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ABSTRACT Two lytic double-stranded DNA bacteriophages, VSe11 and VSe102, in-
fecting broad-spectrum Salmonella enterica were isolated from the sewage of two
different poultry farms. The phage genomes comprise 86,360 bp and 86,365 bp, re-
spectively, with a G�C content of 39.0%, and both contain 129 putative coding se-
quences.

Nontyphoid Salmonella enterica is the most common cause of foodborne illnesses in
humans, which remain an important health problem worldwide (1–3). The situa-

tion is compounded by the fact that Salmonella spp. commonly acquired from con-
taminated food have become resistant to various antibiotics and can pass on their
resistance genes to other bacteria (4–6). The rise of antibiotic resistance is making it
harder to treat Salmonella infections. Bacterial viruses are emerging as potential
biocontrol agents against this pathogen (7–9).

Here, we report the genome sequences of the Salmonella bacteriophages VSe11 and
VSe102, isolated from sewage samples collected in two different poultry farms in
Moscow Region, Russia. VSe11 and VSe102 have a similar broad-spectrum lytic activity
against Salmonella spp. of serovars Enteritidis, Typhimurium, and Infantis. At the same
time, the phages have a minor difference in strain specificity and different efficiency of
plating on some Salmonella strains.

The phage DNA were sequenced using Ion Torrent PGM (Life Technologies, Inc.,
USA). A total of 16,861 (for VSe11) and 21,319 (for VSe102) reads were generated and
assembled into single contigs using Newbler 2.9.

The circularly permuted linear double-stranded DNA genomes of VSe11 and VSe102
phages have lengths of 86,360 bp and 86,365 bp, respectively, with a G�C content of
39.0% in both cases. Coding sequences (CDSs) within the phage genomes were
allocated using the software tool GeneMarkS (10), and annotation was performed via
the Rapid Annotations using Subsystems Technology server (11) and NCBI BLAST
algorithms (12). It was shown that both phage genomes have 129 CDSs on both DNA
strands and 21 genes encoding tRNAs for 14 amino acids.

Whole-genome-based analysis revealed that the VSe11 and VSe102 genomes have
very high similarity. In total, 99.5% of their genome sequences are identical. Out of 129
CDSs, 125 potential genes encode proteins with identical amino acid sequences. Only
four CDSs (087, 089, 090, and 091) have a nucleotide identity of 67% to 94% and
encode hypothetical proteins that somewhat differ in the amino acid sequence.
Perhaps this divergence determines a minor difference in strain specificity of the
phages. One more difference between the VSe11 and VSe102 genomes is revealed in
the noncoding region (between CDSs 021 and 022) containing repeat sequences. An
additional repeat element of 33 bp was detected in this region of the phage VSe102
genome.
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The BLASTn results showed that the closest neighbors of phages VSe11 and VSe102
are the Salmonella phages Mushroom (GenBank accession no. KP143762) (13), SPT-1
(JX181822), and Si3 (KY626162). All of them encode core proteins inherent to Felix
O1-like phages of the family Myoviridae subfamily Ounavirinae (14). The VSe11 and
VSe102 genomes, as well as those of Mushroom, SPT-1, and Vsi3, contain two genes
encoding DNA polymerases. However, unlike the Mushroom and Si3 phages, VSe11 and
VSe102 have an additional CDS corresponding to a recombination endonuclease VII in
the region separating the two polymerase genes, identical to that of phage SPT-1.

Accession number(s). The VSe11 and VSe102 genome sequences are available in

GenBank under the accession no. MG251391 and MG251392, respectively.
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