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Primary liver carcinoma is one of the most common malignant tumors with a poor prognosis. -is study aims to uncover the
potential mechanisms and identify core biomarkers of hepatocellular carcinoma (HCC). -e HCC gene expression profile
GSE49515 was chosen to analyze the differentially expressed genes from purified RNA of peripheral blood mononuclear cells,
including 10 HCC patients and 10 normal individuals. GO and KEGG pathway analysis and PPI network were used, and the
enrichment of the core genes out of 15 hub genes was evaluated using GEPIA and GSEA, respectively. We employed flow
cytometry to count mononuclear cells to verify our opinions. In this analysis, 344 DEGs were captured, including 188
upregulated genes and 156 downregulated genes; besides that, 15 hub genes were identified. GO analysis and KEGG analysis
showed the DEGs were particularly involved in immune response, antigen processing and presentation, and infection and
inflammation. -e PPI network uncovered 2 modules were also mainly involved in immune response. In conclusion, our
analysis disclosed the immune subversion was the major signature of HCC associated closely with JUN, VEGFA, TNFSF10,
and TLR4, which could be novel noninvasive biomarkers in peripheral blood and targets for early diagnosis and therapy
of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
monmalignancies, especially in the aged, which accounts for
approximately 90% of all primary liver cancers severely
threatening public health [1]. -e mechanism of HCC is a
complex process associated with the incremental accumu-
lation of gene mutation, giving rise to abnormal immune

subversion, cell cycle, and angiogenesis [2–4]. As for im-
mune subversion, effector immune cells could execute im-
mune control of HCC, which efficiently decrease malignant
transformed cells. However, progression of HCC clearly
certifies failure of tumor immune control suggesting in-
hibition of anticancer immune responses [5]. Especially,
tumor-related mononuclear cells collaborate within an in-
flammatory network, which result in the immune privilege
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in the tumor environment [6]. -erefore, immunosup-
pressive mononuclear cells are equivalent to heterogeneous
cell lines, including lymphocytes and monocytes cooperat-
ing by direct cell contact, secretion of cytokines, or pro-
duction of extracellular matrix, which lead to the
suppression of the immune response in the tumormilieu [7].

Currently, imageological examination and pathological
biopsy are the conventional diagnostic methods of HCC [8].
However, imaging displays poor specificity, and pathological
biopsy is an invasive method which may result in iatrogenic
injury [9]. -erefore, serum biomarkers are routinely used
for tumor diagnostic. For example, alpha-fetoprotein (AFP)
has been widely used in clinical practice [10]. Although
many studies have reported the accuracy of AFP for HCC,
solely AFP still has some false-positive or false-negative rate
[11]. Hence, the identification of specific and sensitive
biomarkers is necessary in order to achieve accurate di-
agnosis and treatment of HCC as early as possible, especially
noninvasive biomarkers.

High-throughput gene microarray is increasingly being
widely used, which can analyze cancer and noncancer
samples indicating us tumor-related genes at multiple levels
from molecular diagnosis and pathological classification to
therapeutic evaluation and prognosis prediction, as well as
drug sensitivity and neoplasm recurrence [12–14]. However,
the use of microarrys in clinical application is restricted by
countless number of genes identified by gene profiling, lack
of both repeatability and independent verification, and re-
quirement for complex statistical analyses. Moreover, most
of the microarrys are based on the genes in tissues which are
difficult to detect except by invasive methods [15].-erefore,
in order to put these expression profiles into clinical ap-
plications as soon as possible, it is necessary to identify an
appropriate amount of serum genes and develop a suitable
way that can be done by routine assay.

In this study, we downloaded the HCC gene expression
profile GSE49515 in the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/), an online public col-
lection database for microarray data and used GEO2R online
software to compare gene expression profiles of tumor cells
with normal liver cells to identify differentially expressed
genes (DEGs). -en, we constructed the protein-protein
interaction (PPI) network of the DEGs and selected 15 hub
genes according to a high degree of connectivity. Following
this, we analyzed gene ontology (GO) and pathway en-
richment including the biological process (BP), molecular
function (MF), cellular component (CC), and KEGG
pathway of the DEGs. Moreover, we performed twomodules
and confirmed their enriched pathways. -e core genes out
of the 15 hub ones were found, and the interactions between
any of them were detected with the help of GEPIA. After the
analysis of the core status and biological function of any hub
gene, we performed flow cytometry (FCM) to count
mononuclear cells, confirming the findings.

2. Results

2.1. Identification of DEGs and Hub Genes. A comparison of
10 HCC samples with 10 normal samples in our study was

performed by employing the GEO2R online analysis tool
based on P value< 0.05 and logFC≤ − 2 or logFC≥ 2 criteria.
A total of 344 DEGs were picked up after analyzing
GSE49515, 188 of which were upregulated while 156 were
downregulated (Figure 1(b)).-e expression levels of the top
50 DEGs were displayed in a heat map to visualize the results
(Figure 1(a)).

2.2. GO Function- and KEGG Pathway-Enrichment Analysis.
To gain a more extensive and in-depth knowledge of those
selected DEGs, we use DAVID to analyze significantly
enriched GO function and KEGG pathways. After inputting
all of the DEGs to DAVID online analysis tool, we obtained
the GO analysis of these upregulated DEGs and down-
regulated DEGs. -e results showed that these DEGs were
mainly enriched in biological processes (BP), including
apoptotic process, immune response, and inflammatory
response, among which were positive regulation of NF-κB
transcription factor activity and cell-cell signaling for
downregulation, positive regulation of angiogenesis, nega-
tive regulation of cell proliferation, positive regulation of cell
proliferation, mitotic spindle organization, and neutrophil
chemotaxis for upregulation. Concerning molecular func-
tion (MF), the downregulated DEGs were particularly re-
lated to receptor binding, iron ion binding, haptoglobin
binding, oxygen transporter activity, and peroxidase activity,
while the upregulated DEGs were mainly implicated with
nucleotide binding and ubiquitin protein ligase binding.
Besides, GO cell component (CC) analysis indicated that the
downregulated DEGs were mainly enriched in cytosol, ex-
tracellular exosome, Golgi membrane, blood microparticle,
and nuclear chromosome (telomeric region) and the
upregulated DEGs were principally enriched in nucleus,
nucleoplasm, platelet alpha granule and extracellular space
(Table 1).

Afterwards, we analyzed the most significantly enriched
KEGG pathway of the upregulated and downregulated
DEGs, which is shown in Table 2. -e downregulated DEGs
were involved in measles, influenza A, rheumatoid arthritis,
antigen processing and presentation, and legionellosis, while
the upregulated DEGs were involved in bladder cancer,
rheumatoid arthritis, malaria, herpes simplex infection, and
osteoclast differentiation. -e scatter plots in Supplement 1
(A, B, and C) show a GO and KEGG pathway-enrichment
plot of HCC.

2.3. Hub Genes and Module Screening from PPI Network.
Besides, 15 hub genes from Cytoscape software were iden-
tified in accordance with a high degree of connectivity se-
lected (Table 3). We built the PPI network of the top 15 hub
genes via the information of the STRING protein query from
public databases (Figure 2(a)). -e top 15 hub genes with a
higher degree of connectivity are as follows: JUN, IL8,
VEGFA, TLR4, IFNG, TNFSF10, EHHADH, ATF3, FUS,
DUSP1, HSPA1A, CUL1, FPR2, POLR2H, and RHOB. Based
on the GO function and KEGG pathway analysis of the
profile, we uncovered JUN, VEGFA, TNFSF10, and TLR4 that
were enriched in immune response-related pathway.

2 Journal of Oncology

http://www.ncbi.nlm.nih.gov/geo/


Moreover, we usedMCODE plug-in to detect the highest
modules in the PPI network. We chose the top 2 modules,
and GO function- and KEGG pathway-enrichment analysis
indicated that Module 1 was related to immune response,
apoptotic process, and epithelial cell migration, while
Module 2 was associated with a signaling pathway and
cellular response to various substances (Figures 2(b) and
2(c), Table 4).

2.4. .e Kaplan–Meier Plotter and Expression Level of Hub
Genes. -e prognosis of the top 15 hub genes was analyzed
in http://gepia.cancer-pku.cn/.We found that the expression
of JUN (P � 0.037) was related to worse overall survival (OS)
for HCC patients, as well as IL8 (called as CXCL8)
(P � 0.011), VEGFA (P � 0.014), EHHADH (P � 0.026),
FUS (P � 0.04), HSPA1A (P � 0.048), CUL1 (P � 0.022),
and POLR2H (P � 0.0012). -e level of TLR4 (P � 0.61),
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Figure 1: Identification of DEGs of PBMC in GSE49515. (a) Heatmap of the expression levels of the top 50 DEGs employed the GEO2R
online analysis tool based on P value < 0.05 and logFC≤ − 2 or logFC≥ 2 criteria. (b) Volcano plot about total 344 DEGs from GSE49515.
-e red dots represent 188 upregulated DEGs, while the green dots represent 156 downregulated DEGs. -e blue dots denote the no-
differentially expressed genes.
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IFNG (P � 0.66), TNFSF10 (P � 0.26), ATF3 (P � 0.19),
DUSP1 (P � 0.39), FPR2 (P � 0.5), and RHOB (P � 0.058)
had no obvious difference in overall survival of HCC pa-
tients (Figure 3). However, the survival curves are analyzed
with liver tissue, which can only indirectly explain the
importance of hub genes in PBMC. -ese hub genes in
PBMC which can be the biomarkers for early diagnosis may
not be easy to detect in liver tissue.

-en, we employed DAVID to analyze the correlation of
15 hub genes. We found JUN, IFNG, VEGFA, TLR4, and
TNFSF10 are the 5 high-degree-of-connectivity genes which
are fully associated with immune response, inflammatory

response, and HIF-1 signaling pathway (Table 5). -en, in
order to confirm the most relevant hub genes, we used
correlation analysis in GEPIA, and we detected JUN and
VEGFA, JUN and ATF3, and JUN and RHOB are dis-
tinctly correlated (P value � 0, R � 0.47; P value � 0,
R � 0.71; P value � 0, R � 0.69), which means JUN may be
the core gene of HCC (Figures 4(e)–4(g)).

2.5. Gene Set Enrichment Analysis. In order to make the
further function of the hub gene clear, GSEA was used to
map into GO analysis and KEGG pathways database. Under

Table 1: Gene ontology analysis of differentially expressed genes associated with hepatocellular carcinoma.

Category Term Count % P value

Upregulated

GOTERM_BP_DIRECT GO:0045766∼positive regulation of angiogenesis 5 <0.001 <0.001
GOTERM_BP_DIRECT GO:0008285∼negative regulation of cell proliferation 5 0.01 0.01
GOTERM_BP_DIRECT GO:0008284∼positive regulation of cell proliferation 5 0.02 0.02
GOTERM_BP_DIRECT GO:0007052∼mitotic spindle organization 3 <0.001 <0.001
GOTERM_BP_DIRECT GO:0030593∼neutrophil chemotaxis 3 0.02 0.02
GOTERM_CC_DIRECT GO:0005634∼nucleus 20 0.12 0.01
GOTERM_CC_DIRECT GO:0005654∼nucleoplasm 11 0.07 0.02
GOTERM_CC_DIRECT GO:0031091∼platelet alpha granule 2 0.01 0.04
GOTERM_CC_DIRECT GO:0005615∼extracellular space 9 0.06 0.05
GOTERM_MF_DIRECT GO:0000166∼nucleotide binding 5 0.03 0.04
GOTERM_MF_DIRECT GO:0031625∼ubiquitin protein ligase binding 3 0.02 0.05

Downregulated

GOTERM_BP_DIRECT GO:0006915∼apoptotic process 9 0.06 0.02
GOTERM_BP_DIRECT GO:0006955∼immune response 8 0.05 0.02
GOTERM_BP_DIRECT GO:0006954∼inflammatory response 7 0.04 0.03
GOTERM_BP_DIRECT GO:0007267∼cell-cell signaling 6 0.04 0.05

GOTERM_BP_DIRECT GO:0051092∼positive regulation of NF-kappaB
transcription factor activity 6 0.04 <0.001

GOTERM_CC_DIRECT GO:0005829∼cytosol 33 0.21 0.01
GOTERM_CC_DIRECT GO:0070062∼extracellular exosome 26 0.16 0.04
GOTERM_CC_DIRECT GO:0000139∼golgi membrane 9 0.06 0.03
GOTERM_CC_DIRECT GO:0072562∼blood microparticle 6 0.04 <0.001
GOTERM_CC_DIRECT GO:0000784∼nuclear chromosome, telomeric region 4 0.03 0.05
GOTERM_MF_DIRECT GO:0005102∼receptor binding 7 0.04 0.03
GOTERM_MF_DIRECT GO:0005506∼iron ion binding 5 0.03 0.02
GOTERM_MF_DIRECT GO:0031720∼haptoglobin binding 3 0.02 <0.001
GOTERM_MF_DIRECT GO:0005344∼oxygen transporter activity 3 0.02 <0.001
GOTERM_MF_DIRECT GO:0004601∼peroxidase activity 3 0.02 0.01

Table 2: KEGG pathway analysis of differentially expressed genes associated with hepatocellular carcinoma.

Category Term Count % P value Genes

Up regulated

ssc05219: bladder cancer 4 0.02 0.002 VEGFA, CXCL8, HBEGF, THBS1
ssc05323: rheumatoid arthritis 5 0.03 0.002 JUN, IFNG, VEGFA, CXCL8, ITGB2

ssc05144: malaria 4 0.02 0.004 IFNG, CXCL8, ITGB2, THBS1
ssc05168: herpes simplex infection 5 0.03 0.024 SRSF3, JUN, IFNG, CYCS, CUL1
ssc04380: osteoclast differentiation 4 0.02 0.047 FOSL2, SQSTM1, JUN, IFNG

Down
regulated

hsa05162: measles 8 0.05 <0.001 CCNE2, TNFSF10, EIF2S1, TLR4, HSPA1A,
HSPA1B, MSN, TLR7

hsa05164: influenza A 8 0.05 0.001 TNFSF10, EIF2S1, TLR4, HSPA1A, HSPA1B,
TLR7, HLA-DQA1, HLA-DRA

hsa05323: rheumatoid arthritis 6 0.04 0.001 CXCL5, TLR4, LTB, HLA-DQA1, HLA-DRA,
IL11

hsa04612: antigen processing and
presentation 5 0.03 0.004 HSPA1A, HSPA1B, KLRD1, HLA-DQA1, HLA-

DRA
hsa05134: legionellosis 4 0.03 0.012 NLRC4, TLR4, HSPA1A, HSPA1B
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the cutoff criteria nominal P value< 0.05, │enrichment score
(ES)│> 0.6, and gene size≥ 100, six functional gene sets were
enriched in total, which were particularly centralized on
pathway associated with immune response and in-
flammatory response. Six pathways were “inflammatory
response to antigenic stimulus,” “regulation of T cell mi-
gration,” “antigen processing and presentation via MHC
class IB,” “negative regulation of B cell activation,” “negative
regulation of NF-kB signaling,” and “positive regulation of
interleukin-1 production” (Figure 5).

2.6. Identification of Biomarkers. To confirm the results we
have stated above, we test the mRNA level of four key genes
we predicted (JUN, TLR4, VEGFA, and TNFSF10).We found
the mRNA level of JUN, TLR4, VEGFA, and TNFSF10 in the
PBMC of HCC patients was significantly upregulated in the
PBMC of HCC patients (P< 0.05), of which VEGFA in-
creased obviously (P< 0.01) (Figures 4(a)–4(d)).

2.7. Immune Subversion in HCC. According to our pre-
diction, the negative regulation of immune cells in HCC
patients’ peripheral blood significantly occurred detected by
FCM (Figures 6(a)–6(h)). In detail, compared with the
healthy subjects, the levels of T lymphocytes in peripheral
blood, both helper T cells and cytotxic T cells, were sig-
nificantly lower in HCC patients, which is mainly the im-
mune mechanism of tumor patients (P< 0.05) (Figure 6(k)).
Meanwhile, the B lymphocytes as well as NK cells also
decreased in HCC patients, especially NK cells (P< 0.05)
(Figures 6(i) and 6(j)). Taken together, our experiment of
FCM demonstrated that T cell migration and B cell acti-
vation in adaptive immune and NK cells inhibition in innate
immune were important mechanisms and could do further
research in future.

3. Discussion

In recent decades, the morbidity and mortality of HCC have
been increasing worldwide. Although the early diagnosis
and treatment have developed a lot recently, the overall

survival rates of HCC is still poor [16]. -erefore, the
sensitive and specific biomarkers for HCC are urgently
necessary. High-throughput studies can develop the thor-
ough exploration of the vital mechanisms which lead to
HCC. In our study, we identified DEGs between 10 HCC
samples and 10 normal samples from the GEO database of
GSE49515. In order to increase the statistical power of these
DEGs, we defined that the absolute value of the logarithm
(base 2) fold change (logFC) greater than 2 and a total of 344
DEGs were captured, including 188 upregulated genes and
156 downregulated genes. In order to have an in-depth
detection of these DEGs, we employed GO function, KEGG
pathway, PPI network, and connectivity analysis of these
DEGs, via which we found that HCC-related genes and
pathways have great importance in cancer initiation and
progression.

-ere were plenty of mechanisms uncovered to con-
tribute to the development of HCC, but the predominant
mechanism implicated with tumorigenesis is still contro-
versial, thereby causing difficulties to the diagnosis and
treatment of HCC. GO term enrichment and PPI analysis
in our study disclosed that downregulated DEGs were
mainly associated with immune response. Our experi-
mental results detecting the mononuclear cells in pe-
ripheral blood mononuclear cells of HCC patients and
healthy individuals further confirmed the important role of
immune subversion.

Immune response is well recognized to play a vital part in
the initiation and progression of carcinogenesis because the
development of HCC obviously records failure of tumor
immune control which stands for immune subversion by the
tumor environment [2]. To our knowledge, protective im-
mune surveillance of tumor is mainly conducted by tumor-
directed NK cells and lymphocytes, which can effectively
identify and eradicate malignant cells [6]. On the one hand,
for the reason that innate immune cells are capable of
eliminating malignant cells and pertaining to the first-line
defense to restrain tumor initiation and progression [17], they
act as an essential player in the immunological surveillance.
On the other hand, adaptive immune cells including
B lymphocytes and T lymphocytes develop along with innate
immune responses, which finally target tumor-associated
antigens (TAAs) [18]. To be more specific, once the immune
cells in peripheral blood are unable to generate or be
recruited, specific immunity and nonspecific immunity
function will degrade, eventually causing the rapid growth of
carcinoma tissue. -e quantity of immune cells is associated
with many immune-related genes which may be differentially
expressed during tumor manifestation and progression.

NK cells (CD3− /CD56+) reside in the liver and account
for about 30% to 50% of the hepatic lymphocytes in humans
[17]. -erefore, NK cells constitute a corresponding effector
cell population of innate immune cells contributing to tumor
surveillance within the liver. In our data from FCM, we
identified that NK cells inHCCpatients’ peripheral bloodwere
significantly lower than those in the blood from normal
people. Additionally, our GO analysis indicated that the
downregulated DEGs were mainly related to immune re-
sponse including immune cells manifestation and recruitment

Table 3: Top 15 hub genes with higher degree of connectivity.

Name Degree P value Log FC
JUN 36 1.25E-06 2.933038
CXCL8 26 5.79E-05 4.628443
VEGFA 23 4.12E-07 2.049058
TLR4 18 2.46E-04 − 2.256283
IFNG 15 1.63E-04 2.882006
TNFSF10 14 9.28E-05 − 2.08173
EHHADH 13 2.13E-05 − 2.241576
ATF3 12 1.89E-05 2.081481
FUS 12 8.17E-05 3.243027
DUSP1 11 5.95E-06 2.36054
HSPA1A 11 1.67E-07 − 2.00933
CUL1 10 2.24E-05 2.195652
FPR2 10 6.73E-06 − 3.173126
POLR2H 10 2.34E-07 − 2.370116
RHOB 10 1.14E-05 2.368394
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and release of cytokines. We found that there were 4 genes
(JUN, VEGFA, TNFSF10, and TLR4) closely related to the
downregulation of immune response which occurs in HCC.
Mgrditchian et al. [19] found that the phosphorylation of JUN
could induce NK cell infiltration into the tumor bed by in-
ducing the transcription of CCL5, which eventually results in

targeted autophagy. However, NK cells produce vascular
endothelial growth factor A (VEGFA) in tumor tissues, which
may enhance the formation of tumor by the way of angio-
genesis. -e presence of VEGFA-secreting NK cells is asso-
ciated with a poor prognosis and depends on the type and
stage of the tumor [20]. In our GO analysis, we detected that
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Figure 2: PPI network and module analysis of HCC. (a) PPI network of the top 15 hub genes via the information of the STRING protein
query with maximum number of interactors≤ 5 and confidence score≥ 0.4. (b) PPI network of Module 1. (c) PPI network of Module 2.

Table 4: -e enriched pathway of top 2 modules.

Module Term P value FDR Genes

Module 1

Immune response 0.02 22.28 TNFSF10, JUN, CCR1
Positive regulation of cysteine-type endopeptidase

activity involved in apoptotic process 0.02 24.07 TNFSF10, CYCS

Cytokine-cytokine receptor interaction 0.01 14.95 TNFSF10, CCR1, IFNG, VEGFA
Positive regulation of epithelial cell migration 0.02 21.94 JUN, IFNG

HIF-1 signaling pathway 0.02 22.98 IFNG, VEGFA, TLR4

Module 2

Cellular response to corticotropin-releasing hormone
stimulus <0.001 1.74 NR4A2, NR4A1

Intracellular receptor signaling pathway <0.001 6.26 NR4A2, NR4A1
Steroid hormone-mediated signaling pathway 0.01 23.88 NR4A2, NR4A1

MAPK signaling pathway <0.001 0.90 DUSP1, NR4A1, HSPA1A
Negative regulation of cysteine-type endopeptidase

activity involved in apoptotic process 0.02 22.82 NR4A1, HSPA1A
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the upregulated DEGs were particularly associated with the
positive regulation of angiogenesis, which indirectly verified
that VEGFA-secreting NK cells might play an important part
in the HCC. Wagner et al. reported that membrane-bound
tumor necrosis factor ligand superfamily member 10
(TNFSF10) on the NK cells can supplement the perforin/
granzyme pathway in a NK cell-mediated cytotoxicity, which
can enhance the NK cell function of tumor elimination [21].
Besides, there were a few reports which showed that some
antitumor substances can induce NK cells to proliferate and
release IFN-c via TLR4; thus, we predicted that TLR4might be
an important target to influence HCC development [22–24].

Our result suggested that innate immune cells, especially the
function of NK cells, are downregulated via some hub genes in
HCC.

Adaptive immunity including humoral immunity and
cellular immunity is highly specific elimination of trans-
formed cells, which protects from tumor manifestation and
progression. B lymphocytes, CD4+ T lymphocytes, and CD8+
T lymphocytes are vital members in adaptive immunity [25].
Equally, we employed FCM to detect the B lymphocytes and
two T lymphocyte subsets which verified the reduction of
adaptive immune function in HCC. We predicted the
mechanisms of B lymphocytes and T lymphocyte declining
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Figure 3: Survival curve of HCC patients of 15 hub genes. Prognostic value of 15 genes (JUN, IL8 (called as CXCL8), VEGFA, TLR4,
TNFSF10, IFNG, EHHADH, ATF3, FUS, DUSP1, HSPA1 A, CUL1, FPR2, POLR2H, and RHOB) inHCC. P< 0.05 was regarded statistically
different.
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may also be associated with the four hub genes (JUN, VEGFA,
TNFSF10, and TLR4) via GO and KEGG analysis. c-JUN
NH2-terminal kinase (JNK) signaling pathway was implicated
in various T cell functions. -e JNKs are synergistically

activated by stimulation of the TCRwith antibodies to its CD3
component and the CD28 auxiliary receptor, which was
related to Tcell activation [26]. Patterson et al. [27] discovered
that Igα non-ITAM tyrosine 204 promoted T-independent

Table 5: KEGG pathway analysis of top 15 hub genes with higher degree of connectivity.

Term Count % P value Genes FDR
ssc05323: rheumatoid arthritis 4 0.18 1.41E-04 JUN, IFNG, VEGFA, TLR4 0.14
ssc05164: influenza A 4 0.18 9.95E-04 JUN, IFNG, TNFSF10, TLR4 1.04
ssc05321: inflammatory bowel disease (IBD) 3 0.13 0.002 JUN, IFNG, TLR4 2.66
ssc04066: HIF-1 signaling pathway 3 0.13 0.007 IFNG, VEGFA, TLR4 7.01
ssc04060: cytokine-cytokine receptor interaction 3 0.13 0.031 IFNG, VEGFA, TNFSF10 27.91
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Figure 4: -e mRNA level of hub genes and correlation analysis of any two hub genes in GEPIA. (a–d) -e mRNA level of 4 hub genes
(JUN, TLR4, VEGFA, and TNFSF10) in PBMC (∗Differences between the groups were significant (P< 0.05)). (e) JUN and VEGFA
correlation analysis (P value� 0, R � 0.47). (f ) JUN and ATF3 correlation analysis (P value� 0, R � 0.71). (g) JUN and RHOB correlation
analysis (P value� 0, R � 0.69).
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Figure 5: Gene set enrichment analysis of HCC. (a) JUN is negatively correlated with inflammatory response to antigenic stimulus (b)
HSPA1A is negatively correlated with regulation of T cell migration. (c) DUSP1 is negatively correlated with antigen processing and
presentation via MHC class IB. (d) VEGFA is positively correlated with negative regulation of B cell activation. (e) CUL1 is negatively
correlated with negative regulation of NF-kB signaling. (f ) TNFSF10 is negatively correlated with positive regulation of IL-1 production.
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Figure 6: Continued.
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B cell proliferation and differentiation via phosphorylation of
JUN. In addition, tumor can produce VEGFA, which in-
creases expression of inhibitory immune checkpoints medi-
ating Tcell exhaustion on intratumoral CD8+ Tcells [28].-e
previous report identified that VEGFA directly triggers reg-
ulatory Tcells (Treg) proliferation resulting in tumors escape,
which can become a therapeutic goal in the future [29].
TNFSF10 influences T cells function, which cannot only
enhance the maximal suppressive function of Treg cells
leading to the antitumor effect but also be involved in T cell-
mediated killing of cancer cells [30, 31]. Furthermore, Fang
et al. demonstrated that TLR4 appears to induce antitumor
T cell response by activating dendritic cells [32]. Similarly,
there is research confirming that TLR4 can promote tumor-
specific cytotoxic T cell responses [33]. Taken together, from
our perspective based on the GO and KEGG analyses and
FCM, the regulation of immune-related genes including JUN,
VEGFA, TNFSF10, and TLR4 can influence the immune
response and be involved in the occurrence and progression
of HCC. Drugs targeting immune response of peripheral
mononuclear cells may be the potential candidates for therapy
of HCC.

-e PPI network could form a visible framework for a
better understanding of the function of the proteome [34].
From the enriched pathways of top 2 modules, we discov-
ered that the interactions among the proteins in HCC are
particularly associated with pathways of immune response
and cytokine-cytokine receptor interaction. It emphasizes
that immune-related gene interaction can regulate the tu-
mor-associated immune surveillance. -erefore, we utilized
DAVID to uncover the correlation of 15 hub genes. Co-
incidentally, the 4 genes, JUN, VEGFA, TNFSF10, and
TLR4, have the high degree of connectivity, especially JUN
and VEGFA. We predicted that JUN can regulate mono-
nuclear cells to release VEGFA, which may promote tumor
angiogenesis, which was proved as the reason for tumor
initiation and progression. Furthermore, we analyzed the
gene set enrichment to make sure of the primary function of

the 4 hub genes. We found these 4 hub genes were in-
extricably linked with the various processes of immune and
inflammatory responses like the regulation of T and B cell
migration and antigen processing via MHC class I B. Hence,
monitoring the immune process of tumor immunity in-
cluding immune-related genes and cytokines is of great
importance for the diagnosis and treatment of HCC.

Moreover, HCC patients always used to suffer from
hepatitis infected by hepatitis B virus (HBV) and hepatitis
C virus (HCV). Patients who suffer cirrhosis or HCC
from chronic virus hepatitis account for 90% [35]. It is
consistent with our GO and KEGG analyses that the in-
flammation is an important process of HCC. JUN,
VEGFA, TNFSF10, and TLR4 are connectivity genes in-
volved in the inflammatory response. For instance, there
was a report that stated JUN can act as an intermediate in
antiviral immunity and TLR4 recognizes bacterial ligands
to constrain the ability of antiviral immunity which
combine bacterial and viral infections [36, 37]. As a result,
we hypothesized that JUN, VEGFA, TNFSF10, and TLR4
in PBMC can also regulate virus infection of HCC pa-
tients. Detecting these genes can early protect patients
from HCC occurrence and development as well as treat
them early.

In conclusion, we provide a comprehensive and novel
analysis of gene expression profiles to recognize DEGs which
may play a core part in the development and prognosis in
patients with HCC. Genes implicated with immune and
inflammatory response were significantly altered in HCC
patients. In order to acquire more precise correlation results,
we plan to carry out subsequent authentication experiment
later to prove these predictive results. Taken together, we
found that JUN, VEGFA, TNFSF10, and TLR4 in PBMC
play core roles in the immune response of HCC. Hence,
these 4 genes may serve as potential serum biomarkers
combining with AFP and targets of immunotherapy. We
expect this analysis method will offer accurate and valuable
information for future study on the molecular mechanisms

2000

1500

1000

500

0
Total T lymphocyte CD4+T lymphocyte CD8+T lymphocyteA

bs
ol

ut
e c

ou
nt

 o
f B

 ly
m

ph
oc

yt
e

Healthy people
HCC patients

∗

∗

∗

(k)

Figure 6: Assessment lymphocyte subset by FCM from 20 patients with HCC and 20 healthy individuals. (a, e) Identification of total
lymphocyte (CD45+) cell count in healthy individual andHCC patient blood. (b, f ) Identification of total T lymphocyte (CD3+) cell count in
healthy individuals’ and HCC patients’ blood. (c, g) Different expression of CD4+ T lymphocyte (CD4+ CD8− ) and CD8+ T lymphocyte
(CD4− CD8+) in healthy individuals’ and HCC patients’ blood, respectively. (d, h) Identification of B lymphocyte (CD16 & 56− CD19+) cell
count and NK cell count (CD16 & 56+ CD19− ) in healthy individuals’ and HCC patients’ blood, respectively. (i) Absolute count of NK cell
in healthy individuals’ and HCC patients’ blood, respectively. (j) Absolute count of B lymphocyte in healthy individuals’ and HCC patients’
blood, respectively. (k) Absolute count of various T lymphocyte in healthy individuals’ and HCC patients’ blood. (∗Differences between the
groups were significant (P< 0.05)).
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of HCC and supply evidences for the detection of new di-
agnosis biomarkers and therapeutic strategies.

4. Materials and Methods

4.1. Microarray Data. We downloaded the gene expression
profile of GSE49515 from GEO database. We chose a total of
20 samples, involving 10 cases of HCC and 10 healthy cases
of purified RNA of peripheral blood mononuclear cells
(PBMCs) in GSE49515, which was based on Agilent Gpl570
platform ([HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array) by Shi et al. We also get the Series
Matrix File of GSE49515 from GEO database.

4.2. Screen Genes of Differential Expression. -e analysis of
DEGs between HCC samples and normal liver tissue
samples was performed by using GEO2R (https://www.ncbi.
nlm.nih.gov/geo/geo2r/), an online analysis method for
GEO database on the basis of R language. We regulated
DEGs as differentially expressed with logFC< − 2 (upregu-
lated genes) or logFC> 2 (downregulated genes), according
to the criteria described in [38, 39]. -e adjusted P val-
ue< 0.05 was treated as statistically significant in order to
reduce the false-positive rate. -ereafter, 344 DEGs were
picked up, containing 188 upregulated genes and 156
downregulated genes. We utilized visual hierarchical cluster
analysis to get the heatmap and volcano plot of two groups
by ImageGP (http://www.ehbio.com/ImageGP/index.php/
Home/Imdex/index.html) after the correlative raw data of
TXT files were downloaded.

4.3. Gene Ontology and KEGG Pathway Analysis of DEGs.
Gene ontology (GO) analysis is a common framework which
can annotate genes and gene products including functions of
cellular components, biological pathways, and molecular
function [40]. Kyoto Encyclopedia of Genes and Genomes
(KEGG) contains a set of genomes and biological pathways
related to disease and drugs online database, which essen-
tially is a resource for systematic understanding of biological
system and certain high-level genome functional in-
formation [41]. -e Database for Annotation, Visualization
and Integrated Discovery (DAVID, http://david.ncifcrf.gov)
is an online bioinformatics database. It has covered many
biological data and relevant analysis tools, and then provided
tools for the biological function annotation information for
plenty of genes or proteins [42]. P< 0.05 was considered as
the cutoff criterion with significant difference. We could
visualize the key biological processes, molecular functions,
and cellular components and pathways of DEGs by using
DAVID online database. And the scatter plot was performed
by ImageGP according to the results of GO and KEGG
pathway.

4.4. PPI Network and Module Analysis. Search Tool for the
Retrieval of Interacting Genes (STRING) is an online tool for
the assessment and integration of the protein-protein in-
teraction (PPI) information, containing physical and

functional associations. It covered 9,643,763 proteins from
2031 organisms in STRING version 10.0 [43]. We drew
DEGs using STRING to evaluate the interactional associa-
tions among them, thereby utilizing the Cytoscape software
to build a PPI network. In the meantime, we set maximum
number of interactors� 0, confidence score ≥0.4 as the cutoff
criterion. Moreover, the Molecular Complex Detection
(MCODE) app was utilized to screen modules of the PPI
network in Cytoscape in line with degree cutoff� 2, k-
core� 2, node score cutoff� 0.2, and max. depth� 100. And
we chose the top 15 genes with a high degree of connectivity
as hub genes. -e pathway analysis of genes in every module
was worked out according to DAVID. -en, 15 hub genes
were also mapped into STRING with maximum number of
interactors ≤5 and confidence score ≥0.4. GO and KEGG
pathway analyses were also used to explain the potential
information.

4.5. Comparison of the Hub Genes Expression Level.
GEPIA (http://gepia.cancer-pku.cn/index.html) is a newly
developed interactive web server which analyzes the RNA-
sequencing expression data of 9,736 tumors and 8,587
normal samples from the TCGA and the GTEx projects,
employing a standard processing pipeline. GEPIA provides
customizable functions such as tumor and normal differ-
ential expression analysis, profiling according to patholog-
ical stage or cancer types, patient survival analysis, similar
gene detection, correlation analysis, and dimensionality
reduction analysis [44]. In our study, we mainly used the
correlation to reveal the relevance out of any two hub genes
in HCC and normal people’s peripheral blood. Moreover,
two suspicious genes that demonstrated a good manner in
the scatter diagram were chosen.

4.6. Survival Analysis of Hub Genes. We used GEPIA da-
tabase to analyze the relapse-free and overall survival in-
formation related to the hub genes. -e hazard ratio (HR)
with 95% confidence intervals and log rank P value were
computed and showed on the plot. P< 0.05 was statistically
significant.

4.7. Gene Set Enrichment Analysis (GSEA). We divided 20
HCC samples from GSE49515 into two groups (high and
low) on the basis of expression level of several key genes, and
median expression value was regarded as the cutoff point. In
order to explain the potential function of these key genes,
GSEA (http://software.broadinstitute.org/gsea/index.jsp)
was operated between the two groups. Annotated genes were
selected as the reference gene sets. Nominal P value< 0.05,
gene size≥ 100, and│enrichment score (ES)│> 0.5 were
regarded as the cutoff criteria.

4.8. Identification of Biomarkers. Based on the information
in the individual MCODE modules, the node with the
highest score was selected as the hub gene in GSE49515.
According to our analysis of KEGG and PPI, we confirm
four key genes (JUN, TLR4, VEGFA, and TNFSF10) which
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can be the noninvasive biomarkers in early HCC. To verify the
vital role of the four key genes in HCC, the mRNA level of
these four genes were measured in the PBMC of 20 HCC
patients and 20 healthy individuals. Primers used for PCR are
listed as follows: JUN-F: ACAGAGCATGACCCTGAACCT;
JUN-R: TGTGCCCGTTGCTGGAC; TLR4-F: ATCAAG-
GACCAGAGGC; TLR4-R: CACTGAGGACCGACAC;
VEGFA-F: GACGGACAGACAGACAGACACC; VEGFA-R:
GAAGCGAGAACAGCCCAGA; TNFSF10-F: AGTGG-
CATTGCTTGTTT; TNFSF10-R: GAGCTGACGGAGTTGC.

4.9. Reidentification of Immune Subversion in HCC.
Meantime, in order to confirm the key role of immune
subversion in HCC, we screened peripheral blood mono-
nuclear cells (PBMCs) using flow cytometry (FCM), which
were obtain from 20 patients with HCC and 20 healthy
individuals (ethical approval for the study was obtained from
the Zhongnan Hospital ofWuhan University (no. 2019016)).
-ereafter, we detected the level of some typical immune
cells in PBMCs of HCC and healthy people via the molecules
on the immune cell surface using BD FACSCanto II. -e
samples we detected were from anticoagulated blood with
BD Multi TEST IMK Kit (Catalog No. 340503). -e total
level of T-lymphocytes was screened through CD3

molecules which includes helper lymphocyte T subsets de-
tected by CD3 and CD4 molecules and inhibitory
T lymphocyte subsets detected by CD3 and CD8 molecules.
B lymphocytes and natural killer (NK) cells were determined
by CD19, CD16, and CD56 molecules, respectively. -is
study was carried out according to legal requirements and
supported by the Ethics Committee of the Zhongnan
Hospital of Wuhan University. -e HCC patients we chose
are stage 0 and A of the Barcelona Clinic Liver Cancer
(BCLC) stage as well as T1 and T2 of the TNM stage. It
means the HCC patients are in the early stage of HCC.
Besides, all patients did not take any invasive therapies, like
tumor excision, interventional therapy, and hepatic artery
embolism. -e clinical characteristics of the participants we
choose are summarized in Table 6.

4.10. Statistical Analysis. All values were reported as
means± SD. Statistical significance was analyzed by SPSS
19.0 software. Differences were considered significant when
P< 0.05.
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