting and window sliding before input
acquisition, it is feasible to apply this method in real-time gesture recognition.
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3.2. Viewpoint Weight and Motion Weight

Kinect is a structured-light depth camera that emits a certain pattern of infrared rays, which is
then captured by the infrared camera for comparison with the reference pattern; the margins of error
thus determined is used to calculate the depth using the triangulation method.

As indicated in Figure 4, various visual weights were considered as depicted by the circles on each
joint. In this figure, the rear right camera was placed under consideration where the captured weight
joints were considered, and by considering the joint state, which is prepared by Kinect SDK, untracked
joints were omitted. However, there are still a few errors, as illustrated in Figure 4. Nonetheless, with
the advantage of tracking numerous joints, these errors exert negligible effect on the results of the
present study.
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In this process, margins of error compared to the actual location are likely to occur, and if the
distance from the sensor is larger, the margins of error—including the measurement noise—increase.
In addition, the margins of error and noise on the z-axis are higher than those on the other axes [4].
The joint location information that was obtained from the depth data exhibited a similar tendency
in terms of the margins of error [9]. Considering that 3D gestures involve motions in all directions,
the study assigns weight values to the data exhibiting a low margin of error and less noise among
multiple sequences, which are collected from multiple sensors in various directions. Previous studies
confirmed that if a joint movement is closer to the x–y axis, it exhibits a lower margin of error and less
noise [4,5]. Considering this observation, the viewpoint-weighted value wview of the element n of the
input sequence i can be calculated using Equation (5):

wview
in = max

(∣∣∣∣ (i′n × in)

‖i′n‖‖in‖+ ε

∣∣∣∣, α

)
(5)

Herein, i is the sequence obtained by carrying out the primary differentiation on the location
value sequence of a user and indicates the motion of a joint, and i’ indicates the orthogonal vector
connecting the position of the user’s joint and that of the camera; hence it is used to calculate the
direction of the user's horizontal movement. The equation assigns weighted values by calculating the
sine value of the two vectors. If the joint movement is parallel to the x–y plane, the value is 1, and if
it shifts farther, the value approximates to 0. ε is a highly marginal constant value used to prevent
calculation errors when the sizes of the two vectors are 0, and α is the minimum weight constant value
that was set for the experiment.

If the following weight value is to be applied to the DTW,

dweight(in, rm) =
J

∑
j

S

∑
s

wview
ij
sn

pj
snwmotion

rj
m

d(ij
sn, rj

m)

∑N
n=1 wview

ij
sn

pj
sn∑M

m=1 wmotion
rj

m

(6)

the distance function d in Equation (4) is replaced with dweight, as illustrated in Equation (4). Herein, i is
the input sequence, and r is the reference sequence of the database. n and m are the index numbers of
each sequence (frame number), and the input sequence is the representative sequence of the multiple
sequences obtained from the multiple sensors. s is the index number of a sensor, while S is the total
number of sensors. Two types of weighted values apart for the viewpoint weight value are additionally
used. p is the reliability of joint tracking; it can be calculated using Equation (7).

pj
sn = tj

sn
∑N

n=1 tj
sn

N
(7)

t is a value indicative of the tracking status, and j is the index number of joints. If the joint status is
normally tracked, the value is 1; otherwise, the value is 0. N is the total frame number of the input
sequence. Using Equation (7), the reliability of each joint was determined by considering the current
tracking status of each joint and the overall tracking status. The Kinect software development kit
(SDK) provides values indicative of the status when a joint is concealed by another object or when
the tracking is unsuccessful. If a joint becomes concealed and is unsuccessfully tracked, the margin of
error is excessively wide compared to the actual location of a joint. These wide margins of error can be
reduced through the weighted values.

When a gesture requires the movement of numerous joints, no two joints are to be assigned an
equal level of significance [10]. If higher weight values are assigned to a larger number of dynamic
joints that involve a larger number of movements, their significance can be differentiated. The
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weight value wmotion, which is used to differentiate the significance of joints, can be calculated using
Equation (8):

wmotion
rj

m
= max

 d(rj
m − rj

m−1)

∑
j

d(rj
m − rj

m−1)
, β

 (8)

The analysis of dynamic joints can be obtained if higher weight values are assigned to more
dynamic joints in consideration of the movement quantity whenever a gesture is made. β is the
minimum weight constant value that was set up for the experiment.

As illustrated in Figures 5 and 6, alpha indicates the contribution of the orthogonal value, and it
aids in the setting of the maximum weight value. Therefore, by reducing the value of both alpha and
beta, the effect of the weight can be adjusted. However, it was observed that if the minimum value of
both alpha and beta are set to zero (0), the results obtained are completely defective. Moreover, this
resulted in the consideration of the database’s characteristics during the adjustment.
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Considering that it is not feasible to predict the optimal values of either alpha nor beta, each
value was tested separately. For alpha, viewpoint-weighted DTW was used by setting the value of
alpha from 0 to 1 for calculating the optimal value of alpha. Moreover, identical values were used
for calculating the optimal values of beta. However, for beta, a motion-weighted DTW method was
used. Figures 5 and 6 illustrate the variations at particular values of these parameters. During the
experiment, the Free-Run game database was used, and the optimal values were obtained at alpha = 0.3
and beta = 0.4. When using the G3D database, the optimal values were obtained at alpha = 0.2 and
beta = 0.5.

4. Experiments

It is concluded that in addition to the general motion commands, the gestures used in games are
appropriate for recognizing and utilizing dynamic and diverse movements. The proposed method
was performed on two databases: the Free-Run game gesture database [18] and G3D [19]. To ascertain
the performance of multiple sensor methods for 3D gestures, both the databases were reconstructed
by capturing data using the three Kinect sensors. The main purpose of this research is to effectively
combine data from multiple sensors to improve the recognition accuracy for three-dimensioanl gestures.
To this end, we select the DTW algorithm for multiple sensors, since the DTW is better than HMM
based approaches when time is a constraint [20] and easy to extend to multiple sensors.

4.1. Results of the Free-Run Game Gesture

The target gestures used in the experiment consist of 18 types, which are inspired by the ‘free-run’
game [18]. Among the targets, 6 types are meant to point toward directions, 8 types are combat
motions, and 4 types are related to modes. Furthermore, the present experiment was carried out offline,
wherein normalization of Kinect skeleton data was conducted by considering each sensor’s position.

As illustrated in Figure 7, motion index number 1 is to flip both hands; numbers 2–7 are meant
to point toward directions with one hand; numbers 8 and 9 are meant to kick; numbers 10–15 are
meant to perform a jab, hook, or uppercut; and numbers 16–18 are meant to make big gestures with
hands to change weapons or to reload. Index number 1 corresponds to Figure 7a, index numbers
2–7 correspond to Figure 7b, index numbers 8 and 9 correspond to Figure 7c, index numbers 10–15
correspond to Figure 7d,e, and index numbers 16–18 correspond to Figure 7f.

The database includes data on six individuals who performed each gesture 17 times. The gesture
information is obtained from three Kinects installed at an interval of 120◦, and each individual
performed 18 gestures. Therefore, 1836 gestures were recorded in the database.

The beginning and ending parts of a gesture were manually excluded in advance. The (gesture
recognition) performance was measured using the ‘1-nearest neighbor (1-NN)’ method. One sequence
represents one motion, and multiple sequences, which were obtained from multiple sensors, were
manually combined to minimize the margin of measurement errors and noise. Although there are
marginal variations in identical gestures, these are due to handedness.

To verify the respective performance of the viewpoint-weighted method with multiple sensors and
motion-weighted method with multiple sensors, the test was conducted using each of them separately
and then by using a combination of both the methods. The 1-NN method requires a candidate for each
class; therefore, the samples with the smallest inner-class distance were selected. The manually created
representative sequence of each gesture was used to measure performance through the 1-NN method.
The experimental results of the weighting methods are illustrated in Figure 4. The vertical g1 to g18
represent the input gesture types, while the horizontal g1 to g18 indicate the recognition results.
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(c) kick; (d) jab; (e) uppercut; (f) change weapons.

Figure 8 illustrates the low accuracy result in g12 to g15. These gestures are hook and uppercut,
which are moved with “depth direction” and “draw an arch.” For deeper orthogonal movement, the
gesture accuracy decreases with respect to others in standard DTW with one sensor. The average
accuracy of a standard DTW with one sensor is 75.65%.
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Result

Input

Figure 8. Result of standard DTW with a single sensor.

Figures 9 and 10 illustrate that after using multiple sensors, a large majority of the gestures were
enhanced. The results demonstrate that the recognition performance was considerably enhanced.

The average accuracy of standard DTW with multiple sensors is 79.59%. The average accuracy of
motion-weighted DTW with multiple sensors is 83.75%.
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Figure 9. Result of standard DTW with multiple sensors.
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Figure 10. Result of motion-weighted DTW with multiple sensors.

The experimental results, which were determined using the standard DTW with one sensor
(Figure 8), demonstrate that g12 to g15 exhibit the highest misrecognition rates (or the lowest
recognition rates). g12 to g15 are the combating gestures of hook and uppercut. The standard DTW
with multiple sensors and motion-weighted DTW with multiple sensors (Figures 9 and 10) displayed
an enhancement of the overall performance. However, g10–g15 underwent modest enhancements.
The concerned gestures (g10–g15) are combat motions such as jab, hook, and uppercut, where the
motions on the z-axis had a relatively larger number of characteristics. When the motion-weighted
values were excluded and only the viewpoint-weighted values were taken into consideration, the
accuracy of numerous gestures on the z-axis was enhanced significantly. The average recognition
accuracy of the standard DTW with one sensor was measured at 75.65%, standard DTW with multiple
sensors at 79.59%, motion-weighted DTW with multiple sensors at 83.75%, and viewpoint-weighted
DTW with multiple sensors at 93.33%, as illustrated in Figure 11; the average recognition accuracy of
the fully-weighted DTW with multiple sensors was measured at 97.77%, as illustrated in Figure 12.
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4.2. Results on G3D Gesture 

Numerous extant public action databases containing video sequences are available. However, 
for gaming that requires a variety of controls, commonly used action recognition databases are 
insufficient to cover the various movements of the user performed during the game. Public databases 
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are variations between performing an actual action and a gaming action for control [19]. 

MAX=
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g4 0.00 0.00 0.00 0.84 0.00 0.12 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g5 0.00 0.00 0.00 0.00 0.83 0.00 0.13 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00
g6 0.00 0.00 0.00 0.08 0.00 0.91 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g7 0.00 0.00 0.00 0.00 0.06 0.00 0.90 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
g8 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
g9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
g10 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.97 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g11 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g12 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.94 0.00 0.00 0.00 0.00 0.00 0.00
g13 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.97 0.00 0.00 0.00 0.00 0.00
g14 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.96 0.00 0.00 0.00 0.00
g15 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00
g16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00
g17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.03
g18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.93

Result

Input

MAX=

306 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18

g1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g2 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
g3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g4 0.00 0.00 0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g5 0.00 0.00 0.00 0.00 0.96 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
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4.2. Results on G3D Gesture

Numerous extant public action databases containing video sequences are available. However, for
gaming that requires a variety of controls, commonly used action recognition databases are insufficient
to cover the various movements of the user performed during the game. Public databases containing
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both video and skeleton data for sports and exercise motion actions exist; however, there are variations
between performing an actual action and a gaming action for control [19].

The G3D database contains 20 gaming gestures (punch right, punch left, kick right, kick left,
defend, golf swing, tennis swing forehand, tennis swing, backhand tennis serve, throw bowling ball,
aim and fire gun, walk, run, jump, climb, crouch, steer a car, wave, flap, and clap). Moreover, these
gestures were captured through a Kinect sensor in an indoor environment. In [19], the authors also
encountered miss-tracked joints, which were due to the depth sensor’s limitation and various ranges
of the gestures (as indicated in Figure 13). Therefore, the present method of using multiple sensors
has provided an appropriate solution to this problem. Consequently, it was decided to select the
G3D database. However, as a result of this selection, the present study encountered the challenge
that it accepts datasets of only one sensor. Therefore, in applying this method, these datasets were
recaptured using three Kinect sensors. Data capturing was carried out in the room where the Kinects
were installed at intervals of 120◦, and all the gestures were repeated 20 times by eight people.
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Figure 13. Example of the G3D database. (a) Shows forward captured data. It includes miss-tracked
problem on left hand; (b) shows the golf gaming gesture. Due to sensor’s blind spot, there are
mistracked joints on the left leg. The problem of mistracking on (a)’s both hands and (b)’s right hand
are due to adjacent joints of both hands

Table 1 presents the overall results of each database. All the methods using multiple sensors
demonstrate higher accuracy than that of a single sensor, albeit exhibiting negligible enhancement
when no weights were used. As illustrated in the result figures presented in Section 4.1, the use of
motion weights exhibited reasonable performance in motion where numerous joints could move, and
the use of viewpoint weights exhibited high performance for gestures moving perpendicular to the
sensors. As a result, the best results were obtained from both the databases when all the weights
were used.
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Table 1. Accuracy results on each database.

Database Standard
DTW

DTW with
Multiple
Sensors

Motion-
Weighted

DTW

Viewpoint-
Weighted

DTW

Fully
Weighted

DTW

Free-run (18 gestures) 76.65% 79.55% 83.75% 93.33% 97.77%
G3D (20 gestures) 69.55% 73.50% 81.20% 89.95% 92.05%

4.3. Time Cost and Comparison with Other Methods.

To obtain the value of the weight, it requires a constant range of time, and this has exhibited high
accuracy compared to other methods that were used previously. Table 2 illustrates the calculated time
cost. In the present method, the time costs depend on the number of targeted gestures and the length
of the sequences carried out in a limited time.

Table 2. Average time cost for to make the results on each database.

Database Standard
DTW

DTW with
Multiple
Sensors

Motion-
Weighted

DTW

Viewpoint-
Weighted

DTW

Fully
Weighted

DTW

Free-run (18 gestures, average number
of frames per each gesture is 180) 4.37 ms 11.61 ms 11.69 ms 29.86 ms 30.03 ms

G3D (20 gestures, average number of
frames of each gesture is 90). 2.86 ms 7.86 ms 7.89 ms 19.41 ms 19.45 ms

5. Conclusions/Recommendations

In this study, which aims to develop a 3D motion recognition algorithm applicable to various
environments that enables to expand the application of the CPS, the methods of the standard DTW
with one sensor, motion-weighted DTW with multiple sensors, view-point-weighted DTW with
multiple sensors, and fully-weighted DTW with multiple sensors are proposed and compared. The
viewpoint-weighted DTW with multiple sensors enhances the performance by preventing joint
measurement errors and noise due to the sensor’s measurement tolerance. The viewpoint-weighted
DTW with multiple sensors effectively utilizes multiple sequences in the case of the gestures that are
characterized mainly by motions on the z-axis. The motion-weighted DTW with multiple sensors
enhances recognition performance by comparing multiple joint sequences effectively. Considering that
the fully-weighted DTW uses multiple sensors and can recognize various gestures without directional
or motional constraints, it is likely to be useful in various applications.

Considering that time cost depends on the size of the database and that it contains a substantially
large number of gestures, there is a requirement for cost reduction. The present authors intend to
overcome this challenge by using the matching algorithms in the gesture recognition systems in future
research studies. It will perform better by pre-choosing the appropriate candidate for the gesture while
analyzing the database by replacing the empirical value with the analyzed results. This will provide
considerable cost reductions during gesture processing.
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