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The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA), 1-acyl-sn-glycerol-3-phosphate] exerts critical reg-
ulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is
elevated in pathology (1). In vivo, “LPA” exists as distinct molecular species, each having a single fatty acid of
varying chain length and degree of unsaturation covalently attached to the glycerol backbone via an acyl, alkyl,
or alkenyl link. These species differ in affinities for the individual LPA receptors [(LPARs), LPA1-6] and coupling
to G proteins (2). However, LPA 18:1 has been and continues to be themost commonly utilized species in report-
ed studies. The actions of “LPA” remain poorly defined in oral biology and pathophysiology. Our laboratory has
addressed this knowledge gap by studying in vitro the actions of the major human salivary LPA species [18:1,
18:0, and 16:0 (3)] in human oral cells (4–7). This includes gingival fibroblasts (GF), which our flow cytometry
data from multiple donors found that they express LPA1-5 (6). We have also reported that these species are
ten-fold elevated to pharmacologic levels in the saliva and gingival crevicular fluid obtained from patients with
moderate–severe periodontitis (8). As the potential of LPA to regulate transcriptional activity had not been exam-
ined in the oral system, this study usedwhole human genomemicroarray analysis to test the hypothesis that LPA
18:1-treated human GF would show significant changes in gene transcripts relevant to their biology, wound-
healing, and inflammatory responses. LPA 18:1 was found to significantly regulate a large, complex set of
genes critical to GF biology in these categories and to periodontal disease. The raw data has been deposited at
NCBI's GEO database as record GSE57496.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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The data has been deposited with NCBI's GEO database as record
GSE57496, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE57496.

Experimental design, materials and methods

Oral fibroblast isolation and culture

sity Dental Clinic. The gingival tissue used was attached gingiva ob-
tained from healthy, young (mean age: 25–35 years; five males, four
females) non-smoking patients of Caucasian descent. They were not
taking any medications and had no evidence of periodontal disease.
The study conformed to the Declaration of Helsinki guidelines and
was approved by the Creighton University Institutional Review
Board. Informed written consent was obtained from all donors. GF
were isolated by rinsing the gingival tissue six times [in Hank's bal-
anced salt solution (HBSS), Invitrogen, Grand Island, NY, USA], in
the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Fig. 1. Gel image (A) and electropherogram (B) of amplified cDNA samples. The first lane
shows the reference DNAmolecularweight ladder (in nucleotides, nt). The lowestmigrat-
ing, green band is an internal standard. Scaling of the y-axis is done automatically, relative
to the strongest signal within a single run.
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order to diminish microbial contaminants and then finely mincing
with scalpels inside a 35 mm dish (Falcon, Fisher Scientific, Waltham,
MA, USA) containing 2 ml of complete media [Dulbecco's modified
Eagle medium (DMEM, Invitrogen), with 10% defined fetal bovine
serum (Hyclone, Logan, UT, USA) and 100 μg/ml Primocin (Invivogen,
San Diego, CA, USA)]. The GF were allowed to explant from theminced
tissue (mean time ~14 days) in complete media with changes every
three days.

Of note, the GF isolates we have used to study mitogenesis, growth,
chemotaxis, in vitrowound-healing, andelevationof intracellular calcium
(4–7)were cultured from young, healthymale and female patients in the
same age range as the donors for this study. Statistical analyses showed
no detectable response differences to LPA 18:1 treatment between
isolates.

LPA treatment

In order to preserve cellular responses closest to in vivo, pass 2
GF were used for mRNA isolation. The GF were seeded at 1 × 104

cells/2 ml in 35 mm dishes, and incubated in a 5% CO2, 37 °C cell cul-
ture incubator for two days until approximately 90% confluent. The
cells were washed four times with HBSS and then serum-starved
for 24 h in serum-free DMEM with Primocin. This step was done to
make sure that any LPA-mediated effects from the serum the cells
were cultured in would be significantly diminished or absent.
Human GF can be completely deprived of serum for this period of
time (unpublished observations from our previous studies) without
triggering apoptosis.

LPA (18:1) (Sigma-Aldrich, St. Louis, MO, USA) stock was prepared
at 1 × 10−2 M in 0.25% de-lipidated (fraction V) bovine serum albumin
(BSA) (Sigma-Aldrich) in serum-free DMEM. This is one of the major
unsaturated LPA species (1,2) that is present in normal human saliva
(3,8). Each donor's cells were individually treated for 2 h or 8 h with
2 ml 1 × 10−5 M LPA in serum-free DMEM. Controls were treated
with an equal volume of 0.25% fraction V BSA in serum-free DMEM.

RNA isolation

The cells from each donorwere individually trypsinized, washed once
with ice-cold phosphate-buffered saline (PBS), held on wet ice, and
counted. The cells from the nine donors were then grouped into 3 pools
of 3000 cells in total, each containing 1000 cells/donor [pool A= donors
1–3 (2M, 1 F), pool B= donors 4–6 (1M, 2 F), and pool C= donors 7–9
(2 M, 1 F)]. Miltenyi's Biotec's (San Diego, CA, USA) proprietary
SuperAmp™bufferwas used todirectly lyse the cell pools using their pro-
tocol for cells (http://www.miltenyibiotec.com/~/media/Images/
Products/Import/0006000/IM0006042.ashx). The lysates were quick-
frozen on dry ice and shipped to the company for microarray analysis.

Microarray analysis

Aswe avoided larger-scale expansion of the pass 2 GF isolates beyond
35 mm dishes, the SuperAmp™ technology was then utilized at Miltenyi
Biotec. Their proprietary amplification method is based on a global PCR
protocol using cDNA derived frommRNA. Magnetic bead (MACS®) tech-
nology was used to isolate the mRNA. The average length of the highly
amplified cDNA products ranged between 200–1000 bp. A ND-1000
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA)
was used to quantify the cDNA. The integrity of the cDNA was checked
via the Agilent 2100 Bioanalyzer platform (Agilent Technologies, Santa
Clara, CA, USA). The results of the Bioanalyzer run are visualized (Fig. 1)
using the Agilent 2100 Bioanalyzer expert software. The gel image
(A) and electropherogram (B) of the amplified cDNA samples are shown.

LPA-induced gene transcription for each treatment pool and controls
was assessed by the company. cDNAs (250 ng of each sample) were
used as template for Cy3 and Cy5 labeling, which was performed
according to Miltenyi's proprietary protocol. The corresponding Cy3-
and Cy5-labeled cDNAs were combined and hybridized overnight
(17 h, 65 °C) to an Agilent Whole Human Genome Oligo Microarrays
4 × 44 K using Agilent's recommended hybridization chamber and
oven. Control sampleswere labeledwith Cy3 and experimental samples
were labeled with Cy5.

In the final steps, the microarrays were washed once for 1 min at
room temperature with 6× SSPE buffer containing 0.005% N-
lauroylsarcosine, followed by a second 1 min wash with pre-heated
(37 °C) 0.06× SSPE buffer containing 0.005% N-lauroylsarcosine. The
last washing step (30 s) was performed with acetonitrile.

Image and data analysis

Themicroarray image files were read out and processed using Agilent
Feature Extraction Software (FES), which reads feature intensities and ra-
tios (including background subtraction and normalization), rejects out-
liers and calculates statistical confidences (p-values). The output data of
the Agilent Feature Extraction software includes gene lists with the com-
plete raw data sets, referred to as single-experiment raw data list; the
complete descriptions can be found in the Agilent G2567AA Feature.

Extraction software v.9.1 reference guide

For determination of differential gene expression FES-derived out-
put data files, Miltenyi further analyzed the data using the Rosetta
Resolver® gene expression data analysis system (Rosetta Biosoftware,
www.rosettabio.com). This software's analytical range includes the
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Fig. 2. An example the data. One array experiment (no. 1) is shown. This is a scatter plot of the signal intensities of all spots. The signal intensities of each feature are represented by a dot
and shown in double logarithmic scale. X-axis: Cy3-log signal intensity; y-axis: Cy5-log signal intensity. Diagonal red lines define the areas of 2-fold differential signal intensities. Blue
cross: unchanged genes. Red cross: significantly up-regulated genes (p-value b 0.01). Green cross: significantly down-regulated genes (p-value b 0.01). Gray cross in legend: summary
of significantly up- and down-regulated signatures.
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capacity to visualize thedata analysis results as a double-log scatter plot.
A double-log scatter plot for experiment number one is shown in Fig. 2
as an example. Rosetta Resolver® analysis results in a level of signifi-
cance of p ≤0.01. Thus, genes from the microarray experiments which
showed ≥ , or ≤ 2-fold differences between the signal from the LPA-
treated samples and their untreated controls were designated as signif-
icantly changed.
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