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Abstract: Dental implants currently in use are mainly made of titanium or titanium alloys. As
these metallic elements are immersed in an electrolytic medium, galvanic currents are produced
between them or with other metals present in the mouth. These bimetallic currents have three
potentially harmful effects on the patient: micro-discharges, corrosion, and finally, the dispersion of
metal ions or their oxides, all of which have been extensively demonstrated in vitro. In this original
work, a system for measuring the potentials generated in vivo is developed. Specifically, it is an
electrogalvanic measurements system coupled with a periodontal probe that allows measurement of
the potentials in the peri-implant sulcus. This device was tested and verified in vitro to guarantee
its applicability in vivo. As a conclusion, this system is able to detect galvanic currents in vitro and
it can be considered capable of being employed in vivo, so to assess the effects they may cause on
dental implants.

Keywords: corrosion; dental implants; biocompatible materials/chemistry; electrochemical tech-
niques; saliva; artificial/chemistry

1. Introduction

“Galvanism” is named after the Italian physician Luigi Galvani (1737–1798) (Gillispie) [1],
who was the first to describe the effects of electrical currents on living tissues. In dentistry,
the term “galvanism” is used to describe the electrical currents that are established between
metals of different characteristics.

Galvanism has long been associated with various oral manifestations, such as pain
or metallic taste [2], leukoplakia [3], lichen planus [4], and toxic or allergic reactions to
corrosion products [5]. Recently, it was also identified as a possible cause of implant loss [6].

These currents are established when two or more different metals with different
electrical potentials are placed in the oral medium, forming an electrochemical cell. In this
way, oxidation on the surface of one metal (the anode) and reduction on that of the other
(the cathode) occur. This exchange occurs through saliva, which acts as an electrolyte. Both
metals then interact, as shown in Figure 1.

For more than 70 years, commercial pure titanium implants (Ti implants) have been
used to replace missing teeth [7]. Dental implants have been shown to be a reliable option
for tooth loss with high survival and success rates [8]. Therefore, their use has become
widespread, although they are not without complications [9]. These complications can lead
to implant loss, which is usually attributed to both biological and mechanical factors and a
combination of local and systemic factors [9,10].

Commercial pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display
excellent corrosion resistance and biocompatibility. Although zirconium implants are
available, this study focused on titanium and its alloys because these are the most frequently
used implants.
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Figure 1. The anode, the metal that is oxidized (M), releases ions (Mn+) to the medium and an equal 
number of electrons (n) as the valence of these ions (Mn+). The metal that is reduced can incorporate 
these electrons (e) both on its surface and in its metal lattice by reacting with both hydrogen and 
oxygen, depending on the medium. 

Several studies have shown that Ti implants inserted into bone can continuously re-
lease Ti particles [11,12]. This degradation of the Ti implant depends on the oral environ-
ment, which can be highly corrosive in different ways (Figure 2), affecting the behaviour 
of the implant and its prosthesis and releasing Ti particles [13–17]. 

 

 
Figure 2. Different ways in which a dental implant can corrode and lose its passivated layer. 

Figure 1. The anode, the metal that is oxidized (M), releases ions (Mn+) to the medium and an equal
number of electrons (n) as the valence of these ions (Mn+). The metal that is reduced can incorporate
these electrons (e) both on its surface and in its metal lattice by reacting with both hydrogen and
oxygen, depending on the medium.

Several studies have shown that Ti implants inserted into bone can continuously
release Ti particles [11,12]. This degradation of the Ti implant depends on the oral environ-
ment, which can be highly corrosive in different ways (Figure 2), affecting the behaviour of
the implant and its prosthesis and releasing Ti particles [13–17].
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Figure 2. Different ways in which a dental implant can corrode and lose its passivated layer.

These Ti particles can enhance the expression of inflammatory cytokines by activating
osteoclasts, macrophages, and neutrophils [14,15,18–20].

Most studies on the effect of corrosion have been performed in vitro due to the diffi-
culty in developing a measurement system that can be used intraorally [21,22].



Materials 2022, 15, 5100 3 of 11

The purpose of this study was to develop a system for measuring galvanic currents
that would allow us to perform accurate measurements in the oral cavity. On the other
hand, we also sought to compare the new device with a reference electrode.

2. Materials and Methods
2.1. Materials

An HI 9025 pH meter (Hanna Instruments SL, Eibar, Municipality of Eibar, Spain)
07was used to measure the electrical potentials on the surface of the implants (Figure 3). Its
main characteristics can be found at the following link: http://www.ictsl.net/productos/
aparatos/phmetroportatilhi9024yhi9025hanna.html (accessed on 7 June 2022).

Materials 2022, 15, x FOR PEER REVIEW 3 of 12 
 

 

These Ti particles can enhance the expression of inflammatory cytokines by activat-
ing osteoclasts, macrophages, and neutrophils [14,15,18–20]. 

Most studies on the effect of corrosion have been performed in vitro due to the diffi-
culty in developing a measurement system that can be used intraorally [21,22]. 

The purpose of this study was to develop a system for measuring galvanic currents 
that would allow us to perform accurate measurements in the oral cavity. On the other 
hand, we also sought to compare the new device with a reference electrode. 

2. Materials and Methods 
2.1. Materials 

An HI 9025 pH meter (Hanna Instruments SL, Eibar, Municipality of Eibar, Spain) 
07was used to measure the electrical potentials on the surface of the implants (Figure 3). 
Its main characteristics can be found at the following link: http://www.ictsl.net/produc-
tos/aparatos/phmetroportatilhi9024yhi9025hanna.html (accessed on 7 June 2022). 

 
Figure 3. The Hanna waterproof instrument, a heavy-duty pH meter designed to provide accurate 
laboratory results. 

For the measuring electrode, an original “periodontal electrode” was designed. This 
electrode consists of a reference electrode (model ME 402; Radiometer Analytical SA, 
France) (Figure 4a) connected to a stainless steel periodontal probe (periodontal probe #8 
handle #6 Qulix 3-6-8-11; Hu-Friedy) (Figure 4b) that acts as a contact electrode. To vali-
date this electrode, it was compared with an oxidation–reduction potential (ORP) com-
bined electrode with a platinum tip and an integrated reference electrode (model HI 
3131P; Hanna Instruments SL, Eibar, Spain) (Figure 4c). 

Figure 3. The Hanna waterproof instrument, a heavy-duty pH meter designed to provide accurate
laboratory results.

For the measuring electrode, an original “periodontal electrode” was designed. This
electrode consists of a reference electrode (model ME 402; Radiometer Analytical SA,
France) (Figure 4a) connected to a stainless steel periodontal probe (periodontal probe #8
handle #6 Qulix 3-6-8-11; Hu-Friedy) (Figure 4b) that acts as a contact electrode. To validate
this electrode, it was compared with an oxidation–reduction potential (ORP) combined
electrode with a platinum tip and an integrated reference electrode (model HI 3131P; Hanna
Instruments SL, Eibar, Spain) (Figure 4c).

All measurements were made at 37 ± 0.5 ◦C in a Precisterm Selecta Model 6,000,137
thermostatic bath (Laboquimia, Lardero, La Rioja, Spain). The temperature was checked
with an HI 7669/2W temperature probe (Laboquimia, Lardero, La Rioja, Spain) and an HI
9025 pH metre (Laboquimia, Lardero, La Rioja, Spain).

To simulate oral conditions, an artificial saliva bath was used according to the formula
shown in Table 1.

Table 1. Composition of the artificial saliva used to conduct the experiments.

Chemical Components of Artificial Saliva

Sodium Biphosphate 200 mg Potassium Chloride 1.2 gr Potassium Thiocyanate 330 mg

Sodium Bisphosphate 260 mg Sodium Chloride 700 mg Sodium Bicarbonate 1.5 gr

Urea 1.5 gr Purified water sqt 1000 ml Lactic acid sqt pH 6–7
mg = milligrams = grams, ml = millilitres, pH = potential of hydrogen, sqt = “sufficient quantity to”.

http://www.ictsl.net/productos/aparatos/phmetroportatilhi9024yhi9025hanna.html
http://www.ictsl.net/productos/aparatos/phmetroportatilhi9024yhi9025hanna.html
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Figure 4. Different electrodes used in these measurements. (a) Reference electrode suitable for general
laboratory use. (b) Stainless steel periodontal probe. (c) Combined electrode with platinum tip and
integrated reference electrode.

2.2. Method

The potentiometry measurements were performed in and validated by a simulation in
a bath with artificial saliva. In this way, the range of possible values was evaluated in vitro
and the measurement method was fine-tuned.

A total of 50 measurements (25 with each electrode) were made on 25 samples of
titanium implants, each 12 mm long and 3.75 mm wide (Microdent System, Barcelona,
Spain).

The electrodes were maintained using a series of storage, calibration, and disinfection
solutions.

The ME 402 reference electrode was stored upright in a saturated solution of KCl (potas-
sium chloride), ref. S21M010 (Radiometer Analytical SA, Villeurbanne Cedex, France), and
the vent hole was protected from the environment. Before each potentiometry measure-
ment, the electrodes and the measuring instrument were checked with a 468 mV (25 ◦C)
Redox Pattern solution (Crison, code 9410, Barcelona, Spain). Before and after each mea-
surement, we cleaned the electrochemical probes with RENOVO.N (S16M001; Hach Lange,
Berlin, Germany) electrode cleaning solution (potassium hydroxide).

To calibrate the pH scale of the pH metre, we used two buffer solutions, both from Crison
(Barcelona, Spain): one at pH 4.01 (25 ◦C; code 9463) and one at pH 7.00 (25 ◦C; code 9464).

Finally, Terg-A-Zyme, an enzymatic detergent (1304; Alconox, Inc., New York, NY,
USA) was used to clean all the instruments once the in vitro study was completed and
before and after each clinical measurement.

To validate the measurement method, the measurements were repeated 25 times by
the same observer under identical conditions; measurements with absolute difference from
the mean of more than 5% were considered poor and rejected.

2.3. Statistical Analysis

Statistical analysis of the data collected in this study was carried out using the statistical
package SPSS (Statistical Package for Social Sciences), version 25.0 (IBM Corp., Armonk, NY,
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USA). This software was also used to perform the following procedures: descriptive statistics,
frequency analysis, and Student’s t-test. p < 0.05 was accepted as statistically significant.

3. Results

A total of 50 measurements were performed (25 with each electrode) for 25 samples
of Microdent System titanium implants measuring 12 mm in length and 3.75 mm in
width. These measurements were performed in artificial saliva at 37 ± 0.5 ◦C, yielding the
following results:

Both the combined electrode and the periodontal electrode recorded an absolute
potential value of approximately 243.26 mV (CI 95% 232.43–254.09). The mean for the
combined electrode was 210.28 mV (CI 95%205.09–215.47), and that for the periodontal
electrode was 276.24 mV (CI 95% 266.64–285.84). Table 2 presents the descriptive analysis
of the electrical potential value for the combined and periodontal electrode in terms of
central tendency, dispersion, position, asymmetry, and kurtosis (Table 2)

Table 2. Descriptive analysis of the electrodes. Results in mV.

Statistical Combined Electrode Periodontal Electrode

Mean 276.24 −210.28

Lower limit of the CI * 266.64 −215.47

Upper limit of the CI * 285.84 −205.09

5% trimmed mean 276.63 −209.48

Median 272 −205

Variance 540.44 157.96

Standard deviation 23.24 12.56

Minimum 233 −240

Maximum 311 −196

Range 78 44

Interquartile range 43 15

Asymmetry −0.00 −1.07

Kurtosis −1.09 0.12
* 95% confidence interval for the mean.

The expected values were normal in both cases and demonstrated similar normal Q–Q
plots (Figure 5).
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The box plots of the electrodes show a wider dispersion for the periodontic electrode
potential, but the values are higher than those of the combined electrode (Figure 6).
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Figure 6. Box plot of the total bone-to-implant contact (BIC) obtained with control and UVC-treated
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These differences were statistically significant according to the paired Student’s t-test
(Table 3).

Table 3. T-test values. There were statistically significant differences between the two electrodes. The
values recorded with the periodontal electrode were higher than those of the combined electrode.

T-Test T-Test Value p

Values −189.99 0.000

It is worth mentioning that the relative values were negative for the combined electrode and
positive for the periodontal electrode, so the analysis was performed with the absolute values.

4. Discussion

Titanium (Ti) is characterized by its resistance to corrosion because it forms an oxide
layer that protects its interior. This phenomenon is called “passivation” [23].

Despite the presence of this outer layer, there is some evidence that Ti implants can
release Ti particles slowly but continuously [24]. The importance of these particles seems
to be key to the local response of the organism [25–27]. Previous studies have verified a
concentration gradient of particles in the tissue, with higher concentrations observed closer
to the implant [24,28,29].

The progressive accumulation of these particles, due to their low solubility, can cause a
response that triggers the loss of bone around the implant and finally, the loss of the implant
itself [30]. The mechanism by which this local accumulation of particles can trigger the
onset and progression of peri-implantitis continues to be unclear. As previously described,
reactive oxygen species (ROS) generation could be responsible for the recruitment of
neutrophils. However, the physiological purpose of this oxidative regulatory mechanism
remains unknown [31]. Ultimately, this process results in an imbalance between osteoblasts
and osteoclasts [32].

As mentioned above, although the highest concentration is local to the implant, the
effects of Ti particles can also be seen at the systemic level [11,12]. Small concentrations have
been found in distant organs, such as the lung, liver, spleen, and kidneys [12]. However, in
general, they do not produce a systemic immune response [24].
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One of the causes potentially influencing the release of Ti particles is corrosion due to
the formation of electrical potentials, which can determine their local accumulation [33–35]
(Figure 7).
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The system was able to quantify the electrical potentials that can be generated around
dental implants through the use of Evans diagrams. In this way, it was possible to determine
both the intensity of the electric currents and the rate of the corrosive reactions. It can be
considered that these measurements can be useful for reducing corrosion and preventing
the appearance of subsequent complications.

The measurement system is similar to those used by other researchers, such as Sutow
et al. and Muller et al. [21,22], to record the electrical potentials of metal restorations.
However, the adaptation of a periodontal probe provides us with clinical advantages such
as the ability to record electrical potentials within the gingival sulcus.

This new method opens numerous avenues of study, including identification of the
processes that develop inside the periodontal groove of restored teeth, quantification of the
electrical activity that occurs in the peri-implant groove, and assessment of the relationship
between oral electrical potentials and oral diseases attributed to galvanism (pain, oral
lichen, and leukoplakia, among others) [2–5].

Multiple factors can facilitate the release of these particles, including the surface
treatment of the implant, friction during implant insertion, corrosion of the implant surface,
friction at the implant–abutment interface, the tissue microenvironment, implantoplasty,
and the method used for implant surface detoxification [30,36]. Among these, corrosion
and friction wear have been mentioned as particularly important causes [37,38].

The effect of corrosion is considered inevitable for almost all existing metal im-
plants [39]. As mentioned above, this release will last for years [40]. However, its intensity
is influenced by the oral environment, in which both the temperature and the pH of the
saliva play a prominent role, and even by certain bacteria that are capable of eroding the
titanium layer, releasing Ti particles [6].
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To understand this effect, it should be considered that a dental implant is submerged
in saliva, favouring the creation of a galvanic cell and therefore causing an electrolytic effect
on the surface of the implant [33]. This effect facilitates the release of Ti particles in the
surrounding tissues [34,35]. In extreme situations, when this environment is maintained for
years, a loss of strength can occur in the implant core [41], which can lead to a catastrophic
failure, culminating with fracture of the implant itself [42].

As mentioned above, any factor that alters the saliva will have a potential effect on
implant corrosion and release of Ti particles [43,44]. Therefore, our first objective was to
verify the feasibility of the procedure in a controlled environment.

To establish the usefulness of the proposed system, a medium was used that repro-
duces artificial saliva and allows us to control the pH and temperature. The results support
the use of this method; we recorded electrical potentials with the periodontal electrode
similar to those of other authors, with a mean value of 276.24 mV (CI 215.47–285.84). These
values can be greater in polymetallic conditions, that is, when more than one metal is
present in the oral cavity, such as with old amalgam fillings, superstructures or abutments
of different compositions [45].

Another variable to consider is the composition of Ti implants manufactured with
titanium alloys. Specifically, Cai et al. measured the in vitro open circuit potential (OCP) of
four different titanium alloys with three different surface treatments. Their results show
that the electrical potential of uncoupled titanium alloys varied from 85 mV to 205 mV [46].

The results agree with the ones of that study, although the influence of temperature
seems to be of such importance that it should be taken into account when determining the
potential. Other authors even determined that metallic combinations may pose a greater
risk, so they established a series of clinical guidelines for the use of combination metallic
restorations [47].

Among the immediate applications of this measurement method are the in vitro study
of the factors that can modify the electrical potential of titanium implants (such as the
surface area, implant length and diameter, restorative material, medium or temperature
variations) and the in vivo study of the electrical potential of dental implants subjected to
load, as well as the relationship between this potential and variables such as bone loss or
peri-implant inflammation. In conclusion, this system is capable of measurements in the
250Mvolt range and can be used in vivo on patients with implants. This will allow to study
the possible effect of corrosion on bone loss around implants.

Limitations

The measurement of electrical potentials includes errors that are inherent to the elec-
trical circuit. One of the main sources of error is the drop in IR of the measurement circuit,
where I is the current and R is the total resistance. The total resistance of the circuit includes
the resistance of the voltmeter, all contact resistances, the resistance of the electrolytes, and
the resistance of the tissues between the reference electrode and the measurement elec-
trode [48]. However, despite all the errors inherent to the circuit, the clinical measurement
of the electrical potential of metal restorations showed high reproducibility: differences of
only 2 mV were obtained across three independent measurements at intervals of 5 s [20].

It should also be noted that the behavior of the galvanic currents will depend on the
material used (Soares and Stich) [49,50], the treatment of peri-implantitis (Lozano and
Verdeguer) [51,52], as well as the development of future materials; therefore, the study of
Ti particles and their effect must be taken into account (Gürbüz-Urvasızoğlu G) [53] at least
until new particle-free materials become available (Nagay) [54].
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M.J.M.-V.; writing—review and editing, A.S.-P.; visualization, A.J.-G., A.S.-P., J.M.M.-C. and M.J.M.-V.;
supervision, A.S.-P.; project administration, A.S.-P. All authors have read and agreed to the published
version of the manuscript.
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