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Abstract

The current world-wide epidemic of obesity has stimulated interest in developing simple screening methods to
identify individuals with undiagnosed diabetes mellitus type 2 (DM2) or metabolic syndrome (MS). Prior work utilizing
body composition obtained by sophisticated technology has shown that the ratio of abdominal fat to total fat is a
good predictor for DM2 or MS. The goals of this study were to determine how well simple anthropometric variables
predict the fat mass distribution as determined by dual energy x-ray absorptometry (DXA), and whether these are
useful to screen for DM2 or MS within a population. To accomplish this, the body composition of 341 females
spanning a wide range of body mass indices and with a 23% prevalence of DM2 and MS was determined using DXA.
Stepwise linear regression models incorporating age, weight, height, waistline, and hipline predicted DXA body
composition (i.e., fat mass, trunk fat, fat free mass, and total mass) with good accuracy. Using body composition as
independent variables, nominal logistic regression was then performed to estimate the probability of DM2. The
results show good discrimination with the receiver operating characteristic (ROC) having an area under the curve
(AUC) of 0.78. The anthropometrically-derived body composition equations derived from the full DXA study group
were then applied to a group of 1153 female patients selected from a general endocrinology practice. Similar to the
smaller study group, the ROC from logistical regression using body composition had an AUC of 0.81 for the detection
of DM2. These results are superior to screening based on questionnaires and compare favorably with published data
derived from invasive testing, e.g., hemoglobin A1c. This anthropometric approach offers promise for the
development of simple, inexpensive, non-invasive screening to identify individuals with metabolic dysfunction within
large populations.
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Introduction

Currently, a pandemic of obesity exists that is associated with a

number of serious and debilitating diseases, including diabetes

mellitus type 2 (DM2) and metabolic syndrome (MS), a condition

which is characterized by central obesity, glucose intolerance,

hypertension, and hyperlipidemia [1]. The economic, cultural,

and personal costs of these conditions are extremely high and are

projected to grow rapidly in the future. For example, currently

about 25% of North Americans have MS [2] and its presence

doubles the risk of adverse cardiovascular outcomes [3]. Further,

results of a number of prospective studies show that identification

of individuals at high risk for metabolic disease allows for direct life

style or medical interventions that delay or prevent the progression

of DM2 [4,5] and MS [6,7]. However, to date reliable

identification of individuals with undiagnosed metabolic dysfunc-

tion within a population has required invasive blood sample

collection and laboratory testing, e.g., fasting serum glucose

concentrations, oral glucose tolerance testing (OGTT), or

hemoglobin A1c determination. Clearly, because the prevalence

of DM2 and MS within large populations in the developed and

developing world countries is so high, there is a need for simple,

effective screening methods to identify those individuals who likely

have disease. Those at high risk could then be offered follow-up

diagnostic testing to determine definitively the degree of metabolic

dysfunction and offered appropriate treatments.

There has been an intense interest focused on the potential

pathophysiologic pathway(s) by which obesity causes disease. Notably,

the mere presence of obesity is not a sensitive measure of risk for

metabolic dysfunction, as an appreciable number of obese individuals

within a population do not currently have disease, and furthermore,

will not progress into a prediabetic state. Abundant research effort has

focused on identifying what specific aspects of obesity are important

predictors of the eventual development of cardiometabolic risk. One

promising lead has focused on the pattern of regional fat distribution.

On the basis of abundant investigational work, waist circumference
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[8] and intra-abdominal (i.e., trunk or visceral) fat have been identified

to be important predictors of disease [9], and the latter is also

hypothesized to be a direct cause of the development of a glucose

intolerance and frank diabetes. Notably, individuals with increased

central fat depots have increased circulating levels of proinflammatory

cytokines and other inflammatory molecules (e.g., C-reactive protein)

that are associated with insulin resistance, cardiovascular disease, lipid

abnormalities, and hypertension.

From the perspective of public health screening for individuals at

risk for metabolic disease, estimation of body fat distribution using

the available methods to accurately determine body composition,

i.e., computerized tomography, magnetic resonance imaging, or

dual energy x-ray absorptometry (DXA), are generally impractical

for field use. It is therefore desirable to have available simple

methods that can accurately estimate body composition. With

respect to this need, it is obvious that the body shape and size of

individual humans are more similar than different. It is also logical

to assume that as weight increases with the deposition of fat, muscle

mass must increase proportionally to effectively support incremental

increases in weight. It is likely, therefore, that fat mass (FM) and fat

free mass (FFM) depend upon weight in a predictable manner.

Several investigators employing isotopic dilution methodology have

studied subjects of a wide range of body masses to determine how

body composition varies with weight. The results show that a

predictable mathematical relationship exists such that FFM is

proportional to logarithm of FM [10,11]. However, these studies did

not take into account regional differences of fat deposition, which

are likely important as trunk fat is specifically associated with lean

muscle mass, due in part to the effects of gravity [12].

Abundant previous work that has also shown that body

composition as determined by isotope dilution or hydrological

methods to determine body density, i.e., FM and FFM, can be

reasonably estimated by anthropometrics over a wide range of

body mass in both restricted [13] and generalized populations

[14]. In recent years, the development of DXA has allowed for

rapid determinations of body composition with a high precision

comparable to the results of hydrostatic weighing, and DXA

methodology also accurately determines the proportion of

abdominal fat to total fat [15,16]. We therefore postulated that

simple anthropometric variables can predict the regional distribu-

tion of fat and lean tissue masses as determined by DXA. To

explore this possibility, we modeled DXA-derived data obtained

by a single investigator using anthropometric variables obtained

from a group of 341 females spanning a broad range of body

shapes and weights. This group was split into two unequal smaller

groups and multiple linear regression performed on the larger

subset to develop equations that related anthropometric variables

to DXA-obtained body composition. The subsequent equations

were then tested in a smaller group for cross-validation.

Additionally, since DXA body composition obtained from a

longitudinal study of a typical population of North American

females can be used to assess risk that an individual will eventually

develop DM2 [17], we hypothesized that anthropometrically-

determined body composition in the same study group can be used

to screen a population to detect individuals at high risk for having

DM2 or MS. Finally, we used the predictive equations derived from

the DXA study group to determine whether the same equations

would predict the presence of DM2 and MS in a different group of

females selected from a general endocrinology practice (n = 1153).

Results

As summarized in Table 1, the study groups were well-matched,

spanning a wide range of fat masses from very lean to morbidly

obese. Although the prevalence of DM2 was significantly lower in

the Index Group (IG; 5%), it was equivalent in the cross validation

(CV) and endocrine practice (EP) groups at 13% and 10%

respectively. The prevalence of MS did not differ across the

groups, ranging from 19% in the EP group to 26% in the CV

group. Linear correlations between the anthropometric variables

and the DXA-derived body compartments or weight of all women

undergoing DXA scanning (IG+CV = 341) are summarized in

Tables 2 and 3. Not surprisingly, weight was significantly and

strongly correlated with hipline and waistline, moderately with

height, but not with age (Table 2). Partial correlations were

calculated to estimate the linear association between pairs of

variables, i.e., by holding all other variables constant. Partial

correlation analysis revealed that waistline had highest correlation

with weight. Interestingly, correlations between anthropometric

variables and DXA-derived body compartments showed that

waistline was not correlated to the total fat mass, but rather to TF

and to FFM (Table 2). Although hipline was strongly correlated to

FM, TF, and FFM, partial correlation showed that the

relationship actually depended on other variables, as the

correlation vanished for TF and FFM. As expected, age was only

correlated with FFM, which was in an inverse manner.

Stepwise multiple regression analysis performed on the Index

Group relating the independent anthropometric variables to

DXA-derived body composition revealed that significant regres-

sors were age, height, weight, waistline and hipline for FM and

FFM, while age, height, weight, and waistline were regressors for

TF. These multiple linear regression models predicted the DXA

body compartment masses with reasonable precision, as the actual

DXA-derived FM and that predicted by the regression model

based on anthropomorphic variables were characterized by a

mean bias (i.e., actual mass-predicted mass) of 0.281 kg. The

accuracy of model estimates for other body compartments were

similar (Figure 1B–C), with TF and FFM having mean biases of

0.328 and 20.176 kg respectively. Total body mass (FM + FFM)

was extremely well predicted with a mean bias of 0.672 kg and the

limits of agreement, i.e., the range over which the difference

between the two measurements will fall 95% of the time, was

about 3.3 kg (Figure 1D). Notably, unlike the other variables, the

bias of the predicted total mass increased with increasing total

weight, reaching a maximum of ,2 kg for weights greater than

100 kg.

The relationships between anthropometrically-predicted body

composition (regression equations tabulated in Table 4) and

weight was explored further. Total weight, as calculated using

predicted FM + predicted FFM, matched the actual mass with

high accuracy, with the linear regression equation of: DXA

weight = 0.63+0.996predicted weight (r2 = 0.99; Figure 2). The

contribution of FM and FFM to weight was in a ratio of 0.59

to 0.37, with regression equations FM = 0.596weight216.5

(r2 = 0.98) and FFM = 0.376weight+18.7 (r2 = 0.961). Trunk fat

was related to weight in a 0.32 to 1 ratio (TF = 0.326weight211.1;

r2 = 0.96; Figure 2 D). FFM versus FM was therefore linear with a

slope of 0.59 (Figure 3A). The different slopes of the FM and FFM

relationships with weight showed that a limiting ratio of

approximately 1 was obtained for high body masses (Figure 3B).

The relationship between FM and FFM is summarized by the

equation: FFM/FM = 12.89(exp2(0.046weight))+1.06.

The equations derived from the linear models of body

composition of the IG (predicted FM, TF, and FFM) was

subsequently applied to the Cross-Validation population. The

means of the predicted values did not differ significantly from

actual measurements when compared to the IG (Table 5),
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validating that the models were also appropriate for this

independent test population.

Stepwise nominal logistic regression analysis was then per-

formed using the full data set (IG + CV; n = 341) to determine the

probability of an individual diagnosed with DM2 based upon

DXA derived body composition. Although FM and TF were

highly significant contributing independent variables, FFM was

not a significant regressor in this model. The receiver operator

characteristic curve (ROC; Figure 4A) constructed using nominal

logistic regression exhibited an area under the curve (AUC) of

0.7860.05 (95% confidence interval 0.68–0.88; p,0.0001). This

curve is notable for a steep initial slope of ,4 (i.e., four times more

true positives than false positives identified as the nominal logistic

model threshold for a positive diagnosis was reduced) until about

60% of the true positives with a corresponding 15% false positive

rate, and was about 0.5 thereafter. Similar to the logistic model

estimating the probability of DM2 within the study group, the

predictive model of either DM2 or MS within the group depended

upon only FM and TF as significant regressors. However, the

AUC of the ROC (Figure 4B) was lower at 0.71+0.03 (0.64–0.77;

p,0.0001). Like the previous model screening for DM2 alone, the

ROC of the model corresponding the presence of either DM2 or

MS has a steep initial slope of ,3.3 to the point 40% true positives

and 12% false positives and thereafter reduced to ,1 until the

80% of true positives are correctly diagnosed.

A final regression model of body composition was derived using

the full data set (IG + CV) with height, age, weight, waistline, and

hipline as independent variables. This model was then used to

estimate body composition (i.e., FM, TF, and FFM) of a group of

females who were a subset of the population of a general

endocrinology practice (n = 1135). Nominal logistic regression was

performed using predicted FM, TM, and FFM to determine the

probability that an individual within the population had metabolic

dysfunction. Unlike the smaller DXA group studied, FFM was a

significant regressor within the EP population. These analyses

produced similar appearing ROCs when compared to the smaller

DXA data set. With respect to the probability of the presence of

DM2, the ROC (Figure 5A) had an AUC of 0.8060.02 (0.76–

0.84; p,0.0001). Notably, this curve has three inflection points.

An initial slope of ,5.6 up to 28% True Positive (TP) and 5%

False Positive (FP). Thereafter, the slope decreased to ,2.5 until

85% TP and 35% FP. Nominal logistic regression for the

probability of DM2 or MS produced an ROC (Figure 5B) with

an AUC of 0.8160.01 (0.78–0.84; p,0.0001). This curve also had

a triphasic slope: up to ,18% TP was associated with a very low

rate of FP (0.1%), a slope of ,18. Thereafter, the slope decreased

to ,2.0 until 90% TP and 35% FP.

Discussion

In the present work, we have shown that in an obese female

population, anthropometric linear regression models predict the

DXA-determined body compartments FM, TF, and FFM with

good accuracy. Further, the distribution of body fat, as determined

by DXA or the anthropometric models, can be used to identify a

majority of individuals with a high probability of a formal

diagnosis of DM2 or MS with a low false positive rate. To

accomplish these, an Index Group was initially studied and the

linear models generated were then validated using a similar cross-

validation population. A final linear model was derived using data

of the full DXA group (IG + CV) and subsequently applied to a

Table 1. Characteristics of the study populations.

group (n) IG (246) CV (95) EP (1153)

Age [Mean 6 SD] (Range) 47.7611.7 (15–73) 46.1612.1 (16–67) 46.2611.6 (18–80)

Weight (kg) 85.2619.2 (42.2–146.2) 86.0620.7 (45.3–131.6) 87.8622.2 (43.1–190.5)

Height (m) 1.6160.08 (1.27–1.83) 1.6260.07 (1.24–1.8) 1.6360.08 (1.35–1.92)

DXA FFM (kg) 50.268.0 (28.4–71.7) 50.668.7 (34.5–76.9) NA

DXA FM (kg) 34.2611.8 (8.8–74.4) 35.2613.3 (10.7–63.2) NA

BMI 28.866.4 (15.6–59.9) 29.267.1 (16.8–60.2) 33.167.9 (18.2–64.2)

DM2 n (%) 12 (5*) 12 (13) 113 (10)

MS n (%) 52 (21) 27 (27) 219 (19)

*p,0.02 compared to other groups.
doi:10.1371/journal.pone.0024017.t001

Table 2. Pearson partial correlation coefficients of
anthropometric variables and weight for the full DXA data set
(IG+CV = 341 patients).

weight

age NS

height 0.29 (0.37)

waistline 0.86 (0.74)

hipline 0.76 (0.51)

Value in parentheses is the partial correlation coefficient, i.e., the correlation
between two variables with all other variables held constant; NS = non-
significant correlation.
doi:10.1371/journal.pone.0024017.t002

Table 3. Pearson partial correlation coefficients between
anthropometric variables and DXA-derived body
compartments for the full DXA data set (n = 341).

fat mass trunk fat mass fat free mass

age NS NS (0.14) NS (20.26)

height 0.17 (NS) 0.13 (20.16) 0.42 (0.48)

waistline 0.84 (NS) 0.87 (0.35) 0.74 (0.29)

hipline 0.77 (0.33) 0.74 (NS) 0.62 (NS)

Values in parentheses are the partial correlation coefficients. Correlations #0.10
or with p.0.05 are considered non-significant (NS).
doi:10.1371/journal.pone.0024017.t003
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larger female population to screen for the presence of DM2 or MS.

In this study, we have selected a subject population that is similar

in body weight and shape of typical North American females,

spanning a wide range of ages (15–80), BMI, and body shapes.

The predictive equations obtained are, therefore, valid only for

this specific population.

Estimates of body composition based on anthropometric

variables have a long history of research interest (reviewed by

[14]). Initial investigations were performed using restricted

populations for which the models performed well, but not

surprisingly, did not generalize to more diverse populations [18].

Subsequently, detailed studies confirmed the logical assumption

that anthropometric models are valid if the database employed for

analysis is diverse [19,20]. Earlier studies relied primarily on

isotope dilution and specific gravity (hydrostatic) measurements to

determine FM and FFM [21] and these did not determine regional

differences in fat mass and fat free mass. More recent studies used

newer technologies to determine body compartments, e.g., DXA,

CT, or MRI, that can also accurately determine regional tissue

composition, although with some clear differences among the

techniques [22]. Characteristics of regional fat distribution,

particularly of centripetal fat, have been identified as important

variables in the pathophysiology of metabolic disease and we have

modeled anthropometric variables to estimate those body

compartments.

Within the populations studied, a number of interesting

relationships between weight and body composition were

identified. First, FM and FFM are linearly related as a function

of weight, such that over a large range of weight, each kilogram is

composed of about 60% fat and 40% fat free mass. In contrast, an

earlier study using a female population consisting of body fat

percentages ranging from undernourished to obese, concluded

that the relationship between FM and FFM is a logarithmic one.

However, this previous study did not take into account

anthropometric variables such as height, age, or body shape

[23]. Further, if the outliers who were extremely underweight are

excluded from the analysis, logarithmic and linear relationships

between FM and FFM become very similar (data not shown). A

subsequent study extended the population to include men, but

assumed a logarithmic relationship between FM and FFM to

develop the model [10]. Neither compare well with the current

study, as shown in Figure 3A. In contrast, an anthropometric study

of an obese female population similar to ours [13] concluded that a

linear relationship exists between FM and FFM, although with a

shallower slope (0.4660.01 versus 0.5960.01 in the present study

respectively). The reason for this discrepancy is unclear, but could

Figure 1. Multiple linear regression models based upon DXA measurements obtained from the Index Group predict the
corresponding body masses in the Cross Validation group with good accuracy. A) Bland-Altman analysis of actual versus predicted Total
Fat has a very small average bias (i.e., the average of the differences between the two measurements) of 0.281 kg and a standard deviation of 3.44 kg
(heavy dashed lines indicate the limits of agreement (mean bias61.96 its standard deviation): 26.47 to 7.03 kg). B) Predicted Trunk Fat has an
average bias of 0.328 (CI: 24.223 to 4.89 kg). C) Predicted Fat Free Mass has a bias of 20.176 kg (CI: 26.49 to 6.14 kg). D) Total Mass (FM + FFM) has
an average bias of 0.672 kg (CI: 20.965 to 2.31 kg).
doi:10.1371/journal.pone.0024017.g001
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depend upon the technology used to determine body composition.

For example, different methodologies to determine body compo-

sition in obese women are not equivalent when each is compared

to the ‘‘gold standard’’ four compartment model [22].

Results of the present study also show that the relationship

between FM and FFM is such that as body-weight increases, the

contributions of FM and FFM eventually become approximately

equal. This has physiological relevance because resting metabolic

rate is proportional to FFM. Individuals of greater weight will have

a corresponding greater fat free mass and thus will be more likely

to lose weight while undergoing calorie restriction. Although

height and body shape correlated well with FFM, partial

correlation analysis shows that only the waistline is appreciably

correlated to FFM when the other variables are held constant. Age

was related to FFM inversely and to TF in a positive manner. The

lack of correlation of age with other anthropometric variables

suggests that there are other variables not accounted for by the

model, e.g., possibly age-related differences in metabolic rate.

Regional fat distribution did weakly correlate with FM as increases

in hipline were associated with greater FM. Not surprisingly, TF

was correlated with waistline and negatively with height.

A number of longitudinal studies have evaluated the use of

simple anthropometrics, e.g., waistline, waist-hip ratio, and others,

in populations to predict the risk of developing DM2 in the future

[24]. In our approach, we were interested in identifying

individuals within an overweight population that are likely to

have undiagnosed metabolic dysfunction at the time of screening.

Based on studies that have confirmed the importance of central fat

distribution for the development of metabolic dysfunction,

including DM2, we have used DXA-derived body composition

in logistic regression models to determine the probability of the

presence of disease. Beginning with the DXA data group, the

discrimination of the logistic function derived from DXA data is

quite good with an AUC of 0.78 (Figure 4A). This is superior to

the results of screening based on questionnaires and compares

reasonably well with population screening based on clinical data

obtained invasively. For example, the KORA survey carried out in

Austria used a variety of published DM2 screening questionnaires

which were administered to 1573 participants aged 55–74 and

DM2 established by oral glucose tolerance testing. The resulting

AUCs range from 0.61–0.67 [25]. In contrast, in the San Antonio

Heart study screening was based on a predictive model that

Figure 2. FM increases faster than FFM as a function of weight. Relationships between predicted body composition and weight (abscissa) to
DXA-determined values (ordinate) for the full DXA population (IG + CV) are linear and show that with increasing mass, TF and FFM increase at similar
rates which are less than for the total FM. Predicted weight is the sum of FFM and FM (see text for discussion).
doi:10.1371/journal.pone.0024017.g002

Table 4. Coefficients of the linear regression equations
predicting DXA body composition derived from the Index
Group DXA population (n = 241).

b0 b1 b2 b3 b4 b5

fat mass (FM) 215.49 0.05 0.54 0.11 0 22.47

trunk fat (TF) 210.14 0.04 0.28 0 0.07 20.03

fat free mass (FFM) 13.96 20.08 0.41 20.09 0 7.04

Predicted DXA value = height (b0)+age (b1)+weight (b3)+hipline (b4)+wa istline
(b4)+b5.
doi:10.1371/journal.pone.0024017.t004
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included fasting glucose levels to assess for diabetes had an AUC of

0.84 [26]. Identification of DM2 or MS by use of other variables

that were collected invasively, e.g., hemoglobin A1c, do not

appear to improve the sensitivity of detecting disease. For example,

data from the Health Aging and Body Composition Study

provides AUCs ,0.7 when used for diagnosis of DM2 [27].

The inflection points of the ROCs in the current study are of

interest, as the steep slopes in the left portion of the curves show

that within the population a large fraction of individuals with DM2

can be identified using anthropometric linear models to estimate

body composition, without incurring an unacceptably high false

positive rate. For example, for the threshold corresponding to the

point of the curve identified by an asterisk in Figure 4A, 62.5% of

the individuals with DM2 are correctly characterized (15 of 24),

whereas only 14% of people without DM2 are incorrectly

identified as positive (45 of 317) and 86% of individuals without

disease are correctly identified, i.e., a sensitivity of 62.5 and a

specificity of 86 percent. Not surprisingly, the shape of the ROC

for logistic regression identifying individuals with either DM2 or

MS was less steep, as would be expected in an obese population in

which individuals with disease overlapped with others who are

more similar than different in their anthropometric characteristics.

Use of regression models to study the larger EP population

confirmed the relevance of this analytical approach. However, a

primary limitation of this study is that it is valid only in the

population evaluated. This group is not representative of a general

population, consisting as it does of mostly middle aged, Caucasian,

overweight females that have consulted an endocrinologist. On the

other hand, such a population would also be expected to be more

difficult to differentiate individuals with disease from normals, as

the subjects are more similar in their body characteristics than

individuals within a more heterogeneous population. The results of

this proof-of-concept investigation suggests that larger studies

performed using more generalized population databases could

lead to the development of simple screening tools to identify those

at high risk for metabolic dysfunction. The incorporation of other

non-invasive, easily and inexpensively obtained variables, e.g.,

previously-validated questionnaires, would likely improve the

sensitivity and specificity of the models. A final caveat is that this

model cannot predict future risk of DM or MS, but only the

likelihood that an individual presently has significant risk for

having disease. It is this utility that especially suggests that this

approach might be very useful in mass health screening scenarios.

Methods

In accordance with the Unites States Code of Federal

Regulations 7 C.F.R. 1 1c.101b4, this research is exempt from

review by an Institutional Review Board as it constitutes

‘‘Research, involving the collection or study of existing data,

Figure 3. The relationship between the model estimates of FFM and FM is linear. A) Body composition based on modeling DXA-derived
data of the full DXA population (IG + CV) using anthropometric variables exhibits a linear relationship between FM and FFM (red line). The
anthropometric model of Weltmann [13], derived from hydrostatic weighing in a similar obese female population, is similar (black line). In contrast,
data obtained by Forbes [23] for a female population using isotopic dilution methodology is non-linear (blue line). B) The FFM/FM ratio approaches
unity for body mass greater than 100 kg.
doi:10.1371/journal.pone.0024017.g003

Table 5. Body composition of the Cross Validation group is
predicted by the regression equations derived from the Index
Group.

FM TF FFM

mean difference*
(± SD)

20.28163.44 kg 20.32862.33 kg 0.17663.23 kg

95% CI of mean bias 20.98 to
0.42 kg

20.80 to
0.15 kg

20.48 to
0.83 kg

Correlation (r2) 0.965 0.950 0.920

p value NS NS NS

*Mean of difference between predicted and actual masses. Statistical
significance determined by paired student’s t-test.
doi:10.1371/journal.pone.0024017.t005
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documents, records, pathological specimens, or diagnostic speci-

mens, if these sources are publicly available or if the information is

recorded by the investigator in such a manner that subjects cannot

be identified, directly or through identifiers linked to the subjects.’’

The patient populations studied were drawn from an ambulatory,

general endocrinology and weight management practice. In-

formed consent was not obtained as all data were analyzed

retrospectively in an anonymous manner. The initial study

population consisted all females in the medical practice for whom

complete anthropometric data were available who underwent

DXA for a weight control-fitness program (n = 341). A second

independent group consisted of all female patients in a single

general endocrine practice (EP) for whom full anthropometric data

were available. The patients were clinically stable and except for

diabetes and metabolic syndrome, did not have known active

diseases that potentially could affect body composition (e.g.,

uncorrected thyroid dysfunction). All data were collected by a

single investigator (RY) and were blinded as to personal identity

for data analysis. The DXA scanner utilized was a Delphi QDR

series (Hologic, Bedford, MA). Data included in this analysis

consisted of total body mass (TBM), total fat mass (FM), trunk

(abdominal) fat mass (TF), and fat free mass (FFM). Anthropo-

metric variables were obtained to the same level of precision as

likely would be obtained within a mass health screening

environment. Specifically, subjects were weighed to within

0.25 kg using a precision clinical balance while lightly clothed

and without footwear. Height was measured to within 0.25 cm

using a clinical stadiometer, waistline (circumference to 0.5 cm,

taken at the level of the umbilicus at the end of gentle expiration),

hipline (circumference at the level of the greater trochanter), and

age. Diagnosis of DM2 was based upon the criteria of the

American Diabetes Association [28] and MS was established

following the criteria of the National Cholesterol Program [3].

The group of 341 individuals who underwent DXA scanning

was randomly divided into a Cross-Validation group (CV; n = 95)

and the remaining 246 subjects constituted an Index Group (IG).

Characteristics of the subject populations are summarized in

Table 1. A predictive model for DXA-derived body composition

of the IG was then generated using stepwise multiple regression

analysis using FM, TM, and FFM as dependent variables and

anthropometric measurements as independent variables. The

resulting multiple regression models were then applied to the

CV group to determine how well the IG regression equations

predicted DXA body composition of these individuals. Using the

DXA-derived body composition of the fulI (G + CV) group, a

stepwise nominal logistic regression model was also constructed to

predict the probability that an individual within the DXA data set

had metabolic disease. Following successful validation of the

models in the two groups, a final multiple regression model was

determined using the entire data set (n = 341) to estimate body

composition and regional fat distribution of a larger female

population drawn from a general Endocrinology Practice (EP;

n = 1153). Finally, these values were then used to generate a

stepwise nominal logistic regression model to predict the presence

of metabolic disease.

Figure 4. The receiver operating characteristics of a nominal logistical regression using DXA-derived body composition as
independent variables to estimate the probability of DM2 or either DM2 or MS in the full DXA population (IG + CV) show that a
large percentage of the diseased individuals can be identified without a high cost of a false positive diagnosis. A) The steep slope of
the initial portion of the curve to the inflection point (*) indicates that a high proportion of individuals with DM2 can be identifying using DXA-
derived FM and TF. Area under the curve is 0.78 with a standard error of 0.05 (24 subjects with DM2 and 327 without; p,0.0001). The 95% confidence
interval is 0.68 to 0.88. [Regression equation: risk of DM2 = 1/(1+e2z), where z = 1.9420.53(TF)+0.28(FM).] B) Similarly, the ROC for the detection of
either DM2 or MS also shows inflection points, consistent with sensitive detection of subjects with disease. The AUC is 0.7160.03 (103 subjects with
disease, 238 without; p,0.0001). The 95% confidence interval for the AUC is 0.64 to 0.77. [Regression equation: k = 2.3220.24(TF)+0.09(FM)].
doi:10.1371/journal.pone.0024017.g004
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All statistical analyses were performed using JMP (SAS Inc,

Cary, NC). Dependent variables were DXA-determined FM, TF,

and FFM. Independent variables were age, height, weight,

waistline, and hipline. The relationships between the independent

and dependent variables were examined for evidence of non-

linearity by calculating Pearson correlation coefficients for each

independent variable. Each variable was also transformed by

log10(x), 1/x, and squareroot (x). The observation that there were

no significant differences observed for the correlation coefficients

between the untransformed and transformed variables and the

dependent variables assured linearity. Of note, the results of prior

research examining anthropometric variables and body density-

derived fat and lean body masses have shown that there is no

significant curvilinearity between variables, confirming the appro-

priateness of the use of linear modeling [29]. Partial correlation

coefficients were calculated to estimate the correlation contributed

by each pair of variables when all other variables were held

constant. A comparison of actual versus predicted values was

accomplished using the Bland-Altman method [30] that deter-

mines bias (actual-predicted) as a function of the average of the

actual and predicted values estimated by two different methods.

Nominal logistic regression was performed to assess the sensitivity

and specificity of the diagnosis of DM2 or MS in the groups.

Probability values were calculated from a two-tailed distribution

and p,0.05 was considered significant.
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