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We describe a new open-source program called LEVERSC to address the challenges of
visualizing the multi-channel 3-D images prevalent in biological microscopy. LEVERSC
uses a custom WebGL hardware-accelerated raycasting engine unique in its combination
of rendering quality and performance, particularly for multi-channel data. Key features
include platform independence, quantitative visualization through interactive voxel
localization, and reproducible dynamic visualization via the scripting interface.
LEVERSC is fully scriptable and interactive, and works with MATLAB, Python and
Java/ImageJ.
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INTRODUCTION

Image analysis pipelines for 3-D fluorescence microscopy generally include image capture,
image processing for object detection, tracking for time-lapse, object classification and
ultimately statistical analysis of the extracted objects (Wait, 2014; Winter et al., 2016).
Visualization at each of these stages is required to establish trust that the processing
pipeline is capturing a true and meaningful summary of the data (Cohen, 2014). Three key
requirements for effective visualization of 3-D multichannel images include 1) platform
independence, 2) quantitative visualization, and 3) reproducible dynamic visualization. No
existing image visualization tool satisfies this combination of requirements (Schroeder et al.,
2006; Yushkevich et al., 2006; Meyer-Spradow et al., 2009; de Chaumont et al., 2012; Royer
et al., 2015; Fantham and Kaminski, 2017; Gunther et al., 2019; O’Shaughnessy et al., 2019;
Schmid et al., 2019; Jonsson et al., 2020; Pettersen et al., 2021; Napari Contributors, 2019). The
LEVERSC visualization tool presented here was developed specifically to satisfy these
requirements.

Platform independence means supporting the operating systems and common processing
tools used for image analysis. Operating systems include Mac OS, Windows and Linux.
Operating system independence for 3-D visualization is complicated by platform-specific
support for hardware acceleration. For example, Mac OS has recently deprecated the
OpenGL and OpenCL libraries that are widely used for 3-D visualization (Schroeder et al.,
2006; Royer et al., 2015; Napari Contributors, 2019). Widely used tools for working with multi-
channel 3-D fluorescence microscopy images include ImageJ, Python, and MATLAB as well
as Knime and Julia. The goal of LEVERSC is to provide simple integration with any
extensible environment, and to be used as easily as existing 2-D visualization on each
platform. Because it is integrated in standard tools, LEVERSC works alongside fast image
processing libraries such as the Hydra image processing library to provide intuitive visual
feedback when designing image processing pipelines (Wait et al., 2019). LEVERSC is built using
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WebGL for 3-D rendering and NodeJS for the backend,
making it lightweight, portable, and future proof.

Quantitative visualization means that the coordinates of
any voxel on any channel can be precisely located. This is the
location of the voxel within the raw image stack. High-quality
3-D visualization uses perspective projections that alter the
spatial characteristics of the rectangular image volume to
emulate the perspective vanishing point for 3-D structures
on a 2-D screen. Quantitative visualization requires the ability
to specify a 3-D location when viewing on a 2-D screen.
Quantitative visualization is implemented in LEVERSC with
the use of a view-aligned sampling plane. Figure 1 shows an
example image showing nuclei of MCF10A cells labelled with
H2B (histone 2B) in a 3-D spheroid (Ender et al., 2021;
Gagliardi et al., 2021). The Laplacian of Gaussian filter is
commonly used for nuclei detection (Wait et al., 2019). The
positive and negative filter responses are extracted to separate
image channels, and the volume is visualized (Figure 1, left).
The sampling plane in the left panel is visible as a yellow grid,
with shading of the volume changing behind the plane. The
sampling plane can be set at arbitrary depth relative to the
current view orientation. The sampling plane can be shown
within the full volume (Figure 1, left), it can show only data
behind it (clipped view), or it can show only data that
intersects it (slice view), capturing a single slice through the
volume (Figure 1, middle). The sampling plane, in
combination with the mouse location, is used to generate
the 3-D coordinate of a voxel location in the raw image
stack (Figure 1, middle) that can then be viewed using a
single channel 2-D image viewer from any processing
environment (Figure 1, right).

Reproducible dynamic visualization means that all view
parameters can be read into a scripting environment and
written back into the visualization program. This allows view
settings to be saved for exact reproducibility. This also allows the
visualization to be animated. Image capture of the rendered
image to the scripting environment is also critical so that
animations can be saved as movies. Supplementary Movie
S1 is an animation generated from the sample H2B image

shown in Figure 1, generated as described in the online
methods section.

Existing 3-D tools provide a variety of options for
visualization of 3-D biological data. Visualization libraries
such as the Visualization Toolkit (VTK) are fast and
provide significant flexibility in visualization, but they
require users to write a significant amount of custom code
in each of their binding languages, such as Python or JAVA in
order to provide interactive volumetric visualization
(Schroeder et al., 2006). Tools such as Voreen and Inviwo
are very flexible 3-D visualization prototyping tools, providing
a platform for experimenting with different types of rendering
and building volumetric renderers (Meyer-Spradow et al.,
2009; Jonsson et al., 2020). These tools are excellent for
technical users, but are not designed for quickly visualizing
3-D image data from multiple image processing environments.
Other packages such as Icy, ChimeraX, itkSNAP and
ImageTank, are built as standalone tools or tool ecosystems
containing image-processing operations and visualization.
However, each package limits users to only the operations
available within the tool or requires that they write a tool
extension or plugin for their purposes or export results for
import into another tool for further processing or visualization
(Yushkevich et al., 2006; de Chaumont et al., 2012;
O’Shaughnessy et al., 2019; Pettersen et al., 2021). Powerful
visualization tools such as ClearVolume, SciView, and
FPBioimage, use related architecture components to
LEVERSC, but focus largely on ImageJ/FIJI support (Royer
et al., 2015; Fantham and Kaminski, 2017; Gunther et al.,
2019). Similarly, 3DScript is an excellent ImageJ plugin for
scripting movies using English commands, but does not
support movie making in other image processing
environments like Python or MATLAB (Schmid et al., 2019).

LEVERSC was developed as part of a collection of software
tools for analyzing live-cell microscopy images, called
LEVERJS (short for Lineage Editing and Validation)
(Winter et al., 2016). The design of LEVERSC was inspired
by the imagesc command in MATLAB, which can be used to
quickly display a 2-D array as an image, by automatically

FIGURE 1 | LEVERSC makes quantitative visualization at each step of the image processing pipeline as easy for 3-D multi-channel images as it is for 2-D images.
The realistic rendering is enabled by a real-time anisotropic raycasting with perspective projection. The raw image and two computed images are visualized as a full stack
(left), or as a slice at arbitrary orientation through the volume (center). Quantitative visualization recovers the precise 3-D voxel location, shown here with a 2-D single
channel image view at Z location 25 (right).
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mapping the full range of the array to a color palette. The ease
of use of this command during image processing tasks makes
it a powerful debugging tool. LEVERSC strives to provide a
similar ease of use and consistency, from multiple image
processing environments, while also providing quantitative
imaging and scripting controls. The LEVERSC architecture
was also designed to be as simple as possible to integrate with
a request application programming interface (API) that
should be supported by any scripting language or
processing environment.

METHODS

Installation
Both the leversc app and at least one client integration must be
installed. First, install the LEVERSC app for the desired
operating system. Next, follow the instructions for integrating
LEVERSC into the client of choice (ImageJ, Python, or
MATLAB).

App Installation
MacOS App Installation

• Download and run the MacOS installer using the link at
https://leverjs.net/leversc#macos-app-install

Windows App Installation
• Download and run the Windows installer using the link at
https://leverjs.net/leversc#windows-app-install

Linux App Manual Installation
• Download the Linux Appimage using the link at https://
leverjs.net/leversc#linux-app-manual-install

• Symlink the appimage file to a folder in $PATH (e.g.,
~/.local/bin).
ln -fs /path/to/leverjs-*.AppImage ~/.local/bin/leverjs

Client Integration
ImageJ Plugin
1. First, install the leversc app (see previous section).
2. Download the ImageJ plugin using the link at https://leverjs.

net/leversc#imagej-plugin.
3. Copy the plugin jar file to the plugins/3D folder in your ImageJ

executable directory.
4. The plugin will appear in the ImageJ Plugins menu as Plugins-

>3D->Leversc Viewer

Note: If using Fiji (highly recommended) then you may wish
to create the 3D subfolder in plugins and place the jar file within,
as it can make it easier to find. Alternatively, the jar file can be
placed directly in the plugins folder and will be listed in the Fiji
menu as Plugins->Leversc Viewer.

Note: There is currently no scripting support available from
within Fiji/ImageJ. In order to control the viewer
programmatically you need to use MATLAB or Python as
described below.

Python Module–Requires Python 3.6 or Later
1. First, install the leversc app (see previous section).
2. From the command line:

1. (Windows) ‘py -m pip install leversc’
2. (Mac/Linux) ‘python3 -m pip install leversc’
3. To validate install, start python, then:

>>> import leversc; leversc.test_random()
3. For the full sample code, download the LEVERSC source

directory (https://git-bioimage.coe.drexel.edu/opensource/
leversc).

MATLAB Class–Requires MATLAB 2019B or Later
1. First, install the leversc app (see previous section).
2. Download the LEVERSC source directory (https://leverjs.net/

leversc).
3. Extract the downloaded source and support folders to a

convenient location.
4. Add the src/MATLAB subfolder to your MATLAB path, for

example, by adding the statement addpath(’path/to/extracted/
folder’) to your startup.m file.

Additional installation details can be found at: https://leverjs.
net/leversc.

Architecture
The LEVERSC visualization tool is a NodeJS application for
visualization of multichannel 3-D volumetric data using WebGL.
LEVERSCuses a localHTTP server port binding to communicate with
image processing tools. Currently LEVERSC has plugins for ImageJ,
Python and MATLAB. Additional plugins for KNIME and Julia are
planned.

The LEVERSC HTTP request application programming
interface (API) is designed to be simple to implement, so that
image processing tools or scripting languages can be quickly
extended to communicate with the LEVERSC viewer. The API
can be implemented piecemeal, only requiring the image send
request to be implemented in the simplest case. Additional API
requests that control the visualization and allow scripted movie-
making, can be implemented, but are not required for data
visualization.

This architecture is very flexible and supports fast, cross-
platform communication between any environment that
supports HTTP POST/GET requests. A detailed listing of all
API requests is available in the online documentation linked from
the main LEVERSC repository readme at: https://leverjs.net/
leversc.

Raycast Renderer
LEVERSC uses a raycast sampler implemented in a WebGL
fragment shader. For each pixel in the display a view ray is cast
outward through the image volume. The image voxel values are
sampled uniformly along the ray corresponding with the size
of image voxels. At each sample a user-defined transfer
function, detailed in the subsequent section, is applied to
convert from normalized voxel values to emissive intensities
and opacity. As sampling continues along each ray, color
intensity and opacity (alpha) are accumulated using
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standard alpha blending calculations. Once all ray sampling is
completed, the blended color and opacity are composited with
the render background to draw the final rendered frame to the
screen WebGL window.

The LEVERSC visualization tool also supports three clip
modes: off, front, and plane. These clipping modes control
the rendering at and behind the user-controlled view-aligned
clipping plane. With clipping turned off, the full depth of the
volume is always rendered. Front clipping will render only
the portion of the volume behind the clipping plane. Plane
clipping will render only the image data that directly
intersects the clipping plane, allowing users to view image
slices at arbitrary orientation. The 3-D image coordinates of
the mouse pointer projected onto the clipping plane is always
displayed in the bottom left of the LEVERSC window so that
users can easily determine exact voxel coordinates when
using LEVERSC to design or debug image processing
algorithms.

Transfer Function
The transfer function is a per-channel parameterized function
that maps voxel values (normalized on [0,1]) to emissive intensity
values (on [0,1]) for modeling light-transport in the ray caster.
The function is a monotonic quadratic. In the user interface, the
function is determined by 3 sliders, dark, medium, and bright.
The “dark” slider defines the largest voxel value that is completely
transparent, all values at or below the “dark” level are mapped to 0
and are fully transparent. The “bright” slider defines the smallest
voxel value that is fully emissive and opaque, all values at “bright”
or above are fully opaque and emissive. The “medium” slider is
the output value in [0,1] of the midpoint value between “dark”

and “bright”, in essence defining the curvature of the quadratic, if
“medium” is larger than 0.5 the quadratic will be concave down, if
“medium” is less than 0.5 the quadratic will be concave up, and if
“medium” is 0.5 then the function will be linear. Below the
transfer function equation and parameters is shown for a
single channel, mapping from the input voxel intensity iin to
output intensity iout,

iout �
⎧⎪⎨
⎪⎩

ai2in + biin + c, iin ∈ [idark, ibright]
1, iin ∈ [ibright, 1]
0, iin ∈ [0, idark]

The parameters a, b, c are chosen such that iout ∈ [0, 1] for
iin ∈ [idark, ibright] and iout � imid when iin � (idark + ibright)/2.
The parameters are also constrained such that iout increases
monotonically over the input range. The transfer function
mapping, with per-channel parameters, is implemented in
the WebGL raycasting fragment shader. This allows the user
to adjust the transfer function settings and have the
visualization update in real-time. Each channel also has a
globally adjustable opacity (alpha). Once a ray is fully opaque
or the ray has reached a far edge of the volume data, the total
accumulated color is rendered to the screen, providing real-time
volumetric rendering.

RESULTS

In this section we will provide a detailed example of usage of the
LEVERSC tool. This example shows the use of many of the
LEVERSC application programming interface commands to

FIGURE 2 | LEVERSC render parameter selection interface. Colors, alpha blending and intensity mapping transfer functions are all fully controllable via the user
interface and the API.
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create a high-quality rendered movie using the MATLAB
scripting language. The full example script source code
(sampleVolumeMovie.m) is available in the src/MATLAB
directory of the LEVERSC repository. Figure 2 details the
rendering interface used to control and indicate image
coloring, alpha values and the intensity mapping transfer
functions. The MP4 movie resulting from following this
example script is included as Supplementary Movie S1.

We begin by loading some image data, in this case from the
sample.LEVER file distributed along with the LEVERSC
repository. Any format image readable by the scripting
environment can be substituted.

A leversc class object must be initialized, here we initialize the
leversc class with image data and metadata (metadata fields such
as PixelPhysicalSize are important for correct data
visualization).

A reproducible movie render should set the rendering
parameters consistently at the beginning of rendering to
properly visualize the data. In this case we use the
LEVERSC tool interface to interactively identify good
visualization values, then use the /renderParams API call to
read the current settings. The rendering parameters are set
interactively via the UI as shown in Figure 2.

Once the rendering parameters are set, they are read back into
MATLAB and hardcoded for subsequent reuse:

We disable the display of most UI elements

We reset the view parameters to defaults for the start of the
movie:

The first step in this movie is to apply a quick animated zoom
to fill the display with the actual data in the volume, capturing
frames for each zoom level. Since our movie will run at 10 frames
per second (fps) we interpolate our zoom over 10 frames (a 1 s
zoom):

Apply a 5 s (50 frame) rotation of 180 degrees about the y-axis:

Move the sampling plane to the edge of the volume and turn on
planar clipping. Thenwe animatemoving the plane to just a little back
from the volume center. The plane animation is 2 s (20 frames) long:

Apply another 180-degree rotation to rotate the volume the
rest of the way back to the starting view. This time we show
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matrix multiplication for the world rotation matrix by a delta
rotation matrix:

As a final animation, we change the plane clipping mode to
slice sampling, and animate moving out of the volume towards
the camera:

Using the example shown here, as well as the full viewParams
and renderParams API calls, complex camera and movie effects
can be built through interpolation of multiple parameters at
each frame. Supplementary Movie S1 shows the full results of
running the code fragments above.

DISCUSSION

Effective analysis of complex anisotropic image data requires
effective visualization at every step of the processing pipeline.
Visualization needs to be available from any platform, operating
system and processing environment. It should be as easy to use as
inbuilt 2-D image visualization. Visualization also needs to be
quantitative–able to precisely identify the image stack location of
every voxel at any view orientation and scale. Finally, the
visualization needs to be fully controllable from any scripting
environment, allowing view settings to be recorded for
subsequent reproducibility, and view settings to be played back
for generating movies. The LEVERSC visualization tool described
here addresses all these requirements.

LEVERSC is designed to be useful to a broad audience of
microscopists, biologists, and image analysists. However, the
focus on compatibility and fast, interactive rendering does
come with trade-offs. WebGL provides a highly compatible
rendering interface with built-in support for fast 3-D image
sampling. However, the use of a WebGL GPU texture
sampler requires that the image volume be quantized to 8-
bits per channel. This also requires that the entire image
volume fit in GPU memory, and the LEVERSC tool cannot
display images larger than the GPU memory available.
However, users can still quickly crop a region of interest
from a large volume to be visualized in LEVERSC, or they
may downsample the volume in their image processing
environment to view an approximation of the volume. We
are also investigating multiresolution progressive rendering
support in LEVERSC. This is already supported in the
LEVERJS microscope analysis tool, but that rendering
requires preprocessing and use of a specialized image
format. While it would also be ideal to sample and display
images at their full bit depth, we believe the speed of GPU
textures is worth this sacrifice, particularly since most
monitor displays generally have bit depth of 8–10-bits per
color, and the current LEVERSC plugins use linear
normalization to minimize the quantization error.

The architecture of LEVERSC makes it highly platform
independent and compatible with other tools since it runs as a
separate NodeJS process using standard HTTP requests for
communication. However, this does increase the memory
requirements for visualization as the image volume must be
sent (copied) from the originating process to the LEVERSC
visualization process. We have not found this to be an issue
with modern hardware and modern live-cell microscope images,
but could certainly be a concern with large electron microscopy
(EM) data.

LEVERSC is a lightweight high-performance tool that
provides a high-quality rendering via true raycasting using
per voxel compositing across all image channels. It runs on all
three major operating systems and is usable from ImageJ,
Python and MATLAB. LEVERSC will support Knime using
the ImageJ plugin architecture, with support for the Julia
scripting language coming soon. The LEVERSC sampling
plane enables quantitative visualization by projecting 2-D
pointer location, together with the arbitrary plane location
into image coordinates. LEVERSC is fully scriptable,
providing image capture as well as programmatically
controllable view, render and user interface settings.
LEVERSC is available free and open source (MIT license).
Source code for the scripting client and download links for
the visualization executable can be found at https://leverjs.
net/leversc.
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