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ABSTRACT
The clear cell renal cell carcinoma (ccRCC) is the main pathological subtype of renal cell carcinoma. 
Immune system evasion, one hallmark of cancer, contributes to cancer cells in escaping from the attack 
of immune cells. In order to identify potential prognostic biomarkers in ccRCC patients and immune 
cells fraction, we collected and downloaded profiles from The Cancer Genome Atlas (TCGA) database 
and Gene Expression Omnibus (GEO) database. We obtained 2 modules significantly associated with 
tumor stage and immune cells; functional enrichment analysis showed that genes in the module 
‘yellow’ were significantly enriched in proteins targeting to membrane and ribosome, as well as the 
oxidative phosphorylation pathway, while genes in the module ‘green’ mainly participate in molecular 
functions associated with immunity like activation of T cells. Four LncRNAs (LINC00472, AL590094.1, 
AL365203.3, and AC147651.3) and RPL27A and RPL22L1 in the module ‘yellow’ and two lncRNAs 
(LINC00426 and AC129507.2) and five protein-coding genes (CSF1, NOD2, ITGAE, CD7, and PDCD1) in 
the module ‘green’ represented independent prognostic values in patients with ccRCC. Expression of 
LINC0042, NOD2, CD7, and PDCD1 were significantly correlated with ratio of immune cells (like T cells 
CD8 and resting mast cells). LINC00426, with significant correlation with immune cell fraction, shows 
potential prognostic value in ccRCC patients. Our findings provide a strategy in exploring biomarkers 
with prognostic significance and significant association with the fraction of immune cells.
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Introduction

Renal cell carcinoma (RCC) is the most frequent 
malignancy in the kidney, accounting for 2–3% of 
all cancers [1]. Clear cell renal cell carcinoma 
(ccRCC) is the most common pathological subtype 
of RCC, originating from the proximal uriniferous 
tubules and often presenting an aggressive pheno-
type [2]. ccRCC has high morbidity and mortality, 
as well as a poor prognosis. Since ccRCC is insen-
sitive to chemotherapy and radiotherapy [3], and 
the clinicopathological risk factors cannot fully 
identify ccRCC patients, it is urgent and necessary 
to mine the potential biomarkers that could help to 
distinguish patients with ccRCC.

Long non-coding RNAs (lncRNAs) are RNA 
transcripts longer than 200 nucleotides in length, 
which cannot be translated into proteins. lncRNAs 
play an essential role in tumor biology, such as cell 
proliferation, metabolism, differentiation, and 
angiogenesis [4]. Previous studies have shown 
that lncRNA MALAT1 modified the progression 
of ccRCC by regulating miR-194-5p/ACVR2B sig-
naling [5]. lncRNA MSC-AS1 could activate the 
Wnt-β-catenin signaling pathway to modulate cell 
proliferation and migration in ccRCC via miR- 
3924/WNT5A [6]. A novel lncRNA, LINC00997, 
contributed to metastasis by regulating S100A11 in 
ccRCC [7]. Besides, lncRNAs were reported as 
potential prognostic molecular biomarkers for 
RRC. A panel of four-lncRNA signature was iden-
tified as a potential biomarker for predicting sur-
vival in ccRCC [8]. Four lncRNAs were potential 
therapeutic targets and prognostic biomarkers of 
ccRCC [9]. A recent publication reported a novel 
prognostic lncRNA with association of transition 
of epithelial-mesenchymal in ccRCC [10]. 
Interactions between cancer cells and immune 
cells play critical roles in patients in response to 
cancers. Cancer cells might escape from immune 
cell attack or influence the dysfunction and apop-
tosis of immune cells by expressing immune inhi-
bitory molecules [11]. Analysis of lncRNAs 
associated with immune cells in patients with 
ccRCC, however, is limited. Therefore, more 
potential and valuable lncRNA biomarkers, espe-
cially immune-related lncRNAs, need to be identi-
fied to improve the prognosis.

Weighted gene co-expression network analysis 
(WGCNA) describes the correlation patterns 
among genes and clinically relevant traits across 
microarray samples. Researchers can find mod-
ules of highly correlated genes, associate modules 
with external sample traits, and count module 
membership measures based on WGCNA [12]. 
WGCNA has been increasingly used in disease 
research. Key modules and genes of subtypes of 
non-small-cell lung cancer were identified by 
WGCNA [13]. Key pathways and genes were 
identified in the dynamic progression of HCC 
based on WGCNA [14]. ILF3-AS1 could regulate 
PTBP1 by sponging miR-29a in gastric cancer 
according to WGCNA co-expression network 
analysis [15]. Hub-methylated differentially 
expressed genes in patients with gestational dia-
betes mellitus were identified by multi-omic 
WGCNA based on epigenome-wide and tran-
scriptome-wide profiling [16].

In this study, our study aims to identify poten-
tial prognostic biomarkers related to immunity in 
distinguishing ccRCC patients at early and 
advanced stages. We identified modules related 
to ccRCC tumor-stage and immune infiltration 
using WGCNA; functional enrichment and pro-
tein–protein interactions analyses were conducted 
to explore relevant signaling pathways and gene 
clusters; univariate and multivariate Cox regres-
sion analyses were conducted to identify potential 
prognostic biomarkers for ccRCC; correlation 
among immune cells and candidate genes was 
conducted to analyze genes with significant asso-
ciation with immune infiltration.

Materials and methods

Data collection, processing, and quality control

TCGA-ccRCC (containing 530 RCC samples and 
72 control tissue samples) was downloaded from 
the TCGA database (https://portal.gdc.cancer.gov/ 
) for analysis. To investigate genes associated with 
tumor stage, gender, and tumor immune micro-
environment (TIME) [17], 530 tumor samples 
were taken for analysis. Due to the lack of cancer 
stage information, 3 data were excluded, leaving 
527 data for further analysis.
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Immune cell distribution analysis

To explore the immune cell distributions, an ana-
lytical tool CIBERSORTx (https://cibersortx.stan 
ford.edu/) was used to examine the fractions of 
22 immune cells in tumor samples. The samples 
were separated into two groups: early (I/II) and 
advanced (III/IV) ccRCC according to the clinical 
information. The abundance of immune cells was 
depicted using a heatmap.

Differential gene analysis

Patients were divided into two groups: early (I/II) 
and advanced (III/IV) ccRCC as per tumor stages. 
All data from TCGA-ccRCC were normalized 
using the limma package. The threshold to identify 
differentially expressed genes (DEGs) was set to | 
fold change| >>1.2 P < 0.05 to ensure sufficient 
genes for downstream analysis. Volcano plots and 
heatmaps were used to visualize the DEGs using 
the ggplot2 package and pheatmap software, 
respectively.

WGCNA network construction

The gene expression matrix and clinical informa-
tion (tumor stage (TS), gender (G), and immune 
cells fraction (ICF)) matrix network were con-
structed by setting the ‘minModuleSize’ parameter 
to 80. The ‘mergeCloseModules’ function was used 
to merge modules with the correlation of 0.75 and 
other default parameters were added. The correla-
tion between clinical traits and sample expression 
was calculated with the ‘cor’ function; the P-value 
was calculated with the ‘corPvalueStudent’ function. 
Genes with significant relationships (P < 0.05) with 
clinical traits were identified for further analysis.

Functional enrichment analysis and protein– 
protein interaction (PPI)

DEGs associated with immunity and tumor stages 
in identified modules using WGCNA were used 
for functional enrichment analysis. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were con-
ducted using clusterProfiler [18]. GO terms can be 
classified into 3 categories: biological processes 

(BP), cellular components (CC), and molecular 
functions (MF). GO terms (top ten of each cate-
gory) and KEGG pathways were visualized with 
bar plots and bubble plots, respectively. PPI was 
analyzed using an online tool STRING (https:// 
string-db.org/), which provides functional protein 
association networks. PPI was visualized using 
Cytoscape software to predict gene clusters.

Cox regression analysis and Kaplan-Meier (KM) 
survival analysis

Univariate Cox regression analysis was performed 
to explore potential prognosis-associated genes. 
Genes with clinical prognostic value were visualized 
with forest trees for further analysis. Then, multi-
variate Cox regression analysis was conducted using 
genes identified to evaluate the independent prog-
nostic value of genes as biomarkers. The Cox 
regression analysis was visualized by forest plot.

To compare the expression level of genes 
between patients with ccRCC at early and 
advanced stages, we calculated the difference of 
two groups with the T-test method; the expression 
levels were depicted with box plots. The patients 
with ccRCC were divided into two groups accord-
ing to the expression of genes, KM survival plots 
are depicted to explore the association between 
expression levels and survival probability.

Correlation analysis of genes and immune cells

To explore the impact of genes on immunity, we 
analyzed the association between gene expression 
and fraction of immune cells. In detail, we con-
ducted a matrix containing the expression of 
genes with significant prognostic value and propor-
tion of immune cells and calculated the correlation 
scores among them with the Pearson method; sig-
nificant value (P-value) was calculated and set to 
0.01 for significance.

Validation of candidate genes

To validate the expression of genes obtained in this 
analysis, we collected independent profiles related to 
different stages of ccRCC from Gene Expression 
Omnibus (GEO) database. GSE150404, with 60 
tumor samples (30 in early stage, 30 in advanced 
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stage), was downloaded and normalized. We anno-
tated the genes according to the annotation profile, 
GPL17692[HuGene-2_1-st] Affymetrix Human Gene 
2.1 ST Array [transcript (gene) version]. Boxplots 
were depicted with method described above.

Results

Immune cell distribution

The fraction of immune cells between two tumor 
stages was analyzed to explore the variety of 
immune infiltration; the analysis revealed differ-
ences in multiple immune cells (T cells CD4 mem-
ory resting, Macrophages M2 and T cells CD8) 
among different samples (Figure 1). Representative 
immune cells (B cells naïve, T cells CD8, T cells CD4 
memory resting, NK cells resting, Monocytes, 
Macrophages M0, Macrophages M1, Macrophages 
M2, and Mast cells resting) were selected for 
immune-related gene analysis.

DEGs at different stages of ccRCC

DEGs between two tumor stages of ccRCC were 
analyzed; a total of 2902 DEGs were detected, 
including 2556 protein-coding genes (PC) and 
218 lncRNAs according to the threshold. The 
DEGs were visualized using volcano plots (Figure 
2a) and heatmaps (Figure 2b).

Weighted co-expression network construction

Topology trees were constructed based on expres-
sion levels and the outlier samples were removed 
(Figure 3a). Then, we matched the samples with 
clinical information provided (Figure 3b).

After removing the outlier samples, 448 samples 
(270 early stages, 178 advanced stages) with 2092 
genes were finally selected to build the network. 
The soft-threshold power β = 7 was selected to 
construct a network based on the scale-free topol-
ogy (Figure 4(a, b)), and 7 modules were obtained 
(Figure 4(d, e), Table 1). Module ‘green’ with 554 
genes indicated a significant correlation with multi-
ple immune cells including T cells CD8, Monocytes, 
and Mast cells resting (Figure 4e). Given that the 
module ‘yellow’ correlated with survival, cancer 

stage, and multiple immune cell distribution 
(Figure 4e), this module (containing 343 genes) 
was also selected for subsequent analysis.

Functional enrichment analysis and PPI network 
construction

Interactions of proteins, forming a machine, play 
a crucial role in regulating ccRCC. Genes in the 
most significant modules related to traits (module 
‘yellow’) were selected for functional enrichment 
analysis. These genes were enriched in 59 BP, 6 
CC, and 2 MF. These genes were significantly 
enriched in BP terms related to membranes, such 
as the establishment of protein localization to the 
membrane, co-translational protein targeting to 
membrane, and protein targeting to membrane; 
CC terms related to the ribosome (Figure 5a). 
Genes in the module ‘green’ were enriched in 
935 terms including 826 terms in BP, 45 in CC, 
and 64 in MF. Multiple molecular functions asso-
ciated with immunity such as T cell activation, 
immunological synapse, immune receptor activity, 
and regulation of cytokine were enriched (Figure 
5c). KEGG enrichment analysis showed that genes 
in module ‘yellow’ were enriched in pathways like 
prion disease, oxidative phosphorylation, and ret-
rograde endocannabinoid signaling (Figure 5b). 
KEGG analysis of genes in the module ‘green’ 
indicated the enrichment of pathways associated 
with immunity such as the interaction of cytokine- 
cytokine receptor, signaling pathway of T cell, and 
primary immunodeficiency (Figure 5d).

PPI network was constructed using the STRING 
database (Figure 6a for module ‘yellow’, 6c for 
‘green’). Genes in the gene cluster with the highest 
score predicted by Cytoscape based on interactions 
of genes in the module ‘yellow’ were selected for 
further analysis (Figure 6b). Given the complex 
interactions among genes in the module ‘green’, 
we selected the top 2 gene clusters for further 
analysis (Figure 6d).

Univariate and multivariate Cox regression 
analysis

For the ‘yellow’ module, univariate regression ana-
lysis identified 271 genes of prognostic significance 
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out of 343 genes, including 21 lncRNAs (as in Figure 
7a) and 17 genes in gene clusters (Figure 7b). All 
three tests (likelihood ratio test, Wald test, and 
Logrank test) suggested reliable regression models 
(P < 0.05). Multivariate Cox regression analysis 
identified four LncRNAs (LINC00472, AL590094.1, 
AL365203.3, and AC147651.3) (Figure 7c) and 
RPL27A and RPL22L1 (Figure 7d) in the gene clus-
ter with independent prognostic value in distin-
guishing patients with ccRCC in early stages from 
advanced stages. We obtained 19 lncRNAs and 26 
protein-coding genes in top 2 gene clusters with 
prognostic significance (Figure 7(e, f)); 
Multivariate Cox regression analysis revealed that 
two lncRNAs (LINC00426 and AC129507.2) and 
five protein-coding genes (CSF1, NOD2, ITGAE, 
CD7, and PDCD1) had potential independent prog-
nostic value (Figure 7(g, h)).

Expression level and KM analysis

The expression of four LncRNAs (LINC00472, 
AL590094.1, AL365203.3, and AC147651.3) and 
RPL27A and RPL22L1 was visualized with box 
plots (Figure 8a). LINC00472 was significantly 
decreased in the advanced stages of ccRCC 

compared with that in early stages; AL590094.1, 
AL365203.3, AC147651.3, RPL27A, and RPL22L1 
were significantly increased in advanced stages 
compared with that in early stages (Figure 8a). 
The KM plots showed that high expression of 
LINC00472 had a greater survival probability, 
while the other five genes showed the opposite 
trend (Figure 8b).

For module ‘green’, gene expression was signif-
icantly stimulated in patients with ccRCC in 
advanced stages, compared with those in early 
stages, except lncRNA, AC129507.2, showed 
a decrease in patients with ccRCC in advanced 
stages (Figure 9a). LnRNA, LINC00426, did not 
present a significant prognostic value in the KM 
method; AC129507.2 expression indicated 
a positive correlation with survival probability, 
while the other five protein-coding genes repre-
sented a negative association (Figure 9b).

Immune association analysis

Six genes (4 lncRNAs and 2 protein-coding genes) 
showed weak or no relation to the fraction of 
immune cells; LINC00472 indicated a negative 
correlation with the expression of the other three

Figure 1. Immune cell distribution analysis between two groups.
Heatmap was used to depict the distribution of immune cells between early (I/II) and advanced (III/IV) stages; ‘Group’ bar indicates 
different tumor stages: turquoise represents advanced stage while pink indicates early stage; right color bar shows ratio of immune 
cells.
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Figure 2. Visualization of differentially expressed genes (DEGs) at different stages of ccRCC.
(a) represents volcano plots of DEGs at different stages of ccRCC; dash line indicates | fold change | = 1.2; red dots refer to up- 
regulated genes in advanced stages, blue dots to down-regulated genes. (b) represents heatmaps of differentially expressed lncRNAs 
and protein-coding genes between two stages of ccRCC; turquoise in ‘Group’ refers to advanced samples, pink to early samples.
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Figure 3. Sample clustering dendrogram of TCGA-ccRCC.
a) A clustering tree of samples was constructed according to expression levels; the red line represents cutoff for outgroups. b) The 
clinical traits and immune cells were mapped to the clustering tree without outgroups; green in gender bar refers to female, yellow 
to male; vital states were color coded (alive: blue, dead: brown); turquoise in tumor stages indicates advanced stage, while pink 
shows early stage; red colors in immune cells represent samples with higher ratio (> average ratio of patients), black colors indicate 
those patients with lower ratio of immune cells.
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Figure 4. Weighted gene co-expression network analysis (WGCNA) of TCGA-ccRCC.
a) and b) represent the mean connectivity and scale independence of different soft-threshold power analysis. c) Hierarchical 
clustering of module eigengenes. d) Cluster dendrogram of the co-expression network modules. e) The modules related to different 
clinical traits.
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lncRNAs (Figure 10a). We observed an obvious 
association of genes in the module ‘green’, the 
immune cells proportion; expression of 
LINC00426, NOD2, CD7, and PDCD1 indicated 
a positive correlation with a fraction of T cells 
CD8; the increase of LINC00426 decreased the 
accumulation of monocytes and mast cells (rest-
ing); negative correlation of NOD2 and mast cells 

(resting) fraction was observed; PDCD1 expression 
limited the accumulation of NK cells (resting), 
monocytes, and mast cells (resting) (Figure 10b).

Validation of crucial DEGs

The expression of seven protein coding genes 
(RPL27A, RPL22L1, CSF1, NOD2, ITGAE, CD7, 
and PDCD1) between the early and advanced 
stage of ccRCC were validated with GSE150404. 
We failed to examine the expression of RPL22L1 
due to the absence of expression in the matrix. 
Five genes (CSF1, NOD2, ITGAE, CD7, and 
PDCD1) showed significantly increased expression 
level in patients in advanced stage compared with 
those in early stage; expression of RRL27A was 
increased in advanced stage though not significant.

Table 1. Modules identified using weighted gene co-expression 
network analysis.

Module colors Number of genes

black 188
blue 454
brown 353
green 554
grey 204
pink 150
turquoise 656
yellow 343

Figure 5. Functional enrichment analysis of genes in yellow modules.
a, c) Gene Ontology (GO) enrichment analysis was visualized using a bar plot. BP, biological processes; CC, cellular components; MF, 
molecular functions. Different colors showed the fold-change of genes; b, d) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were visualized using a bubble plot.
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Discussion

WGCNA was used to find the most significant 
module related to ccRCC tumor stage and immu-
nity, and we found that genes in the ‘yellow’ and 
‘green’ modules were significantly related to tumor 
stage and immunity (Figure 4). Previous publica-
tions reported the histological tumor types in 
TCGA-ccRCC project [19]; similarly, we observed 
multiple outliers in TCGA-ccRCC (Figure 3a). GO 
enrichment analysis showed that genes in the 

‘yellow’ module were significantly enriched in CC 
terms related to the ribosome (Figure 5a). The 
previous research showed that knockdown of ribo-
somal protein S15A inhibited human kidney can-
cer cell growth in vitro and in vivo [20]. Ribosomal 
s6 protein kinase 4 was a prognostic factor for 
RCC [21]. Genes in module ‘green’ were enriched 
in immune-related terms like T cell activation and 
cytokine activity, which have been widely reported 
in the process of RCC [22–25]. KEGG enrichment

Figure 6. Protein-protein interaction (PPI) and gene cluster prediction.
a, c) PPI of DEGs using STRING database. b, d) Gene clusters were collected and visualized using Cytoscape.

1782 Z. XIANG ET AL.



Figure 7. Prognostic analysis visualized with forest plots.
a) and b) represent univariate Cox regression analysis of 21 lncRNAs and 17 genes in the module ‘yellow’, respectively; c) and d) 
represent multivariate Cox regression analysis of 21 lncRNAs and 17 genes, respectively. e) and f) refer to univariate Cox regression 
analysis of 19 lncRNAs and 26 genes in the module ‘green’, respectively, while (c) and (d) to multivariate Cox regression analysis.
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Figure 8. Expression level and Kaplan-Meier (KM) survival of genes in module ‘yellow’.
a) The expression levels of genes in module ‘yellow’; significance was marked with ‘*’, ‘**’, ‘***’ and ‘****’ for P < 0.05, P < 0.01, 
P < 0.001 and P < 0.0001, respectively. b) KM plots of genes; the red line represents high expression and blue represents low 
expression.
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analysis showed that identified genes in module 
‘yellow’ were enriched in pathways like oxidative 
phosphorylation (Figure 5b). Papillary renal cell 

carcinomas rewired glutathione metabolism and 
were deficient in both anabolic glucose synthesis 
and oxidative phosphorylation [26]. System

Figure 9. Expression level and Kaplan-Meier (KM) survival of genes in module ‘green’.
a) The expression levels of genes are depicted with box plots. b) KM plots of genes.
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biology analysis showed that eight proteins were 
mainly distributed in oxidative phosphorylation in 
RCC with bone metastasis via mitochondrial dys-
function [27]. Some co-expressed genes in RCC 
were also reported to be enriched in oxidative 
phosphorylation [28,29], which is consistent with 
our research. Cytokine-cytokine receptor interac-
tion and chemokine signaling pathway were sig-
nificantly enriched by genes in the ‘green’ module; 
cytokines play a critical role in regulating the RCC 
microenvironment and mediating immune cell 
infiltration [30]. C-X-C Motif Chemokine Ligand 
10 (CXCL10), a protein-coding gene engaged in 
chemokine activity, has been revealed to be asso-
ciated with disease-free survival (DFS) in patients 
remedied with adjuvant VEGFR TKIs in 
RCC [31].

The Cox regression analysis showed that 
LINC00472 had a independent diagnostic value 
in distinguishing patients with ccRCC in early 
stages from advanced stages (Figure 7(a, c)). The 
KM plot showed that ccRCC patients with high 
expression of LINC00472 had a greater survival 
probability (Figure 8b). LINC00472 acted as 
a tumor suppressor in NSCLC through the KLLN- 
Mediated p53-signaling pathway via microRNA- 

149-3p and microRNA-4270 [32]. 
Downregulation of LINC00472 promotes osteosar-
coma tumorigenesis by reducing FOXO1 expres-
sions via miR-300 [33]. LINC00472 regulated cell 
stiffness and inhibited the migration and invasion 
of lung adenocarcinoma by binding to YBX1 [34]. 
LINC00472 suppressed proliferation and pro-
moted apoptosis through elevating PDCD4 expres-
sion by sponging miR-196a in colorectal cancer 
[35]. It was reported that LINC00472 may serve 
as a potential diagnostic marker for diabetic kid-
ney disease [36]. LINC00472 was identified as an 
RNA transcriptional marker associated with 
ccRCC prognosis by a competing endogenous 
RNA network analysis [37]. However, that study 
differed from our study in terms of the study 
object. Our research aimed to identify biomarkers 
to distinguish patients with ccRCC at early and 
advanced stages, while the previous research 
aimed to distinguish patients with ccRCC from 
healthy individuals. We found that RPL22L1 and 
RPL27A had the potential in distinguishing ccRCC 
patients at early and advanced stages (Figure 7). 
The KM plots showed that patients with lower 
expression of RPL22L1 and RPL27A had higher 
survival probability (Figure 8b). The previous

Figure 10. Correlation of genes and immune cells.
The association of 9 type immune cells and genes with significant prognostic value in module ‘yellow’ a) and ‘green’ b) was 
depicted; significant values larger than 0.01 were represented with blank boxes; correlation scores were color-coded and depicted 
with the size of the sector.
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research showed that ribosomal subunit protein 
RPL27A is a target of miR-595 and may contribute 
to the myelodysplastic phenotype through riboso-
mal dysgenesis [38]. Heavy-ion radiation-induced 
DNA damage mediated apoptosis via RPL27A- 
RPL5-MDM2-p53/E2F1 signaling pathway in 
mouse spermatogonia [39].

Recent works revealed that LINC00426 expres-
sion represented significantly prognostic value in 
patients with lung cancer and hepatocellular carci-
noma [40,41]. Zhang, et al. found the potential of 
immune-related lncRNAs (including LINC00426) 
in predicting immune checkpoint blockade [41]. 
In this study, we observed a significant correlation 
between LINC00426 expression and fraction of 
T cells CD8 and mast cells (resting) (Figure 10b). 
LINC00426 showed independent prognostic signif-
icance in patients with ccRCC (Figure 7(e, g)). 
However, we did not obtain a prognostic value 
for LINC00426 consistent with the KM approach 
(Figure 8d). Kaplan–Meier curves are powerful as 
categorical predictors; however, they might repre-
sent instability in analyzing quantitative predictors 
like gene expression [42]. More expression data 
are required to assess the prognostic significance 
of LINC00426. Expression of NOD2, CD7, and 

PDCD1 was significantly increased in advanced 
stage and indicated a significant positive correla-
tion with T cells CD8 fraction (Figures 9a, 10b, 
11). NOD2 was reported in regulating innate and 
adaptive immunity in patients with Crohn’s dis-
ease [43]. Researchers found that the NOD2 
expression showed potential as a biomarker for 
kidney cancer patients [44]. CD7 plays a crucial 
role in mediating the apoptosis of galectin- 
3-induced type II T-cells and was considered as 
a critical target for acute lymphoblastic leukemia 
[45,46]. Programmed cell death 1 (PDCD1, also 
called PD1), a critical inhibitory molecule mainly 
expressed in pro-B-cells, participates in T cell 
receptor signaling and innate immune system; 
one ligand of PDCD1, programmed death-ligand 
-1 (PD-L1), was utilized as a critical target in 
treating patients with cancers [47,48]. In our ana-
lysis, we observed the differential expression of 
NOD2, CD7, and PDCD1 between two tumor 
stages of ccRCC and the potential of NOD2, 
CD7, and PDCD1 as independent prognostic bio-
markers in patients with ccRCC.

In conclusion, based on systematic analysis of 
the correlation of genes expression, tumor stage, 
and immune cells fraction, we observed 6 lncRNAs

Figure 11. Validation of candidate genes.
The expression of candidate genes between two stages was validate using GSE150404; the significance of difference was marked.
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and 7 protein coding genes with independent 
prognostic significance in patients with ccRCC; 
one lncRNA (LINC00426) and three genes 
(NOD2, CD7, and PDCD1) indicated significant 
correlation with immune cells fraction, especially 
T cells CD8.

Conclusions

Six lncRNAs (LINC00472, AL590094.1, 
AL365203.3, AC147651.3, AC129507.2, and 
LINC00426) and 7 genes (RPL27A, RPL22L1, 
CSF1, NOD2, ITGAE, CD7, and PDCD1) show 
expression differences in patients with ccRCC at 
early stages compared to those at advanced stages, 
representing independent prognostic significance; 
LINC00426 is one potential biomarker with prog-
nostic value and indicates a significant correlation 
with immune cell fraction.

Highlights

● Six lncRNAs (LINC00472, AL590094.1, 
AL365203.3, AC147651.3, AC129507.2, and 
LINC00426) and 7 genes (RPL27A, 
RPL22L1, CSF1, NOD2, ITGAE, CD7, and 
PDCD1) show expression differences in 
patients with KIRC at early stages compared 
to those at advanced stages;

● Six lncRNAs and 7 genes represent indepen-
dent prognostic significance.

● LINC00426 is one potential biomarker of 
prognostic value and indicates a significant 
correlation with immune cell fraction.
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