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Background and Objective: In amyotrophic lateral sclerosis (ALS), progressive
weakness significantly limits the ability to exercise. However, measurements of the
impaired exercise function and their practical value to assess disease progression in
ALS are scarce. Cardiopulmonary exercise testing (CPET) is a non-invasive accurate
method used to comprehensively quantify exercise physiology in a variety of diseases.
This study aimed to evaluate the clinical value of CPET and to explore its association
with disease severity and prognosis prediction in ALS.

Methods: A total of 319 participants were enrolled in this 3-year prospective study. After
strict quality control, 109 patients with ALS and 150 age- and sex-matched healthy
controls were included with comprehensive clinical assessment and follow-ups. The
incremental ramp protocol for symptom-limited CPET was applied in both groups. The
exercise physiology during peak effort exercise was systematically measured, including
the overall aerobic capacity of exercise (VO2 peak) and the respective capacity of
the exercise-involved organs [cardiac response (heart rate peak—HR peak), ventilatory
efficiency (VE/VCO2 slope), breathing economy (VE/VO2 peak), and other relevant
parameters]. Disease severity and progression were evaluated using recognized scales.
Survival was monitored with regular follow-ups every 6 months.

Results: Decreased exercise capacity (VO2 peak < 16 ml/kg/min) occurred more
frequently in patients with ALS than in controls (44.95% vs. 9.33%, p < 0.01). In patients
with ALS, the average VO2 peak (16.16 ± 5.43 ml/kg/min) and HR peak [135 (112–153)
bpm] were significantly lower (p < 0.01) than in controls [22.26 ± 7.09 ml/kg/min; 148
(135–164) bpm], but the VE/VCO2 slope was significantly higher [28.05 (25.03–32.16)
vs. 26.72 (24.37–29.58); p = 0.03]. In patients with ALS, the VO2 peak and HR peak
were significantly correlated with disease severity and progression scores (p < 0.05).
Survival analyses revealed the VO2 peak and HR peak as protective indicators while
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the VE/VO2 peak as a detrimental indicator for the prognostic prediction in ALS
(HR = 0.839, p = 0.001; HR = 0.967, p < 0.001; HR = 1.137, p = 0.028, respectively).

Conclusion: Our prospective study quantified the significantly decreased exercise
capacity in ALS through non-invasive CPET. The impaired VO2 peak and HR peak
closely correlated with disease severity and independently predicted a worse prognosis.
Our findings identified the clinical value of CPET as an objective indicator of disease
progression in ALS.

Keywords: exercise physiology evaluation, cardiopulmonary exercise testing, amyotrophic lateral sclerosis,
prognosis, exercise capacity

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disorder characterized by progressive dysfunction in the motor
system (van Es et al., 2017). The impairments are irreversible,
which start from the weakness of the first affected site to
paralysis, dysphagia, and eventually respiratory failure. Thus,
patients are significantly limited in their ability to exercise
(Chen et al., 2015). Recent identifications of pathophysiological
mechanisms of ALS potentially provide new insights, including
autonomic dysregulation for heart rate (HR) variability and
hypermetabolism for respiratory decompensation (Hardiman
et al., 2017; Ahmed et al., 2018). Moreover, a growing body of
evidence has identified consistent mitochondrial abnormalities in
neuromuscular tissues of patients with ALS and mouse models
(Dupuis et al., 2004; Al-Sarraj et al., 2014; Jankovic et al.,
2021). Though the pathogenesis of ALS is different from the
metabolic myopathy, such as mitochondrial disease, dysfunction
of mitochondria has been linked to muscle weakness in ALS:
(1) the deposition of pathological protein of ALS such as TAR
DNA-binding protein 43 (TDP-43) impairs the mitochondrial
structure, which further induces death of muscular cells
through devastating mitophagy, excitotoxicity, and oxidative
stress (Kodavati et al., 2020). The consequent loss of actin and
myosin filaments limits effective contractions of single-muscle
fibers as the sliding filament theory, functionally manifesting as
muscle weakness in patients (Miller et al., 2014). (2) Adenosine
triphosphate (ATP) is the source of energy used to power
muscle contraction. The intracellular-stored ATP is not enough
for continuous muscular activities, hence the replenishment of
ATP through mitochondrial respiration is substantial to high-
intensity muscle movements (Baker et al., 2010). Overexpressing
mutant TDP-43 of the ALS model decreases mitochondrial
complex I activity, which further decreases oxygen utilization and
ATP production via defective oxidative phosphorylation (Huang
et al., 2020). The oxidative stress and inflammation in ALS
aggravate the decrease in ATP regeneration and cause depletion
of energy (Obrador et al., 2021). Thus, the insufficient energy
supply induced by dysregulated mitochondria is linked to muscle
fatigue and weakness in ALS. (3) In TDP-43 mouse models,
distinct changes in mitochondrial dynamic and aggregation
are reported (Kodavati et al., 2020). Mutated TDP-43 affects
mitofusin 1 and 2 levels, causing fragmented mitochondrial
morphology and muscle atrophy that further decreases muscular

strength (Wang et al., 2013). (4) Dysregulated mitochondria are
associated with dysfunction of ion channels (including Na+, K+,
and Ca2+) in ALS (LoRusso et al., 2019). The abnormalities
disturb the excitation-contraction coupling and decrease the
excitability of muscle fibers that further induce muscle fatigue
in patients (Allen et al., 2008). Thus, mitochondrial dysfunction
has emerged as one of the significant reasons for the exercise
limitation of ALS (Angelini and Siciliano, 2021). Cross-sectional
studies and pilot trials of small size have revealed significant
exercise intolerance in ALS (Sanjak et al., 1987; Siciliano et al.,
2002; Mezzani et al., 2012; Braga et al., 2018). Further studies
with more patients to explore its clinical value for the assessment
of disease progression are required. The current methods for
disease evaluation are mainly based on the disability degree,
represented by the revised ALS Functional Rating Scale (ALSFRS-
R) and the King’s College Staging System (KCSS) (Cedarbaum
et al., 1999; Roche et al., 2012). Thus, the exploration of direct
indicators for exercise capability associated with disease severity
and prognosis could provide a novel prospective for disease
evaluation (Sun et al., 2020). Detailed assessments of the systemic
physiological responses to exercise could also give insights into
potential aerobic rehabilitation in ALS.

Cardiopulmonary exercise testing (CPET) is recommended as
the gold standard for objectively evaluating exercise physiology
by the European Association for Cardiovascular Prevention
and Rehabilitation and the American Heart Association
(EACPR/AHA) (Guazzi et al., 2012, 2016). It can provide a
comprehensive assessment in multiple relevant physiological
systems, including the cardiovascular, pulmonary, and
musculoskeletal systems (Fan and Jia, 2020). To quantitatively
analyze exercise physiology, CPET non-invasively measures
extensive variables reflecting different physiological responses
under peak exercise stress (Arena and Sietsema, 2011). Oxygen
uptake at peak exercise (VO2 peak) is well recognized to represent
the aerobic exercise capacity for the integrated function of the
whole-body exercise capability. Other parameters separately
represent the singular function of the system-targeted exercise
physiology (i.e., HR recovery for the cardiovascular system,
VE/VCO2 slope for the pulmonary system) (Taivassalo et al.,
2003; Crisafulli et al., 2018; Opina et al., 2019). The clinical value
of CPET in cardiovascular and pulmonary diseases has been
firmly established for preoperative evaluation and prognosis
assessment (Grant et al., 2015; Guazzi et al., 2017). Recent studies
have identified the reliable use of CPET in neurological diseases,
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including metabolic myopathies, stroke, multiple sclerosis, and
Huntington’s disease; however, there is a lack of application of
CPET for ALS so far (Jeppesen et al., 2003; Taivassalo et al.,
2003; Ciammola et al., 2011; Heine et al., 2014, 2016; Fan and
Jia, 2020). As a non-invasive tool that allows for quantitative
assessment, CPET could supplement previous evaluations of
functional disability and further provide a comprehensive profile
of exercise physiology impairments for ALS.

We aimed to evaluate the exercise physiology impairments
using CPET in patients with ALS compared with age- and sex-
matched healthy controls. In addition, we explored their clinical
values to assess disease severity and prognosis of ALS from a
clinical physiology perspective in our prospective cohort.

MATERIALS AND METHODS

Study Design and Participants
This prospective study was conducted between September 1,
2017, and December 1, 2020, at the Peking University Third
Hospital (PUTH), Beijing, China. A total of 128 consecutive
patients with ALS who fulfilled the revised El Escorial criteria
for probable or definite ALS were invited to participate in
the study and were enrolled at the time of diagnosis. The
exclusion criteria for patients included (1) concomitant presence
of cardiopulmonary, endocrine, or neurological disorders other
than ALS; (2) cardiovascular impairments noted on structural
ultrasonic cardiography and electrocardiography; (3) pulmonary
impairments noted on structural X-ray; (4) cognitive impairment
or psychiatric disorders; (5) family history of ALS; and (6)
inability to complete the cycling test of CPET. Moreover, 191 age-
and sex-matched healthy controls were consecutively enrolled
from volunteers in the Physical Examination Center, PUTH.
These healthy controls had no cardiopulmonary, endocrine,
or neurological disorders, no family history of any known
inherited disease, no cognitive or psychiatric disorders, and no
abnormalities in routine physical examination, and they were able
to complete CPET. After a strict screening of the aforementioned
comorbidities and agreeing to cooperate with the study, 109
patients with ALS and 150 controls were finally included. A total
of 19 patients were excluded because of chronic obstructive
pulmonary disease (n = 1), diabetes (n = 1), coronary heart
disease (n = 2), hypertension (n = 1), refusal to the test (n = 1),
and inability to complete CPET assessment with the protocol
(n = 13). In total, 41 controls were excluded due to diabetes
(n= 8), chronic obstructive pulmonary disease (n= 3), coronary
heart disease (n = 7), hypertension (n = 6), refusal to the test
(n = 15), and inability to complete CPET assessment with the
protocol (n = 2). The institutional Ethics Committee of PUTH
approved this study. Written informed consent was obtained
from each participant. Study enrollment, participation, analysis,
and follow-up are illustrated in Figure 1.

Clinical Assessment
At enrollment, detailed demographic and clinical information
was recorded, and regular laboratory tests were conducted
as a standardized routine for patients with ALS at PUTH

FIGURE 1 | Flowchart of the study design. A schematic summarizing the
number of individuals during enrollment, participation, inclusion, and follow-up.
ALS, amyotrophic lateral sclerosis; CPET, cardiopulmonary exercise testing.

(Supplementary Table 1). The collected data included age, sex,
medical history, site of onset, age of onset, disease duration,
genetic variants, cognitive assessments, blood glucose, blood
lipids, and other relevant data as reported previously (Chen
et al., 2015; He et al., 2020). We recorded the results of
ALSFRS-R and KCSS, as well as forced vital capacity (FVC),
to functionally evaluate disease severity (Ferraro et al., 2016).
FVC was measured in the sitting position using computer-
based spirometry (Chest, HI-101, Japan). The test was performed
with the same device and by the same technician with the
standard protocol. The best of three satisfactory and consistent
expiratory maneuvers (each obtained after a maximal inspiratory
effort) and the predicted values (%) were used for analyses. The
impairment of upper motor neuron (UMN) and lower motor
neuron (LMN) signs was graded using a modified Ravits Scale
(Ravits et al., 2007). The rate of disease progression was recorded
as 1FS = (48-[ALSFRS-R])/disease duration from symptom
onset to the CPET assessment. Serum neurofilament light chain
(sNfL) concentrations were tested using Simoa NfL assays by
Quanterix (Lexington, MA, United States) (Benatar et al., 2020).
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Death and tracheotomy were defined as the endpoint events for
survival. Follow-up evaluations were conducted by telephone
or clinical visits every 6 months to assess survival and record
parameters for disease progression of ALS, including ALSFRS-
R, body mass index (BMI), affected sites, and other details
(Supplementary Table 1).

Cardiopulmonary Exercise Testing
Symptom-limited CPET was performed according to published
guidelines using the standardized Ramp protocol for the
cycling test (Balady et al., 2010). Ventilatory expired gas
analysis was performed using the ULTIMACardio2 gas exchange
analysis system (Medgraphics Corp, United States) with the
detailed procedures reported previously (Liu et al., 2020).
Minute ventilatory data were obtained at rest and during
the incremental workload exercise test based on real-time
gas exchange measurements using the open-circuit spirometry
testing system [including oxygen consumption (VO2), carbon
dioxide production (VCO2), and minute ventilation (VE)].
A standard 12-lead electrocardiogram was obtained, and blood
pressure was measured at rest, each minute during exercise,
and for at least 5 min during the recovery phase. Standardized
procedures were conducted for equipment calibration, and all
tests were carried out by trained clinical exercise physiologists.
The detailed protocol of the CPET assessment was as follows:
the test started with 3 min of rest, followed by a 3-min warm-
up at 0 W, and continued to cycle with an increased workload of
10 W every minute until volitional fatigue. A uniform speed of
60–70 r/min was encouraged to maintain when cycling. The total
duration of the cycle test typically was 10–15 min. A respiratory
exchange ratio (RER) of ≥ 1.0 was used as an objective indicator
of peak effort for exercise (Guazzi et al., 2012, 2016).

The major parameter in this study was the VO2 peak
achieved at peak exercise, which reflects the overall level of
exercise capacity affected by the cardiovascular, pulmonary, and
muscular function. Decreased exercise capacity was defined by
a VO2 peak < 16 ml/kg/min, as reported previously (Arena
and Sietsema, 2011; Guazzi et al., 2017). Other parameters
were divided according to the individually involved system
as reported by previous studies. For cardiovascular function,
HR, systolic blood pressure (SBP), and diastolic blood pressure
(DBP) at rest and peak exercise, as well as HT recovery (peak
HR- 1 min after exercise HR), were recorded (Crisafulli et al.,
2018). For pulmonary function, ventilation per carbon dioxide
output slope (VE/VCO2 slope) and breathing reserve (BR) were
calculated (Finocchiaro et al., 2015; Opina et al., 2019). For
muscular function, the oxygen cost (1VO2/1Work-Rate slope)
was reported to represent the ability of muscles to extract and
use oxygen (Taivassalo et al., 2003; Noury et al., 2020). The peak
ventilatory equivalent for oxygen (VE/VO2 peak) represented a
comprehensive indicator of breathing economy.

Statistical Analysis
Qualitative data are reported as numbers and percentages (%)
of cases, and the chi-square test was used for comparisons
between groups. Quantitative data were first tested to determine
the normality of the distribution. Normally distributed data

are reported as means (standard deviations), variables between
groups were compared using Student’s t-test or one-way
ANOVA, and correlations were assessed using Pearson’s analysis.
Non-normally distributed variables are shown as medians
(first quartile, third quartile), variables between groups were
compared using the Mann-Whitney U-test or Kruskal-Wallis
test, and correlations were assessed using Spearman’s analysis.
Subsequently, a multiple linear regression analysis was performed
to assess the adjusted association of disease-related variables with
the VO2 peak. Survival curves were estimated using Kaplan-
Meier analysis with the log-rank test. Cox regression model
adjusted for covariates, including the age of onset, sex, BMI, and
site of onset, was performed. The censoring date for survival data
was December 1, 2020. Statistical analysis was performed with
SPSS 20.0 software (SPSS, Chicago, United States). The results
were considered statistically significant at p < 0.05.

RESULTS

Demographic and Clinical Features of
Amyotrophic Lateral Sclerosis and
Controls
Our study initially enrolled 319 participants, and 60 were
excluded after a strict screening of medical history, assessment
of cardiopulmonary function, and cooperation with the CPET
measurements (Figure 1). A total of 259 participants were
eventually included. Table 1 shows the baseline characteristics
of the 109 patients with ALS and the 150 matched controls. The
ALS and control groups did not differ significantly in age, sex,
or BMI. Regarding the clinical features of ALS, the median age
of onset (interquartile range, IQR) was 53 (42–61) years, with
median disease duration (IQR) of 12 (8–17) months. Of the 109
patients with ALS, 19 had a bulbar onset (17.43%) and 90 had a
spinal onset (82.57%). Most patients were in the early phase of
the disease, consisting of 53 in KCSS 1 (48.62%) and 37 in KCSS2
(33.94%). The median ALSFRS-R (IQR) score was 43 (39–45).

Comparison of the Cardiopulmonary
Exercise Testing Assessment in
Amyotrophic Lateral Sclerosis and
Controls
For the exercise capacity (VO2 peak) reflecting the whole-body
system, patients with ALS showed a significant impairment
both in prevalence and degree compared with the strictly
matched controls (Figure 2). Impaired exercise capacity (VO2
peak < 16 ml/kg/min) was present in 49 (44.95%) patients
with ALS and 14 (9.33%) controls, which showed significant
differences in distribution (p < 0.01). Consistently, the VO2
peak was significantly lower in patients with ALS than in
controls [Table 2; 16.16 (5.43) vs. 22.26 (7.09); p < 0.01].
Several parameters reflecting relative impairment regarding
single systems also showed significant differences (Table 2).
For the cardiovascular system, patients with ALS had a
significantly increased HR at rest while a decreased HR at
peak exercise (p = 0.01 and p < 0.01, respectively). However,
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TABLE 1 | Baseline characteristics of ALS and controls.

ALS, n = 109 Control, n = 150 p-value

Demographics

Age, years 52.74 (11.62) 51.39 (11.47) 0.35

Sex, no. (%) 0.55

Male 71 (65.14%) 103 (68.67%)

Female 38 (34.86%) 47 (31.33%)

BMI, kg/m2 23.83 (3.35) 24.36 (3.06) 0.19

Disease characteristics

Age of onset, years 53 (42–61)

Site of onset, no. (%)

Bulbar 19 (17.43%)

Spinal 90 (82.57%)

Disease duration, months 12 (8–17)

KCSS

1 53 (48.62%)

2 37 (33.94%)

3 12 (11.01%)

4 7 (6.42%)

ALSFRS-R 43 (39–45)

FVC,% of predicted 81 (71–93)

UMN 6 (3–8)

LMN 3 (2–4)

NfL, pg/ml 70.30 (33.00–101.00)

1FS 0.43 (0.25–0.71)

Use of riluzole, no. (%) 71 (65.14%)

Data are presented as the means (SD), medians (IQR), or n (%). ALS, amyotrophic
lateral sclerosis; BMI, body mass index; KCSS, King’s College Staging System;
ALSFRS-R, ALS Functional Rating Scale-Revised; FVC, forced vital capacity;
UMN, upper motor neuron; LMN, lower motor neuron; NfL, neurofilament light
chain; 1FS, (48-[ALSFRS-R])/disease duration from symptom onset to the CPET
assessment; IQR, interquartile range.

no difference was shown in HR recovery between the two
groups. For the pulmonary system, a significant increase was
reported in VE/VCO2 slope in patients with ALS, implying
limited ventilatory efficiency (p = 0.03). However, no significant
differences in the parameters reflecting impairment in the
muscular system were observed between the two groups.

Relationships of Cardiopulmonary
Exercise Testing Variables With Disease
Characteristics in Amyotrophic Lateral
Sclerosis
The changes in CPET variables in patients with different disease
severities and rates of disease progression are shown in Figure 3.
Intergroup comparisons were conducted when patients were
categorized by KCSS into different levels of disease severity at
assessment (Figure 3A). The VO2 peak and HR peak were
significantly decreased in patients with more severe impairment
(p < 0.001 and p = 0.007, respectively). With increasing disease
severity, VE/VCO2 slope significantly increased first but later
decreased (p = 0.015). In addition, no significant changes in
the VE/VO2 peak were observed. Regarding the relationships
between CPET variables and the rate of disease progression
(1FS), correlation analyses were conducted (Figure 3B). The

FIGURE 2 | Comparison of exercise capacity measured by the CPET in
controls and patients with ALS. The degree and proportion of impaired
exercise capacity are depicted in controls and patients with ALS. The VO2

peak (ml/kg/min) represents the exercise capacity, and the impaired exercise
capacity is defined by a VO2 peak < 16 ml/kg/min. **p < 0.01. ALS,
amyotrophic lateral sclerosis; CPET, cardiopulmonary exercise testing; VO2

peak, oxygen uptake at peak exercise.

VO2 peak and HR peak were significantly decreased as the rate of
progression increased (both p < 0.001). However, no significant
relationships with the VE/VCO2 slope or VE/VO2 peak were
observed. We also compared the CPET parameters in patients
with and without daily use of riluzole and found no significant
differences (Supplementary Table 2).

Correlation analyses between typical CPET variables and other
disease characteristics of ALS are shown in Table 3. For the
overall exercise capacity, the VO2 peak showed significantly
positive correlations with FVC and the ALSFRS-R score (both
p < 0.001) while significantly negative correlations with the
LMN score (p = 0.016). For cardiovascular function, HR
peak also showed significant relationships with BMI, FVC,
and the ALSFRS-R score (p = 0.039, p = 0.043, p < 0.001,
respectively). For pulmonary function, increased VE/VCO2
slope was significantly correlated with the increased LMN
score and the decreased ALSFRS-R score (p = 0.001 and
p = 0.017, respectively). Besides, an increased VE/VO2 peak
was significantly correlated with the increased LMN score and
the decreased BMI (p = 0.039 and p = 0.002, respectively). No
relationships between any CPET variable and the UMN score
or the sNfL were observed. We further conducted the multiple
linear regression analysis to assess the adjusted association
of disease-related variables with the VO2 peak: VO2 peak
ml/kg/min=−3.394+ 2.916 (sex; 0= female, 1=male)−0.081
age + 0.522ALSFRSR-R (F = 15.076, p < 0.001). Based on the
R2, the model explained 30% of the variance in the VO2 peak,
showing that the VO2 peak decreased with decreasing ALSFRS-R.

Prognostic Values of Cardiopulmonary
Exercise Testing Variables in
Amyotrophic Lateral Sclerosis
There were 21 endpoint events for patients with ALS throughout
the study. Figure 4 shows the survival probability of patients
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TABLE 2 | CPET assessments of patients with ALS and controls.

ALS,
n = 109

Control,
n = 150

p-value

Overall exercise capacity

VO2 peak, ml/kg/min 16.16 (5.43) 22.26 (7.09) <0.01

VO2 peak ≥ 16 ml/kg/min, no. (%) 60 (55.05%) 136 (90.67%) <0.01

VO2 peak < 16 ml/kg/min, no. (%) 49 (44.95%) 14 (9.33%)

Cardiovascular function

HR rest, beats/min 86 (78–97) 83 (73–90) 0.01

SBP rest, mm Hg 128 (118–138) 122 (113–138) 0.05

DBP rest, mm Hg 79 (74–86) 78 (70–86) 0.18

HR peak, beats/min 135 (112–153) 148 (135–164) <0.01

SBP peak, mm Hg 165 (142–190) 166 (145–191) 0.79

DBP peak, mm Hg 86 (80–96) 83 (77–90) 0.05

HR recovery, beats/min 23 (17–31) 25 (19–31) 0.12

Pulmonary function

VE/VCO2 slope 28.05
(25.03–32.16)

26.72
(24.37–29.58)

0.03

BR, % 51 (39–57) 52 (42–59) 0.18

Muscular function

1VO2/1Work-rate slope 9.89
(8.57–11.34)

9.24
(8.22–10.61)

0.12

Others

VE/VO2 peak 35 (30–40) 36 (30–40) 0.10

RER peak 1.12 (0.10) 1.23 (0.12) <0.01

VO2 AT, ml/kg/min 12.36 (3.86) 13.82 (4.86) 0.01

Data are presented as the means (SD), medians (IQR), or n (%).
CPET, cardiopulmonary exercise testing; ALS, amyotrophic lateral sclerosis; VO2,
oxygen consumption; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic
blood pressure; VE, minute ventilation; VCO2, carbon dioxide production; BR,
breathing reserve; RER, respiratory exchange ratio; AT, anaerobic threshold; IQR,
interquartile range.

with typically impaired CPET variables reflecting overall or
relative function through univariable analysis (Kaplan-Meier
survival curves with log-rank test). Patients with a VO2
peak < 16 ml/kg/min and an HR peak < 135 beats/min had
significantly worse survival (p = 0.001, p = 0.002, respectively).
However, no significant differences were identified using the
VE/VCO2 slope or VE/VO2 peak. Univariate analyses for the
Cox regression model are presented in Supplementary Table 3.
Further multivariable Cox regression analysis (Table 4) identified
that a spinal-onset phenotype (p = 0.014), an increased VO2
peak (p = 0.001), and an increased HR peak (p < 0.001) were
independently associated with a better prognosis of ALS during
follow-up (HR = 0.263, p = 0.014; HR = 0.839, p = 0.001;
HR = 0.967, p < 0.001, respectively). In contrast, an increased
VE/VO2 peak was a detrimental factor independently, indicating
a worse survival outcome (HR= 1.137, p= 0.028).

DISCUSSION

This study performed comprehensive CPET measurements to
investigate exercise physiology impairments in patients with
ALS compared with age- and sex-matched healthy controls.
This is a pioneering study to reveal the predictive values of

CPET parameters for disease severity and prognosis of ALS in a
prospective cohort. We provided comprehensive evidence for the
application of CPET in ALS: our results quantify the significant
decrease in exercise capacity in patients with ALS compared with
strictly matched controls, including the overall VO2 peak and
the system-targeted HR peak and VE/VCO2 slope. Furthermore,
CPET parameters were significantly associated with disease
severity scores, which showed the potential use of CPET as
an objective marker for non-invasively quantifying disease
impairment. Finally, typical CPET variables could distinguish
patients with different prognoses well since the VO2 peak, HR
peak, and VE/VO2 peak emerged as independent predictors of
survival in ALS. Thus, CPET could provide novel evaluations
from the perspective of exercise physiology in ALS and benefit not
only for intervention timing in the clinic but also for stratification
of patients in scientific research.

Among the CPET parameters, the VO2 peak was identified as
the most significant parameter of ALS in our study. As a well-
recognized variable to represent the exercise capability, the VO2
peak quantitatively reflects the exercise capacity of the whole
body (Guazzi et al., 2012, 2016). We thoroughly identified the
prevalence and range of VO2 peak alterations in ALS compared
with strictly matched controls (Figure 2). The significantly
higher frequency of impaired exercise capacity in patients
with ALS (44.95%) addressed the extensive functional decline.
Furthermore, in our supplementary analysis, the VO2 peak
showed a significant decline in patients with a disease duration
less than 12 months compared with healthy controls [16.23
(5.62) vs. 22.26 (7.09); p < 0.01; Supplementary Table 4]. Thus,
the remarkable impairment in early phase patients emphasizes
the sensitivity of exercise capacity for early disease impairment.
Additionally, the positive correlation and survival analyses
revealed the meaningful value of the VO2 peak in the clinical
practice of ALS. The significant associations between the VO2
peak and most established clinical parameters of ALS (Table 2)
suggest that it can be used as a comprehensive, objective,
and quantitative measurement for monitoring disease severity
and progression in ALS. As an indicator reflecting the whole-
body physiological response, the VO2 peak comprehensively
summarizes the overall capacity for exercise affected by multiple
systems (Guazzi et al., 2017). In addition, it is more objective
as a quantitative index than traditional parameters based on
self-reported symptoms (Fournier et al., 2020). Finally, our
consistently positive results in univariable and multivariable
survival analyses also highlight the prognostic role of the VO2
peak for better outcomes in ALS. Given its repeatability and
modifiability, the VO2 peak has been used as a primary endpoint
for non-invasively assessing the response to the treatment of
physical exercise in several randomized clinical trials (Shulman
et al., 2013; Wallace et al., 2019). Since improvements in the
VO2 peak after intervention have been observed in patients
with inclusion body myositis and Charcot-Marie-Tooth disease,
longitudinal studies on CPET in ALS are needed in the future
to explore potential treatments from the perspective of exercise
capacity to improve survival (Wallace et al., 2019).

In our study, CPET also identified the exercise physiology
impairments in different systems to support the multisystem
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FIGURE 3 | Changes in typical CPET variables relative to disease severity and disease progression in ALS. (A) Changes in the CPET relative to disease severity as
graded by the KCSS. (B) Changes in the CPET relative to disease progression scored by the 1FS. Typical CPET changes included (a) overall exercise capacity,
represented by the VO2 peak, (b) cardiovascular function, represented by HR peak, (c) pulmonary function, represented by VE/VCO2 slope, and (d) breathing
economy, represented by the VE/VO2 peak. The p-value is based on the Kruskal-Wallis test and Spearman’s correlation. Vertical lines indicate medians (IQR). ALS,
amyotrophic lateral sclerosis; CPET, cardiopulmonary exercise testing; 1FS, (48-[ALSFRS-R])/disease duration from symptom onset to the CPET assessment;
ALSFRS-R, ALS Functional Rating Scale-Revised; KCSS, King’s College Staging System; VO2, oxygen consumption; HR, heart rate; VE, minute ventilation; VCO2,
carbon dioxide production; IQR, interquartile range. **p < 0.01.

TABLE 3 | Correlations of CPET variables with disease characteristics of ALS.

Overall exercise capacity
VO2 peak

Cardiovascular function
HR peak

Pulmonary function
VE/VCO2 slope

Breathing economy
VE/VO2 peak

R p R p R p R p

BMI −0.042 0.498 −0.198 0.039 −0.046 0.638 −0.301 0.002

FVC 0.383 <0.001 0.212 0.043 0.204 0.056 0.165 0.118

ALSFRS-R 0.475 <0.001 0.405 <0.001 −0.233 0.017 −0.063 0.517

UMN −0.122 0.207 −0.062 0.520 0.148 0.131 0.031 0.751

LMN −0.229 0.016 −0.087 0.368 0.325 0.001 0.199 0.039

KCSS −0.390 <0.001 −0.325 0.001 0.077 0.434 0.028 0.770

NfL −0.344 0.079 −0.256 0.198 0.158 0.442 −0.045 0.825

1FS −0.433 <0.001 −0.430 <0.001 0.138 0.162 −0.031 0.751

The p-value is based on Spearman’s correlation analysis. p < 0.05 is indicated in bold.
CPET, cardiopulmonary exercise testing; ALS, amyotrophic lateral sclerosis; VO2, oxygen consumption; HR, heart rate; VE, minute ventilation; VCO2, carbon dioxide
production; BMI, body mass index; FVC, forced vital capacity; ALSFRS-R, ALS Functional Rating Scale-Revised; UMN, upper motor neuron; LMN, lower motor neuron;
KCSS, King’s College Staging System; NfL, neurofilament light chain; 1FS, (48-[ALSFRS-R])/disease duration from symptom onset to the CPET assessment.

impairments in ALS from a functional perspective. We
established direct relationships between the system-specific
CPET parameters and the pathophysiological mechanism of the
different systems affected in ALS (Guazzi et al., 2012, 2016).
Additionally, we revealed that the decline in overall exercise
capacity had multifaceted origins involving cardiovascular,
pulmonary, and muscular impairment in ALS.

Conflicting data have been reported regarding cardiovascular
disorders in ALS (Pereira et al., 2021). Our study identified

the cardiac involvement of ALS with abnormal autonomic
nervous function. We observed a significantly higher HR at
rest in patients, which supports the continuous impairment
of the sympathetic nervous system in ALS. Tanaka et al.
(2013) recognized similar sympathetic hyperactivity with cardiac
[123I] MIBG scintigraphy and reasoned that they were related
to sudden cardiac arrest in ALS. However, HR at peak
exercise was significantly limited among our patients, which
implies a dysregulation of the sympathetic nervous system
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FIGURE 4 | Survival probability predicted by typical CPET variables. Crude Kaplan-Meier curves during follow-up for (A) overall exercise capacity, represented by the
VO2 peak, (B) cardiovascular function, represented by HR peak, (C) pulmonary function, represented by VE/VCO2 slope, and (D) breathing economy, represented
by the VE/VO2 peak. The cutoff value for the VO2 peak was defined by previous studies. The cutoff values for the remaining three variables were based on the
medians of patients in this study. |, censored patients. ALS, amyotrophic lateral sclerosis; CPET, cardiopulmonary exercise testing; VO2, oxygen consumption; HR,
heart rate; VE, minute ventilation; VCO2, carbon dioxide production.

in accommodating higher exercise levels. Since no significant
difference was shown in HR recovery after exercise, we supposed
that the parasympathetic nervous system was relatively reserved

TABLE 4 | Prognostic factors associated with survival in multivariable
Cox analysis.

HR 95% CI p-value

Age of onset, years 1.022 0.978–1.068 0.341

Sex

Female 1.000

Male 0.864 0.343–2.180 0.757

BMI, kg/m2 0.917 0.794–1.059 0.239

Site of onset

Bulbar 1.000

Spinal 0.263 0.091–0.763 0.014

VO2 peak, ml/kg/mina 0.839 0.757–0.930 0.001

HR peak, beats/minb 0.967 0.950–0.985 <0.001

VE/VCO2 slopeb 0.962 0.905–1.024 0.225

VE/VO2 peakb 1.137 1.014–1.274 0.028

The multivariable models included previously established prognostic indicators for
ALS and CPET variables (a included the overall CPET parameter reflecting whole-
body exercise capacity; b included the three system-specific CPET parameters
reflecting cardiovascular, pulmonary, and breathing economy separately).
VO2, oxygen consumption; HR, heart rate; VE, minute ventilation; VCO2, carbon
dioxide production; BMI, body mass index.

in ALS. Thus, cardiovascular impairment in ALS does not
resemble the CPET pattern typical of infiltrative cardiomyopathy
with decreased HR recovery (Patel et al., 2014). Furthermore, our
positive correlation and survival analyses recognized that the HR
peak was similar to the VO2 peak for disease evaluation. This
emphasizes the significant influence of the blunted HR response
on overall exercise capacity in ALS.

For the pulmonary system, the significantly increased
VE/VCO2 slope suggests a ventilatory limitation in patients with
ALS healthy controls in our study. Recognized as a measure of
ventilatory efficiency, the VE/VCO2 slope reflects the capacity
of CO2 elimination during the whole exercise process (Neder
et al., 2017). The weakened respiratory muscles in ALS are known
to cause decreased breathing activity, leading to ventilatory
insufficiency (van Es et al., 2017). An increased VE/VCO2 slope
is typical in chronic obstructive pulmonary disease, another
restrictive ventilatory disorder with a similar pathophysiological
mechanism of pulmonary dysfunction to that in ALS (Neder
et al., 2017). However, no significant difference in the survival
of patients with different VE/VCO2 slopes was observed in
our study. We attributed this to the relatively mild respiratory
dysfunction of patients in our cohort as the median value of the
VE/VCO2 slope in our patients did not reach the recommended
cutoff value for ventilatory limitation (>30) (Guazzi et al., 2012).
Further studies including patients with more severe respiratory
insufficiency are required.
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Regarding the muscular system, our results revealed no
significant dysfunction of muscular oxygen utilization in patients
with ALS compared with healthy controls. Considering that
muscle dysfunction is indirect and secondary to neuronal
impairment in ALS, it is reasonable that our CPET pattern
is different from that seen in mitochondrial myopathies
(Jeppesen et al., 2003). The VE/VO2 peak was a comprehensive
indicator of breathing economy. In the muscular disease with
scarce impairment in the cardiopulmonary system, the higher
VE/VO2 peak has been reported to directly reflect the lower
muscle oxidative capacity in the patients with mitochondrial
myopathy compared with controls (Taivassalo et al., 2003).
Besides, increased VE/VO2 peak has also been identified in
cardiopulmonary diseases for ventilatory inefficiency (i.e., heart
failure) (Mejhert et al., 2002). Since ALS is a complex disease
with the involvement of multiple systems, the interpretation
of the VE/VO2 peak could be a comprehensive indicator
for impairments in both cardiopulmonary and muscular
systems. Moreover, the significant correlation of clinical survival
supported its potential use as a prognostic indicator in ALS
(Table 4). Further studies including the detection of plasma
lactate and biopsies of muscle tissues are needed to provide
more direct evidence of muscular mitochondrial abnormalities in
exercise intolerance of ALS.

Neurofilament light chain (NfL) was not significantly
associated with typical CPET parameters in this study. This
could be due to different pathogenic mechanisms represented
by the two variables in ALS. NfL, the main by-product of
neuroaxonal breakdown, mainly represents the degree of axonal
damage and reflects the neurodegeneration process of ALS
(Lu et al., 2015). In contrast, abnormal CPET parameters, the
direct representative of exercise physiology impairments, mainly
reflect the dysregulation of multiple systems under the exercise
stressor (Guazzi et al., 2017). The negative correlations could be
reasonable since the parameters stand for the pathophysiology of
different dimensions in ALS. Further studies with a larger sample
size and more elaborate study design are needed to get a better
understanding of the issue.

This study has several limitations. First, since the standard
CPET requires the adaptability to pedal the apparatus for the
cycling test, we enrolled patients at the time of diagnosis to
ensure functional availability. This might limit the application
in late-stage patients with severe impairments. Furthermore,
given the characteristics of CPET, we suggest conducting this
evaluation in the early stage of patients with ALS. Second,
this study was conducted in patients with sporadic ALS,
independent replication of this study in those with familial
ALS with a specific genetic background is essential to support
a broader application of CPET in ALS. In addition, although
this preliminary study first explored the clinical value of CPET
in ALS, the present investigation was conducted in a single
center with potential referral bias. Thus, multicenter studies
involving larger numbers of participants are needed to confirm
our findings in the future.

In summary, through the comprehensive assessment of CPET,
we quantified the common and significant exercise physiology
impairments in patients with ALS compared with matched

controls. CPET variables were significantly associated with
functional scores reflecting disease severity and progression.
We demonstrated that patients with a higher VO2 peak, HR
peak, and a lower VE/VO2 peak had better survival in ALS.
Our findings of exercise physiology impairments also highlight
the potential use of CPET in ALS for the non-invasive,
quantitative, and objective evaluation of disease severity and
clinical prognosis.
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