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A B S T R A C T   

Phase aberration caused by the skull is a major barrier to achieving high quality photoacoustic images of human 
and non-human primates’ brains. To address this issue, time-reversal methods have been used but they are 
computationally demanding and slow due to relying on solving the full-wave equation. The proposed approach is 
based on model-based image reconstruction in the frequency-domain to achieve near real-time image recon
struction. The relationship between an imaging region and transducer array elements can be mathematically 
described as a model matrix and the image reconstruction can be performed by pseudo-inverse of the model 
matrix. The model matrix is numerically calculated due to the lack of analytical solutions for transcranial ul
trasound. However, this calculation only needs to be performed once for a given experimental setup and the same 
acoustic medium, and is an offline process not affecting the actual image reconstruction time. This non-iterative 
mode-based method demonstrates a substantial improvement in image reconstruction time, being approximately 
18 times faster than the time-reversal method, all while maintaining comparable image quality.   

1. Introduction 

The brain, one of the most complex organs in our body, is still an 
unknown territory, and understanding its mechanisms is crucial to gain 
fundamental knowledge about human behavior, development, aging, 
disorder, or diseases [1,2]. While a wide range of different imaging 
modalities have been developed to visualize the structure of the nervous 
system and changes in brain functions, a comprehensive understanding 
of the brain requires a single map integrating in vivo brain functions at 
different spatiotemporal scales [3]. However, most current imaging 
modalities are limited in their ability to image the brain of human and 
non-human primates at different length scales, which hinders the crea
tion of comprehensive brain maps. Therefore, recent studies on brain 
functions have dominantly utilized decoupled approaches. Two-photon 
microscopy has been used to image the brain of small animals at a 
microscopic scale, but it is not suitable for imaging the human brain due 
to its limited penetration depth [4,5]. On the contrary, functional 
magnetic resonance imaging (fMRI) can image the whole human brain 
at a macroscopic scale, but suffers from a poor spatiotemporal resolution 
[6,7]. Therefore, addressing this gap is crucial to achieve a better un
derstanding of brain structures and functions. 

Photoacoustic tomography (PAT) is a hybrid imaging modality that 
can embrace both microscopic and macroscopic realms with a consistent 
contrast mechanism and has the potential to fill the above-mentioned 
gap [8,9]. When a region of interest (ROI) is illuminated by a short 
laser pulse, the scattered light is absorbed by biomolecules such as 
oxyhemoglobin, deoxyhemoglobin, lipid, melanin, etc. The absorbed 
optical energy is then converted into heat which increases the temper
ature, resulting in thermal expansions. These thermoelastic expansions 
induce ultrasound waves and are subsequently detected by ultrasound 
transducer outside the ROI to form a photoacoustic image that maps the 
optical absorption of the biological tissue [10]. Since acoustic waves 
scattering is orders of magnitude weaker than that of optical waves in 
tissue, PAT provides higher resolution with greater penetration depth 
than optical imaging. Unlike conventional ultrasound imaging where 
the contrast depends on the acoustical properties of the tissue, PAT le
verages contrast pertaining to the optical absorption of biomolecules, 
and therefore is better suited to examine brain functions including blood 
oxygenation and neurovascular coupling. Furthermore, PAT is free from 
ionizing radiation, and therefore it can be used on patients who require 
frequent monitoring of brain functions. 

Although PAT can be used for both microscopic and macroscopic 
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scale brain imaging to provide information about brain vasculature, 
oxygenation, brain responses to physiological and pathological chal
lenges, and the metabolism of oxygen and glucose [11], this imaging 
modality still has some hurdles to overcome, and a major challenge is 
the phase aberration from the skull. Transcranial PAT has been used to 
probe the structure and hemodynamic responses of small animals [12, 
13] and human infants due to the availability of acoustic windows [14, 
15]. However, adult humans or non-human primates have relative thick 
skulls that can severely distort the photoacoustic (PA) signals and cause 
significant image reconstruction artifacts [16–18]. Therefore, it is 
important to develop an image reconstruction algorithm to compensate 
for the skull-induced distortion. 

Recently, the time-reversal (TR) method has been actively studied in 
PAT due to its ability to correct distorted PA signals in heterogeneous 
media and provide accurate images by incorporating information about 
the medium heterogeneities (e.g., from CT scans [16]). However, the TR 
method necessitates full-wave simulations of wave propagation from the 
receivers to the ROI. This process can be time-consuming and may 
impede real or near real-time functional imaging of the brain [16, 
19–21]. Although the TR method can be employed as a post-processing 
tool to mitigate image artifacts, real-time functional imaging offers 
many essential advantages that are particularly significant in applica
tions such as guiding neural stimulation and brain-computer interfaces 
(BCI), where online neuro-feedback is of utmost importance. 

On the other hand, model-based (MB) methods have also been 
extensively studied because of their potential to achieve high quality 
images and fast image reconstruction [22–26]. From the PA forward 
model, PA signals can be represented as a linear combination of the 
initial pressure distribution p0 and time derivative of Green’s functions, 
and a model matrix (MM) can be formulated using this relation to 
establish a link between the PA signals and p0. By employing inversion 
schemes, p0 can be extrapolated from the acquired PA signals [27]. 

While delay-and-sum (DAS) [28] and back-projection (BP) [29] 
methods are computationally less demanding than MB methods, MB 
methods can provide high-quality images by accounting for sensor 
properties such as the element shape [26,30]. Furthermore, it has a more 
powerful quantification capacity that can be utilized for functional im
aging. Provided that the experimental configuration remains identical, 
meaning the same medium and the transducer array, the MM calculation 
only needs to be performed once prior to imaging. Thereby, MB methods 
enable fast image reconstruction compared to TR method. However, 
most of the MB methods are only applicable to either homogeneous or 
weakly heterogeneous media [22–25,31,32]. For highly scattering 
media, iterative MB methods have been applied [33], but it remains a 
question whether non-iterative MB methods can be extended to highly 
scattering media such as the skull. 

The main contribution of this work is the introduction of the first 
non-iterative MB method for real-time transcranial PAT. Prior to imag
ing, the MM is numerically calculated in the time-domain, which is then 
transformed to the frequency domain by employing the fast Fourier 
transform (FFT). To estimate the original initial pressure distribution for 
image reconstruction from the radio-frequency (RF) data received by the 
transducer array, pseudo-inversion of the MM is implemented. Although 
the calculation of the MM is still computationally intensive, it can be 
performed offline prior to imaging and only needs to be computed once 
for the same experimental configuration enabling repeated use for real- 
time or near real-time functional imaging. The performance of the FDMB 
method is evaluated through analysis of analytical RF data obtained 
from a 2D homogeneous medium, followed by numerical RF data ob
tained from a 2D heterogeneous medium using a rhesus monkey skull. 
To create realistic conditions, numerical RF data calculations take into 
account factors such as acoustic absorption, sensor frequency response, 
Gaussian noise, sensor location errors, and shear waves. The results 
indicate that the proposed FDMB method enables PAT image recon
struction through a rhesus monkey skull with similar image quality to 
the traditional TR method while achieving considerably faster 

reconstruction time. 
The structure of this paper is as follows: Section 2 presents the theory 

of the FDMB method including the MM, pseudo-inversion, and data 
reduction. In Section 3, the performance of the FDMB method for ho
mogeneous and heterogeneous media is assessed. Section 4 presents a 
discussion and conclusion of this work. 

2. Methods 

2.1. Photoacoustic forward problem 

The acoustic pressure p(x, t) in the forward photoacoustic model can 
be described by the following linear wave equation in the absence of 
absorption [34]: 

ρ(x)∇⋅
(

1
ρ(x)∇p(x, t)

)

−
1

c2(x)
∂2p(x, t)

∂t2 =
Γ

c2(x)
∂H
∂t

(1)  

where c is the speed of sound, and ρ is the density, and both of which are 
functions of space. Γ is the Grüneisen parameter indicating light 
absorbing efficiency which is defined as Γ =

c2β
Cp

, where β is the thermal 
coefficient of volume expansion and Cp is the specific heat in constant 
pressure. When a short-pulsed laser excitation is within a stress 
confinement [35], the heating function can be separated as H =

Hx(x)δ(t) where Hx(x) is the heat deposited in the fluid per unit volume. 
The solution of Eq. (1) can be shown to be (please refer to the appendix): 

p(x, t) =
∫

p0(x′)

c(x′)2
dG(x, t : x′, t′)

dt
dx′ (2)  

where p0(x′) is the initial pressure (t = 0) at location x′, and dG
dt is the time 

derivative of the Green’s function which constitutes the time domain 
MM. When the medium is homogeneous, c(x′) = c0. Eq. (2) can be dis
cretized and rewritten in a summation form, which can be further 
transformed into the frequency domain by applying the Fourier trans
form (FT) as shown below: 

∑Ns

j=1
p̂
(
xj,ω

)
=

∑Ns

j=1

∑Np

i=1
jω

p0
(
x′

i

)

c(x′
i)

2 Ĝω
(
xj, x′

i

)
(3) 

Let p0
(
x′

i
)

be the initial pressure distribution where 1 ≤ i ≤ Np and Np 

being the total number of pixels to represent the ROI. Let p̂
(
xj,ω

)
be the 

PA signal received by the sensor where 1 ≤ j ≤ Ns and Ns being the total 
number of the sensors. Assuming Ĝij is the frequency-domain Green’s 
function between pixel i and sensor j, Eq. (3) can be written using a 
single matrix operation: 

P(ω) = M(ω)⋅P0 (4)  

where P(ω) = [p̂(x1,ω); p̂(x2,ω);⋯; p̂(xN ,ω) ] is the vector for the sen
sors at frequency ω, P0 = [p0

(
x′

1
)
; p0

(
x′

2
)
;⋯; p0(x′

Np
)] is the vector for the 

initial pressure distribution. M(ω) =
jω
c2⋅
{

Ĝij
}

1≤i≤Np ,1≤j≤Ns 
is the 

frequency-domain MM which represents the core of the discretized 
forward model describing the relation between p̂

(
xj,ω

)
and p0

(
x′

i
)
. 

2.2. Inverse problem 

The photoacoustic forward model can be used to calculate the PA 
signals at sensor locations using the linear equation described by Eq. (4). 
For the inverse problem where we are given P(ω), P0 can be obtained 
using a method based on the least square error (LSQR) [36]: 

P0,sol = argmin‖M⋅P0 − P‖2
2 (5)  

where P0,sol is an approximated initial pressure distribution and ‖⋅‖2 
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refers to l2 norm. Another option is the Moore-Penrose pseudo inverse 
[37]: 

P0 = M†(ω)⋅P(ω) (6)  

where M†(ω) =
(
MTM

)− 1MT is the pseudo-inverse, and T denotes the 
conjugate transpose operator. Normally, directly implementing Eq. (6) 
returns inaccurate solutions due to noise and limited data. Regulariza
tion can be employed to address this problem. A commonly used regu
larization scheme is the Tikhonov regularization [38,39], which yields 
the penalized least-square problem: 

P0,sol = argmin‖M⋅P0 − P‖2
2 + λ‖P0‖

2
2 (7)  

where λ is the regularization parameter. Eq. (7) can be expressed as: 

P0,sol =
(
MT M + λI

)− 1MT P (8) 

Several methods such as L-curve [40] and generalized cross valida
tion (GCV) [38] methods can be used to determine the optimized λ. 
Another common regularization scheme to stabilize the inversion is the 
truncated singular value decomposition (TSVD) [37,41]. In this case, M 
can be decomposed as: 

M = USVT (9)  

where U = [u1, u2,…, um] ∈ Rm×m and V = [v1, v2,…, vm] ∈ Rn×n are 
orthogonal matrices, and S = diag[σ1, σ2,…, σn] ∈ Rm×n is a diagonal 
matrix containing singular values σn which are ordered so that 
σ1 ≥ σ2 ≥ ⋯ ≥ σn ≥ 0. Regularization by the TSVD can be implemented 
by replacing singular values smaller than the threshold σk to zeroes. 
Then, the pseudo-inverse of M based on the singular value decomposi
tion (SVD) is: 

M† = VS†UT (10)  

where S† = diag
[
σ− 1

1 , σ− 1
2 ,…, σ− 1

k
]
, k ≤ n, and k is the total number of 

non-zero singular values. Moore-Penrose pseudo inverse with the TSVD 
is used throughout this study. 

2.3. Image reconstruction 

Fig. 1 illustrates the workflow of the proposed algorithm. For het
erogeneous media where analytical solutions are not available, full- 
wave simulations are first performed using the k-Wave MATLAB 
toolbox [42] to calculate the MM in the time domain. The calculated MM 
is then converted into the frequency domain by employing FFT. It should 
be noted that the frequency domain MM can be also computed directly 
by using a frequency-domain wave solver, without using FFT. Next, the 
pseudo-inverse of the MM is performed and the TSVD is selected as the 
regularization strategy. As the numbers of imaging pixels and transducer 
elements increase, the memory requirements for building the MM can 
become substantial, making it challenging to perform fast image 
reconstruction. To tackle this problem, down-sampling in the frequency 
domain is applied and frequency components above a threshold fre
quency are removed (truncation). Since most of the high frequency 
components are attenuated significantly when the PA signals pass 
through the skull layer due to its high absorption, it is possible to 
truncate the frequency components above a certain threshold. For this 
study, a down-sampling factor of 4 is selected and frequency compo
nents above 2 MHz are eliminated, unless otherwise specified. This 
offline process is performed prior to imaging and only requires to be 
conducted once for a given experimental setup and medium. Therefore, 
this process does not affect the actual image reconstruction time. 

For the online process, the acquired RF data is transformed into the 
frequency domain via FFT. Since the MM is truncated and down- 
sampled, the RF data should also be truncated and down-sampled to 
match the frequency components before multiplication of the inversed 
MM and RF data (Psol = M†⋅P(ω)). By applying the inverse fast Fourier 
transform (IFFT) to Psol, the time-domain PA signals from the ROI is 
recovered and the initial pressure distribution P0 can be obtained at t =

0. However, since the RF data and the MM are truncated and down- 
sampled in the frequency domain, IFFT cannot be directly employed. 
Therefore, the following strategy is adopted to recover P0. The inverse 
discrete Fourier transform can be expressed as follows: 

Fig. 1. Workflow of the frequency-domain model-based image reconstruction.  
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x(n) =
1
N

∑N− 1

k=0
X(k)e

j

(

2πn
N

)

k
(11)  

where x(n) is the sampled time series, N is the total number of samples, 
and X(k) is the sampled frequency signal. To recover P0, only x(0) is 
needed where n = 0. Eq. (11) is then simplified to Eq. (12): 

x(0) =
1
N

∑N− 1

k=0
X(k) (12)  

which is the summation of frequency components. The advantage of 
using Eq. (12) is that the truncated and down-sampled frequency data 
can be used to recover P0 and it is faster for processing large data 
compared to directly using the IFFT, which will enable us to achieve 
faster image reconstruction. 

2.4. Model matrix and RF data generation 

Numerical studies are conducted to verify the proposed FDMB 
method in 2D. The k-Wave MATLAB toolbox is used to generate the MM 

and numerical synthetic RF data, except for the homogeneous medium 
case, where analytical solutions are available. The speed of sound (SOS) 
and density of a rhesus monkey skull are extracted from a computed 
tomography (CT) image and are employed as the input to k-Wave. To 
produce more realistic RF data, the following factors are added in 
sequential order to examine their individual impact on imaging: sound 
absorption, sensor frequency response, Gaussian noise, sensor location 
error, and mode conversion. A series of simulations are needed to fully 
compute dG

dt in order to establish the MM. In simulations, a single 
transducer element is assigned as a source with an initial pressure being 
1 Pa, whereas every image pixel in the ROI is a receiver. The received RF 
data at each receiver location is dG

dt for the specific source and receiver 
locations. This simulation is repeated for all transducer elements and the 
FFT is applied to dG

dt to obtain the frequency domain MM as indicated by 
Fig. 1. 

2.5. Performance evaluation metrics 

The accuracy of the FDMB method is assessed by the peak-signal-to- 
noise-ratio (PSNR) and the structural similarity (SSIM) to quantify the 

Fig. 2. (a) Initial pressure distribution of a paraboloidal source. Image reconstruction by (b) the IMMI method and (c) the FDMB method with the analytically 
calculated MMs. (d) Comparison between the true image, images obtained by the IMMI and the FDMB on a line crossing the center of the paraboloid source, as 
indicated by the white dashed lines in (a). 
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quality of the reconstructed images. 

2.5.1. Peak-signal-to-noise-ratio (PSNR) 
PSNR can be defined as a function of mean square error (MSE): 

PSNR = 20log10

(
pmax
̅̅̅̅̅̅̅̅̅̅
MSE

√

)

(13)  

where pmax is the maximum pixel value of the image. 

2.5.2. Structural similarity (SSIM) 
SSIM is an image quality index that consists of luminance, contrast, 

and structure comparison terms: 

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
(13)  

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(14)  

s(x, y) =
σxy + C3

σxσy + C3
(15)  

where C1 = (K1L)2
,C2 = (K2L)2 and C3 = C2

2 . L is the dynamic range of 
the pixel and L = 255 is used for 8 bits/pixel gray scale images. K1 =

0.01 and K2 = 0.03 are used [43]. The general form of SSIM is defined as 
Eq. (17): 

SSIM(x, y) =
(
2μxμy + C1

)(
2σxσy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (17) 

Averaging the SSIM across the ROI results in a single index that can 
be used to evaluate the quality of the reconstructed images. 

3. Numerical results 

In this section, 2D numerical analysis is performed to quantitatively 
evaluate the accuracy and image reconstruction time of the FDMB 
method. All reconstructions are performed using a graphic processing 
unit (GPU). The computer workstation is equipped with an AMD Ryzen 9 
5950 X, 128 GB of memory at 3200 MHz, and an NVIDIA GeForce RTX 
3090 (24 GB VRAM). The truncation value for the TSVD is selected for 
each case based on the best image quality that can be obtained. The 
pseudo-inverse is performed by “pinv” in MATLAB 2022. 

Fig. 3. (a) Speed of sound map, (b) density map, and (c) longitudinal wave absorption coefficient map of a rhesus monkey skull. (d) Blood vessel used in the 
numerical simulation. 
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3.1. MB reconstruction in a homogeneous medium 

The FDMB method is first analytically evaluated in a lossless ho
mogeneous medium. The SOS is 1500 m/s and the density is 1000 kg/ 
m3. As a benchmark, the interpolated model matrix inversion (IMMI) 
method [25] is used for comparison. The IMMI method is also a 
model-based image reconstruction scheme but is performed in the 
time-domain. The optical absorption distribution of a truncated parab
oloid source is used, and it can be described as: 

Hx(x, y) =

⎧
⎪⎨

⎪⎩

1 −
x2 + y2

r2
0

, x2 + y2 < r2
0

0,&otherwise
(18) 

where r0 = 1 cm is the radius of the paraboloid source, which is 
illustrated in Fig. 2(a). Since p0 = βc2

Cp
= ΓHx(x, y), the solution of Eq. (2) 

at the sensor location r from the paraboloid center is [25]: 

p(t) =
Γ

4πc
⋅
∂
∂t

{

ϕ(t)
[

1 −
r2 + c2t2

r2
0

]

+
4ct
r2

0
rsin

[
ϕ(t)

2

]}

(19)  

ϕ(t) =

⎧
⎪⎨

⎪⎩

2cos− 1
(

r2
0 − c2t2 − r2

2ctr2

)

,
⃒
⃒r2

0 − c2t2 − r2
⃒
⃒
〈
2ctr2

0,&otherwise
(20) 

PA signals from the given source are estimated at r = 40 mm and the 
number of transducer elements is 512 that are evenly distributed across 
360◦ . To generate the synthetic RF data received by the sensors, a 
sampling frequency of 15 MHz is used, and the same sampling frequency 
is used when constructing the MM. The 2D analytical frequency-domain 
Green’s function G =

j
4H

(2)
0 (kr), where H(2)

n is the Hankel function of the 
second kind, is used for directly constructing the frequency-domain MM. 
For image reconstruction, the number of pixels is 200 for each axis and 
the pixel size is 0.2 mm. The truncation value σk = 5.6 × 10− 41 is used 
for this study, which is the default value given by MATLAB. Down- 
sampling is not implemented while a threshold frequency of 2 MHz is 
used for truncation in the FDMB method. 

Fig. 2(b) and (c) show the reconstructed images obtained by the 
IMMI and the FDMB methods, respectively. While the IMMI achieves 
almost exact reconstruction as shown in Fig. 2(d), the reconstructed 

Fig. 4. Flowchart of numerical RF data calculation with realistic conditions for a transcranial photoacoustic tomography. Effect of (a) acoustic absorption, (b) sensor 
frequency response, (c) Gaussian noise, and (d) random sensor location error within one wavelength. 
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image obtained by the FDMB method is shown to be less accurate than 
the IMMI method. Specifically, the FDMB method returns a slightly 
smaller paraboloid radius than the IMMI method does. It should also be 
noted that the FDMB method returns negative values around the edge of 
the paraboloid which are non-physical. The IMMI method, on the other 
hand, does not have this issue. Compared to the IMMI method, however, 
the FDMB method is considerably faster in computing the MM and 
reconstructing the image (>100 times and > 90 times faster, respec
tively). Furthermore, since frequency truncation can be performed by 
the FDMB method, the resulting MM size can also be considerably 
smaller than that of the IMMI method, leading to a less demand on the 
computational resource. It should be noted that this study does not 
conclude that the FDMB method is always faster than time-domain 
model-based methods, as IMMI is only one type of time-domain 
model-based method. 

3.2. MB reconstruction in a heterogeneous medium 

To validate the FDMB for transcranial PA imaging, numerical sim
ulations are performed in a heterogeneous medium. For the MM and 
synthetic RF data calculation, full-wave simulations are conducted with 
the k-Wave MATLAB toolbox [42]. Medium properties including SOS 
and density shown in Fig. 3(a) and (b) are extracted from the CT scan 
image of a rhesus monkey skull and are used for both the MM and RF 
data calculation. Blood vessel shown in Fig. 3(d) is located inside the 
skull and used as the image target. The same sensor configuration used 
for the previous homogeneous medium is employed here to acquire 
synthetic RF data. 

In addition to the medium heterogeneity, there are several other 
conditions that can be added to generate more realistic synthetic RF data 

as shown in Fig. 4. The first added condition (C1) is the acoustic ab
sorption that follows a frequency power law [44]: 

α = α0ωy (21)  

where α0 is the absorption coefficient in nepers (rad/s)-y m− 1, ω is the 
angular frequency, and y is the power law exponent. When PA signals 
pass through the given skull, high frequency components decay more 
than low frequency components due to Eq. (21), therefore, the major 
components of PA signals detected by transducer elements are lower 
frequency components as shown in Fig. 4(a). The longitudinal wave 
absorption map is shown in Fig. 3(c). For a soft tissue illustrated as a 
black background, α0 = 0.56dB/MHz2cm and y = 2 is used [45]. Con
stant absorption is defined across the monkey skull where α0 = 9dB/
MHz2cm and y = 2 are used [45]. While absorption is considered for 
synthetic RF data generation, it is not considered for image recon
struction. (i.e., not considered when computing the MM), for reasons 
that will be explained later. 

The second condition considered (C2) is the sensor frequency 
response. Unlike backscattered ultrasound signals for B-mode ultra
sound imaging, PA signals contain a broader frequency spectrum. 
Generally speaking, high frequency components are from the target 
boundary while low frequency components are from the center part of 
the target [46]. Considering a sensor frequency response acts as a 
bandpass filter which results in the loss of the low and high frequency 
components of PA signals as shown in Fig. 4(b). The center frequency of 
the filter fc is 4.8 MHz and the bandwidth (BW) is 86 % in accordance 
with an actual physical ring array in our lab, which we plan to use in the 
future experimental study. 

The third condition (C3) is the effect of noise. There are two types of 
noise that can be considered for PAT. One is the thermal acoustic noise 

Fig. 5. Reconstructed images by the FDMB (first row) and the TR method (second row) with five different conditions. (a), (f) Considering only heterogeneities of SOS 
and density (C0). (b), (g) Adding acoustic absorption to the medium (C0 +C1). (c), (d) Adding sensor frequency response (C0 +C1 +C2) to PA signals. (d), (i) Adding 
10 dB Gaussian noise to PA signals (C0 +C1 +C2 +C3). (e), (j) Considering ±λ random sensor location error for each sensor (C0 +C1 +C2 +C3 +C4). (k-o) Com
parison of the true image, images obtained by the FDMB and TR methods along the line indicated as the white dashed line in (a). 
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that has random distribution which can be modeled with Gaussian dis
tribution [47]. The other noise comes from the ultrasound transducer 
that can be modeled as Johnson noise [48]. For simplicity, only thermal 
acoustic noise is considered, and 10 dB Gaussian noise is considered as 
shown in Fig. 4(c). 

For the final condition, the effect of sensor location errors (C4) is 
studied. The exact sensor locations are not always known, and any errors 
in the sensor location naturally affect the accuracy of the MM, leading to 
distorted images. Random sensor location error 

(
ex, ey

)
is added to the 

original sensor element location. The total applied sensor location error 

e =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x + e2
y

√
is within one wavelength at the center frequency in water 

(λ = 0.3125mm). In this case, the RF data are obtained based on the 
sensor location displaced by e, while the MM is established based on the 
original sensor location. 

A grid size of 0.04 mm and a CFL number of 0.2 are used to calculate 
both the synthetic RF data when considering only C0. The CFL number is 
reduced to 0.02 when computing the synthetic RF data whenever skull 
absorption is considered, because a large sound absorption requires a 
small time-step to achieve converged results in k-Wave. An acquisition 
time of 120 μs is selected for the synthetic RF data and the MM calcu
lation. To compute an accurate MM, a small grid point is required to 
describe the relation between sensors and pixels. However, using the 
same small computational grid for imaging results in long image 
reconstruction time. To address this issue, different grid sizes are 
adopted to compute the MM and to perform image reconstruction. 
Specifically, the image pixel size is set at 0.2 mm, while a grid size of 
0.067 mm (three times smaller than the image pixel size) is used for the 
MM calculation. Each simulation requires about 65 s and the total 
duration for the MM calculation is about 9.3 h. The MM consumes 
8.6 GB of storage after down-sampling and frequency truncation. The 
computational grid for the MM calculation can accommodate frequency 
components up to 11.236 MHz. Since frequency truncation at 2 MHz is 
applied, the MM operates within the frequency range supported by the 
designated computational grid. 

The TR method is also implemented here for comparison. A spatial 
resolution of 0.2 mm and a CFL of 0.2 are used to reconstruct images by 

the TR method. For all images, there are 200 pixels in each direction. 
The spatial resolutions used to compute the MM and TR are chosen to be 
different from the one used for simulating the RF data to avoid the in
verse crime. Although attenuation can be compensated both in the TR 
[21] and FDMB methods, absorption is not considered during recon
struction, as noise will be also amplified due to the inverse of absorption 
and could result in image reconstruction failure. 

Fig. 5. shows the images obtained by the FDMB and the TR methods. 
Here, the negative values which have no physical meaning are replaced 
with zero for both the FDMB and the TR methods. The corresponding 
image quality indices are shown in Table 1. The images on the first row 
of Fig. 5 are obtained by the FDMB method while the images on the 
second row are from the TR method. The third row shows the compar
ison of cross-sectional profiles of the true image and images obtained by 
the FDMB and the TR methods along the white dashed line indicated in 
Fig. 5(a). Each column indicates different conditions shown in Fig. 4. For 
the first four columns and the last column, σk of 10 and 13 are selected, 
respectively, for the TSVD. 

The first column corresponds to C0 which is the baseline and only 
considers medium heterogeneities. For this baseline condition, the 
image obtained by the FDMB method reconstructs pressure amplitudes 
that are better matched with the ones from the true image, while 
yielding a background noise level lower than that of the TR method as 
shown in Fig. 5(k). The second column shows the reconstructed images 
adding the acoustic absorption (C0 +C1). Compared to the first column, 
both the FDMB and TR methods result in a more blurred boundary of the 
blood vessel, due to the fact that the skull acts like a low-pass filter, 
removing the high-frequency components that are related to the edge. 
The FDMB image, though, still shows a slightly better sharpness than the 
TR image, as suggested by Fig. 5(l). The third column corresponds to 
C0 +C1 +C2 where the sensor frequency response is added. This con
dition is equivalent to applying a band pass filter and the remaining low 
frequency components are significantly reduced as shown in Fig. 4(b). 
Compared to the previous results, both the FDMB and the TR method 
return narrower blood vessels. This is attributed to the loss of low fre
quency components which enhance the sharpness. Furthermore, 
replacement of negative values to zero along the blood vessel edges also 
contributes to narrowing the width of the blood vessels. The fourth 
column presents the images with 10 dB Gaussian noise 
(C0 +C1 +C2 +C3). It is observed that both the FDMB and the TR 
methods are robust against this level of noise. The results are almost 
identical with or without the noise, as seen by comparing Fig. 5(m) and 
(n). The last column shows the effect of sensor location errors. As shown 
in Fig. 5(e) and (f), the sensor location error considered in this study 
seems to have the largest effect among all, leading to strong image ar
tifacts particularly for the TR method. 

Overall, the FDMB shows similar image quality to that of the TR 
methods. Furthermore, the reconstruction time using the FDMB method 

Table 1 
image quality index for the FDMB method and the TR method with five different 
conditions.   

PSNR [dB] SSIM 

Conditions FDMB TR FDMB TR 

C0  34.06  31.47  0.81  0.68 
C0 + C1  29.84  27.99  0.80  0.66 
C0 + C1 + C2  30.90  30.17  0.72  0.71 
C0 + C1 + C2 + C3  30.90  30.17  0.72  0.71 
C0 + C1 + C2 + C3 + C4  28.35  25.50  0.62  0.45  

Fig. 6. (a) Comparison of RF data considering only longitudinal and shear waves. Image reconstruction using RF data considering mode conversion and the MM (b) 
without considering mode conversion, the MM (c) considering mode conversion. (d) Comparison of the cross-sectional profiles of true image, images obtained by the 
FDMB with the MM with and without mode conversion. Cross sectional line is indicated as the white dashed line in Fig. 5. (a). 
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is approximately 0.3 s (including FFT of the RF data, data truncation, 
and down-sampling), while TR method requires 5.37 s, which is 17.9 
times slower. This indicates that the FDMB method can generate images 
significantly faster than the TR method and has the potential for real- 
time imaging. 

3.3. Shear wave consideration 

In theory, transmission of PA signals through the skull could also 
experience mode conversion. Depending on the angle of incidence, 
when the incident longitudinal waves encounter the boundary of the soft 
tissue and skull, the transmitted waves split into both longitudinal and 
shear waves. In this section, a single layer skull (same shape of skull as 
used above but with homogeneous acoustical properties) is considered 
because k-Wave simulations fail to provide converged elastic wave re
sults when using the full heterogeneous skull model. However, the result 
presented in this section can still shed light on the effect of mode con
version in the FDMB method. The skull is assumed to have shear wave 
absorption of αS = 20dB/MHz2cm, while the longitudinal wave ab
sorption is αL = 9dB/MHz2cm [45]. The shear wave SOS of the skull is 
assumed to be 1550 m/s and the longitudinal wave SOS of the skull is 
assumed to be 3047 m/s. An example of PA signal is shown in Fig. 6(a), 
comparing the cases with and without the mode conversion. In addition 
to mode conversion, absorption, sensor frequency response, Gaussian 
noise, and sensor location error (C0 +C1 +C2 +C3 +C4) have also been 
considered in generating synthetic PA signals. Both the MM without 
mode conversion and the MM with mode conversion are considered to 
obtain images and assess the merit of incorporating mode conversion. σk 
of 17 and 24 are selected for the MM without mode conversion and with 
mode conversion, respectively. Fig. 6(b) and (c) show the obtained 
images without mode conversion and with mode conversion for the MM 
calculation, respectively. It is observed that incorporating mode con
version for the MM can better capture more details, such as small vessel 
branches highlighted with a white circle in Fig. 6(c). However, the 
image obtained by the MM without mode conversion shows slightly 
better noise level, and therefore, image quality indices for both condi
tions are similar. PSNR values for the MM without mode conversion and 
the MM with mode conversion are both 25 dB while SSIM values are 
0.49 and 0.48, respectively. 

The computation time of the MM with mode conversion is 8.5 times 
longer than that of the MM without mode conversion, when using k- 
Wave for both simulations. Nevertheless, the image reconstruction time 
is the same with and without considering mode conversion. 

4. Discussion and conclusion 

This study presents a FDMB method to achieve rapid image recon
struction for transcranial photoacoustic imaging. This approach is based 
on the photoacoustic forward model which is a linear function of the 
initial pressure distribution and can be described by a MM. Prior to 
imaging, the frequency-domain MM is analytically or numerically 
calculated. The solution (initial pressure distribution) to the linear sys
tem in the frequency-domain can be obtained by Moore-Penrose pseudo- 
inverse. Since the MM is independent of the image objects as it only 
depends on the medium and the geometry between the transducer and 
imaging pixels, it can be established and inverted prior to imaging for 
repeated use. Regularization methods such as TSVD can be used to solve 
ill-posed problems and result in improved image quality. To improve 
image reconstruction speed, down-sampling is used, and the high- 
frequency components of the MM and RF data are truncated. Due to 
the high absorption of the skull, high frequency components are natu
rally filtered out and therefore have minimal impact on image 
reconstruction. 

To evaluate the performance and verify the FDMB method, the image 
reconstruction is first performed in a homogeneous medium. The IMMI 

method is used as a benchmark. While the FDMB method is less accurate 
than the IMMI method in that it produces negative values around the 
target boundary, it achieves significantly faster MM calculation and 
image reconstruction times (> 100 times and > 90 times, respectively) 
compared to the IMMI method due to the smaller matrix size resulted 
from down-sampling and frequency truncation. There are several 
methods available to mitigate negative values that can arise from both 
time-domain and frequency-domain model-based methods [49,50]. 
However, these non-negative constraints methods are iterative in na
ture, tend to be slow, and are not suited for real-time imaging. Therefore, 
our future work aims to develop a more robust method to eliminate 
these non-physical negative values without replacing negative values to 
zero as a solution. 

The numerical analysis is then performed to quantitatively evaluate 
the image reconstruction with a rhesus monkey skull under five different 
conditions: medium heterogeneities, acoustic absorption, sensor fre
quency response, Gaussian noise, and sensor location errors. The TR 
method is selected as a benchmark for comparison. For the baseline 
condition (C0), the FDMB method returns higher pressure magnitudes 
and better contrast than the TR method and yields better PSNR 
(34.06 dB vs 31.47 dB) and SSIM (0.81 vs 0.68) values. 

When the acoustic absorption is applied (C0 +C1), skull layer per
forms like a low-pass filter, which removes the high frequency compo
nents. Since high frequency components are related to the target 
boundary, both the FDMB and the TR methods return more blurry im
ages than the previous condition as shown in Fig. 5(l), resulting in lower 
image quality indices. The FDMB method, however, still yields a better 
PSNR (29.84 dB vs 27.99 dB) and SSIM (0.80 vs 0.66). 

The effect of sensor frequency response is then studied. This can be 
understood as the band-pass filtering, which removes remaining low and 
high frequency components. However, because the skull absorption has 
already removed the high frequency components, the effect of the band- 
pass filtering is mainly on the low-frequency part. Both images obtained 
by the FDMB and TR methods show narrower blood vessels compared to 
the previous condition as shown in Fig. 5(m). This result can be attrib
uted to the combined effect of the removal of low frequency components 
and alteration of negative values to zero along the blood vessel edges. 
Furthermore, the reconstructed pressure magnitudes in both the FDMB 
and TR methods are higher than the previous condition, resulting in 
improved contrast in the obtained images. For the FDMB method, the 
PSNR value increases by 1.06 dB while the SSIM value decreases by 0.08 
compared to the previous condition. For the TR method, both the PSNR 
and the SSIM values increase by 2.18 dB and 0.05, respectively. 

The Gaussian noise of 10 dB (C3) is further added to assess the 
robustness of the developed algorithm against noise. It is observed that 
both the FDMB and TR methods are insensitive to this level of noise and 
show identical PSNR and SSIM compared to the previous condition. For 
the FDMB method, this robustness against noise might arise from the 
combined effect of the image reconstruction process as described by Eq. 
(12), which bears resemblance to averaging and the TSVD. Specifically, 
the FDMB method reconstructs image by multiplying the model matrix 
M(ωi) and P(ωi) for each frequency, subsequently averaging the resul
tant matrix post-summation. This averaging could potentially mitigate 
random noise interference, enhancing image quality. Furthermore, the 
incorporation of the TSVD, a commonly used technique for noise 
removal, further enhances robustness against noise [51,52]. On the 
other hand, TR inherently integrates over the entire domain for every 
location, which could also be interpreted as a form of averaging, thus 
reducing the noise. 

The sensor location error is employed as a final condition (C4). It is 
observed that this condition results in the lowest PSNR and SSIM values 
for both the FDMB and TR methods. The obtained image by the FDMB 
method, however, shows less artifacts and better PSNR (28.35 dB vs 
25.50 dB) and SSIM (0.62 vs 0.45) values than the TR method. It should 
be noted that, for the TR method, the image quality can be improved by 
employing interpolation of the RF data. For example, when we increase 
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the number of sensor elements from 512 to 1132 using interpolation 
based on the nearest neighbor algorithm, better sharpness and noise 
levels can be achieved, resulting in slightly higher PSNR (28.35 dB vs 
29.41 dB) and SSIM (0.62 vs 0.68) values than the FDMB method can 
achieve. 

The merit of incorporating mode conversion for the MM is also 
assessed. For this study, the single-layer skull model is employed due to 
failure of obtaining converged elastic wave results with the full het
erogeneous skull model by k-Wave MATLAB toolbox. It is observed that 
incorporating mode conversion for the MM returns in better details. 
However, it also introduces a slightly higher background noise level 
compared to the MM without mode conversion, resulting in similar 
image quality indices. The high absorption of shear waves can be 
identified as one possible reason for their limited impact. However, since 
the single-layer skull model is used, further studies are needed with the 
fully heterogeneous skull model. One disadvantage of incorporating 
shear waves is that it becomes significantly more computationally 
expensive for building the MM, though this increase in computation 
does not affect the actual image reconstruction time. 

Overall, the resulting images show that the FDMB method returns 
similar image quality compared to the TR method. However, it achieves 
17.9 times faster image reconstruction time than the TR method because 
the FDMB method involves a simple matrix multiplication. Fast image 
reconstruction using the FDMB method is further enabled by removing 
high frequency components (> 2 MHz) and down-sampling. 

Although the FDMB method offers significant advantages in image 
reconstruction speed in heterogeneous media with comparable image 
quality compared to the traditional TR method, there are still some 
limitations that need to be addressed. Like other MB methods, the MM 
can be very large. Although down-sampling and frequency truncation 
can partially address these issues, the FDMB method still requires sig
nificant computational resources, especially when extended to 3D im
aging. However, it is still feasible to achieve the equivalent 
reconstruction time for 3D imaging by keeping the size of the MM while 
employing a larger spatial resolution. For example, the MM storage size 
used for this study is 8.6 GB. With the voxel size of 1 mm, the 3D ROI 
would be 40mm × 40mm × 25mm to maintain the MM size. Therefore, 
by compromising the spatial resolution, we can still achieve near-real 
time 3D imaging. Another limitation of the FDMB method is that the 
exact acoustic property map is required for the MM calculation. This 

study assumes that the acoustic property map is known. In practice, the 
skull’s profile and acoustic properties can be obtained by CT scans [16]. 
There are also ongoing efforts to extract skull properties and profiles 
using ultrasound [53–55]. Sensitivity to the regularization scheme is 
also a challenge of the FDMB method. Fig. 7(a) shows the PSNR and 
SSIM values with different truncation values for the condition (C0-C4). 
Fig. 7(b) also shows the image without regularization, to emphasize the 
importance of regularization. While regularization can significantly 
improve the image quality obtained by the FDMB method, it is impor
tant to note that the choice of the truncation values has a non-trivial 
effect on the image quality. In each case, the truncation value for the 
TSVD should be carefully selected to maximize the image quality. 

Moreover, the current two-dimensional (2D) model cannot account 
for the out-of-plane reflection and refraction. To conduct more accurate 
simulations, 3D numerical models have to be used in the future. Finally, 
the current MM calculation assumes point-like transducers. This 
assumption is often not satisfied in the experimental setting and can 
induce errors. To address this issue, the transducer spatial impulse 
response (SIR) can be readily integrated into the MM [56,57], which 
would be crucial for the future experimental validation of the FDMB 
method. 
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Fig. 7. (a) PSNR and SSIM values for the condition (C0-C4) with varying truncation values. (b) The obtained image without regularization.  
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Appendix 

This appendix presents the derivation of Eq. (2). When considering instantaneous heating (satisfying stress confinement), the photoacoustic 
process can be reformulated as an initial value problem where there is no explicit source term [34], and Eq. (1) can be rewritten as: 

ρ(x)∇⋅
(

1
ρ(x)∇p(x, t)

)

−
1

c2(x)
∂2p(x, t)

∂t2 = 0 (21)  

with initial conditions 

p|t=0 = p0(x),
∂p
∂t

⃒
⃒
⃒
⃒

t=0
= 0 (22) 

The first initial condition defines the initial acoustic pressure due to instantaneous heating. The second initial condition assumes that the initial 
particle velocity is zero [58]. Eq. (21) can be solved with the Green’s function G, which is defined as: 

ρ(x)∇⋅
(

1
ρ(x)∇G(x, t; x′, t′)

)

−
1

c2(x)
∂2G(x, t; x′, t′)

∂t2 = − δ(x − x′)δ(t − t′) (23) 

By multiplying G to Eq. (21) and multiplying p(x, t) to Eq. (22), and subtracting them, we obtain: 

p(x, t)δ(x − x′)δ(t − t′) = ρ(x)
[

G∇⋅
(

1
ρ(x)∇p(x, t)

)

− p(x, t)∇⋅
(

1
ρ(x)∇G

)]

+
1

c2(x)

[

p(x, t)
∂2G
∂t2 − G

∂2p(x, t)
∂t2

]

(24) 

By integrating over x in the volume of interest V and over t from 0 to t+, Eq. (24) becomes: 

p(x′, t′) =
∫ t+

0
dt
∫

V
dx ρ(x)

[

G∇⋅
(

1
ρ(x)∇p(x, t)

)

− p(x, t)∇⋅
(

1
ρ(x)∇G

)]

+

∫ t+

0
dt
∫

V
dx

1
c2(x)

[

p(x, t)
∂2G
∂t2 − G

∂2p(x, t)
∂t2

]

(25) 

In the absence of acoustic boundary conditions, the first integral vanishes, and Eq. (25) can be simplified to: 

p(x′, t′) =
∫

V
dx

1
c2(x)

[

p(x, t)
∂G
∂t

− G
∂p(x, t)

∂t

] ⃒
⃒
⃒
⃒

t=0
(26) 

With initial conditions presented in Eq. (22), Eq. (26) can be written as: 

p(x′, t′) =
∫

V

p0(x)
c2(x)

∂G
∂t

dx (27) 

Finally, Eq. (27) can be rewritten as Eq. (2) by interchanging the variables x and x′, as well as t and t′. 
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