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Propensity-score matching is increasingly being used to estimate the effects of treatments using observational
data. In many-to-one (M:1) matching on the propensity score, M untreated subjects are matched to each treated
subject using the propensity score. The authors usedMonte Carlo simulations to examine the effect of the choice of
M on the statistical performance of matched estimators. They considered matching 1–5 untreated subjects to each
treated subject using both nearest-neighbor matching and caliper matching in 96 different scenarios. Increasing the
number of untreated subjects matched to each treated subject tended to increase the bias in the estimated
treatment effect; conversely, increasing the number of untreated subjects matched to each treated subject de-
creased the sampling variability of the estimated treatment effect. Using nearest-neighbor matching, the mean
squared error of the estimated treatment effect was minimized in 67.7% of the scenarios when 1:1 matching was
used. Using nearest-neighbor matching or caliper matching, the mean squared error was minimized in approxi-
mately 84% of the scenarios when, at most, 2 untreated subjects were matched to each treated subject. The
authors recommend that, in most settings, researchers match either 1 or 2 untreated subjects to each treated
subject when using propensity-score matching.

bias (epidemiology); matching; Monte Carlo method; observational study; propensity score

Abbreviations: ANOVA, analysis of variance; ATT, average treatment effect for the treated; MSE, mean squared error.

In an observational study of the effects of treatments,
exposures, or interventions, the propensity score is the prob-
ability of treatment assignment conditional on observed
baseline covariates (1–4). In the absence of unmeasured
confounding, conditioning on the propensity score allows
one to obtain unbiased estimates of average treatment ef-
fects (1). Propensity-score matching is used frequently in
the medical literature (5–7). The most common implemen-
tation of propensity-score matching is 1:1 matching, in
which pairs of treated and untreated subjects are formed.
The effect of treatment may be estimated by directly com-
paring outcomes between treated and untreated subjects in
the matched sample.

Anecdotally, a criticism of propensity-score matching by
clinical investigators and medical journal editors and re-
viewers is that it is ‘‘wasteful’’ of sample size. For instance,

imagine a sample consisting of 1,000 subjects, of whom 100
were treated. The effect of treatment would be estimated in
the matched sample consisting of, at most, 200 subjects. The
remaining 800 unmatched, untreated subjects are apparently
‘‘wasted,’’ since they are not used in estimating the effect of
treatment on outcomes. Several studies in the medical liter-
ature have used many-to-one (M:1) matching on the pro-
pensity score (8–18). Using this approach, M (M > 1)
untreated subjects are matched to each treated subject.

Our objective in the current paper is to develop criteria for
selecting the number of untreated subjects to match to each
treated subject to optimize estimation of treatment effects
when M:1 matching is used. First, we present a conceptual
framework for propensity-score matching. We describe why
discarding unmatched, untreated subjects does not introduce
bias into the estimate of treatment effect. We then use Monte
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Carlo simulations to determine the number of untreated sub-
jects to match to each treated subject in order to optimize
estimation of treatment effects. Finally, we summarize our
findings and discuss them in the context of the literature.

A CONCEPTUAL FRAMEWORK FOR PROPENSITY-
SCORE MATCHING

In the potential outcomes framework proposed by Rubin
(19), each subject has a pair of potential outcomes: Yi(0) and
Yi(1), the outcomes under the control and active treatments,
respectively. However, each subject receives only the con-
trol or the active treatment. Let Z be an indicator variable
denoting the actual treatment received (Z ¼ 0 for control
treatment vs. Z ¼ 1 for active treatment). Thus, only 1 out-
come, Y, is observed for each subject: the outcome under the
actual treatment received. Yi is defined to be equal to Yi(0) if
Zi ¼ 0 and to be equal to Yi(1) if Zi ¼ 1 (alternatively, Y ¼
ZY(1) þ (1 � Z)Y(0)). The average treatment effect for the
treated (ATT), defined as E[Y(1) � Y(0)jZ ¼ 1], is the av-
erage effect of treatment on those subjects who ultimately
received the treatment (20). Propensity-score matching al-
lows one to estimate the ATT (20).

Comparing outcomes between treated and untreated sub-
jects in a sample in which treatment assignment is not con-
founded with either measured or unmeasured baseline
covariates allows one to obtain an unbiased estimate of
the treatment effect. When there are no systematic differ-
ences in measured or unmeasured baseline covariates
between a sample of treated subjects and a sample of un-
treated subjects, any difference in outcomes can be attrib-
uted to the effect of treatment. When estimating the ATT
using observational data, one requires a sample of untreated
subjects such that there are no observed systematic differ-
ences between the sample of treated subjects and the sample
of untreated subjects. Then, in the absence of unmeasured
confounding, an unbiased estimate of the ATT can be
obtained by comparing outcomes between treated and un-
treated subjects in the matched sample (1). The initial sam-
ple of untreated subjects serves only as a pool of potential
controls from which to find appropriate matches for treated
subjects. When using propensity-score matching to form
a matched sample in which observed systematic differences
between treated and untreated subjects have been mini-
mized, it is irrelevant how many untreated subjects were
discarded. The important issue is that one has created a sam-
ple in which treatment selection is not confounded with
measured baseline covariates. Then, under the assumption
of no unmeasured confounding, one can estimate the ATT.
From a conceptual perspective, the fact that only a minority
of untreated subjects may have been used does not affect the
estimate of the ATT.

While M:1 matching on the propensity score is not nec-
essary from a conceptual perspective, there may be practical
reasons for adopting this strategy. Increasing the number of
untreated subjects included in each matched set may in-
crease the precision of the estimated treatment effect. The
optimum number of untreated subjects needed to match
to each treated subject probably reflects the traditional

variance-bias trade-off: Increasing the number of untreated
subjects matched to each treated subject will increase the
size of the matched sample, probably resulting in estimates
of treatment effect with increased precision. However, in-
creasing the number of untreated subjects matched to each
treated subject may result in the matching of increasingly
dissimilar subjects. This may increase bias in estimating the
effect of treatment. Our objective in this paper is to deter-
mine the optimal number of untreated subjects to match to
each treated subject when M:1 matching on the propensity
score is used.

MONTE CARLO SIMULATIONS

We conducted an extensive series of Monte Carlo simu-
lations to examine the impact of increasing the number of
untreated subjects matched to each treated subject on the
estimation of treatment effects.

Methods

Our Monte Carlo simulations used a design similar to
those that have been described elsewhere (21–26). We used
a complete factorial design in which the following factors
were allowed to vary: the sample size of each simulated data
set, the proportion of subjects within each simulated data set
who were treated, the strength of the relation between base-
line covariates and the log odds of the probability of receiv-
ing the treatment, and the strength of the relation between
baseline covariates and the outcome.

We randomly generated data sets of 4 different sizes: 500,
1,000, 5,000, and 10,000 subjects per simulated data set. For
each subject, we randomly generated 5 baseline covariates
(x1–x5) from independent standard normal distributions. We
assumed that the probability of treatment assignment (Ptreat)
was related to these baseline covariates via the following
logistic regression model:

log

�
Ptreat

1 � Ptreat

�
¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5:

A dichotomous variable (Z) denoting treatment status was
then generated for each subject from a Bernoulli distribution
with subject-specific parameter Ptreat. The value of b0 was
fixed so that approximately the desired proportion of the
subjects would receive the treatment, with the remaining
subjects being untreated. We considered 4 different propor-
tions of treated subjects: 0.02, 0.05, 0.10, and 0.15. We
considered 2 different sets of regression coefficients relating
the baseline covariates to the log odds of treatment: In the
weak covariate scenario, the regression coefficients b1, b2,
b3, b4, and b5 took the values log(1.5), log(2), log(3), log(4),
and log(5), respectively. In the strong covariate scenario, the
regression coefficients took on the values log(2), log(2),
log(5), log(5), and log(10) respectively.

A continuous outcome was generated for each subject
using the following linear model:
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Y ¼ a0 þ a1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ Z þ e;

where e ~ N(0,r2). We fixed the values of a0, . . ., a5 to be
equal to 0, 1.5, 2, 3, 4, and 5, respectively. The value of r
was set so that, among untreated subjects, variation in the
baseline covariates explained 2%, 13%, or 26% of the var-
iation in the response variable (these values of R2 have been
described by Cohen (27) as weak, moderate, and strong
effect sizes). Thus, we considered 96 different scenarios: 4
sample sizes 3 4 proportions of subjects in the data set who
were treated 3 2 sets of regression coefficients relating
baseline covariates to treatment 3 3 sets of R2 for the mag-
nitude of the effect of baseline covariates on the outcome.

Once a data set had been randomly generated, we con-
structed a series of matched samples using 2 different match-
ing methods: nearest-neighbor matching using the logit of the
propensity score and nearest-neighbor matching within spec-
ified calipers using the logit of the propensity score. In each
case, the propensity score was estimated using a logistic re-
gression model to regress the treatment indicator variable (Z)
on the baseline covariates (x1–x5). The estimated propensity
score was the predicted probability of treatment assignment
derived from the fitted logistic regression model.

The first matching method was nearest-neighbor match-
ing without replacement using the logit of the propensity
score (28, 29). We first used 1:1 matching in which a single
untreated subject was matched to each treated subject. The
treated subjects were randomly ordered. The first treated
subject was selected and was matched to the untreated sub-
ject whose logit of the propensity score was closest to that of
the treated subject. Since we were matching without re-
placement, matched untreated subjects were not available
to serve as matches for subsequent treated subjects. This
process was repeated until a match was found for each
treated subject. We then had a matched sample consisting
of pairs of treated and untreated subjects. We repeated the
above process to create matched samples using 2:1, 3:1, 4:1,
and 5:1 matching on the propensity score. Note that because
we are using nearest-neighbor matching, a sufficient number
of unmatched subjects will be available for each treated
subject, since this method does not require that the differ-
ence in the logit of the propensity score between treated and
untreated subjects within the same matched set be within
a prespecified maximum distance.

The second matching method was nearest-neighbor
matching using specified calipers without replacement (3).
This approach is similar to that described above, with 1
exception: The difference in the logit of the propensity score
between treated and untreated subjects in the propensity-
score-matched set was required to be less than a prespecified
maximum. We used a caliper of width equal to 0.2 of the
standard deviation of the logit of the propensity score. This
caliper width was selected because it (or one close to it) was
shown in recent research to result in optimal estimation
compared with other choices of caliper (30). Because of
the imposition of the constraint that the logit of the propen-
sity score of matched subjects could differ by, at most,
a fixed amount, it is possible that insufficient numbers of
untreated subjects will be available for matching to some

treated subjects. Thus, when using M:1 matching (M> 1), it
is conceivable that, while some matched sets will contain M
untreated subjects, some matched sets will contain fewer
than M untreated subjects.

Once a matched sample had been constructed, we esti-
mated the treatment effect by the difference in the mean
outcome between treated and untreated subjects in the
matched sample. When estimating the mean outcome in
the matched untreated subjects, each untreated subject was
weighted by the reciprocal of the number of untreated sub-
jects within the matched set to which that untreated subject
belonged (20). The balance in the 5 baseline covariates
between treated and untreated subjects was assessed using
the absolute standardized difference (31), which was esti-
mated using a method that accounted for the M:1 matched
nature of the samples (32).

The above simulations and analyses were repeated 1,000
times. The mean estimated treatment effect and the mean
absolute standardized differences were computed across the
1,000 simulated data sets. We also estimated the variance of
the estimated treatment effect across the 1,000 simulated
data sets. Finally, the mean squared error (MSE) of the
estimated treatment effect was computed across the 1,000
simulated data sets. The MSE is equal to the sum of the
variance of an estimator and the square of the bias of the
estimator (33).

Results

Bias. Web Figure 1 (which is posted on the Journal’s
Web site (http://aje.oxfordjournals.org/)) illustrates the re-
lation between M (the number of untreated subjects matched
to each treated subject) and bias in estimating the true treat-
ment effect. For each scenario, we have used a ‘‘filled-in’’
plotting symbol to identify the value of M that minimized
bias (for improved clarity, results for N ¼ 5,000 are not
displayed in any of the Web figures). When caliper matching
was used, bias was minimized in 87 (90.6%) of the 96
scenarios when 1:1 matching was employed. In general, bias
increased as M increased with M:1 matching. When nearest-
neighbor matching was used, bias was minimized in all 96
scenarios when 1:1 matching was employed.

Sampling variance of the estimated treatment effect. Web
Figure 2 shows the relation between M and the sampling
variance of the estimated treatment effect. When caliper
matching was used, the sampling variance of the estimated
treatment effect was minimized in 46 of the 96 scenarios
when 2:1 matching was employed; in 46 of the 96 scenarios
when 3:1 matching was employed; in 3 of 96 scenarios when
4:1 matching was employed; and in 1 of the 96 scenarios
when 5:1 matching was employed. When nearest-neighbor
matching was used, the sampling variance was minimized in
7 of the 96 scenarios when 3:1 matching was employed; in
14 of the 96 scenarios when 4:1 matching was employed;
and in 75 of the 96 scenarios when 5:1 matching was em-
ployed. When nearest-neighbor matching was used, sam-
pling variances tended to decrease with increasing M.

MSE of the estimated treatment effect. Web Figures 3–8
illustrate the relation between M and the MSE of the
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estimated treatment effect. As with the previous plots, a
solid-color plotting symbol was used to identify the value
of M that minimized MSE within a given scenario.

For each of the 96 scenarios, the value of M that mini-
mized MSE was determined. When caliper matching was
used, the median value of M that minimized MSE was 2
across the 96 scenarios (the 25th and 75th percentiles were 1
and 2, respectively). MSE was minimized in 26 (27.1%), 54
(56.3%), 15 (15.6%), 1 (1.0%), and 0 (0%) scenarios when
M was equal to 1, 2, 3, 4, and 5, respectively. When nearest-
neighbor matching was used, the median value of M that
minimized MSE was 1 across the 96 scenarios (25th per-
centile ¼ 1; 75th percentile ¼ 2). MSE was minimized in 65
(67.7%), 16 (16.7%), 7 (7.3%), 3 (3.1%), and 5 (5.2%)
scenarios when M was equal to 1, 2, 3, 4, and 5, respectively.
The values of N, Ptreat, strong/weak association, and R2 for
scenarios in which 5:1 matching resulted in estimates with
the lowest MSE were 1) 1,000, 2, weak, 0.02; 2) 1,000, 2,
strong, 0.02; 3) 500, 2, weak, 0.02; 4) 500, 2, strong, 0.02;
and 5) 500, 5, weak, 0.02, respectively.

An analysis of variance (ANOVA) model was used to
examine the association between the 4 factors of the Monte
Carlo study and the value of M that minimized MSE. This
was done separately for caliper matching and nearest-
neighbor matching. The initial ANOVA model included
all 4 main effects and all 2-way interactions between
main effects. We then excluded all 2-way interactions that
were not significant (P > 0.05) in the original ANOVA
model; we report the results based on the model with all
4 main effects and those interactions that were statistically
significant.

When using caliper matching, the main effects for sample
size (P < 0.0001), Ptreat (P < 0.0001), and R2 (P < 0.0001),
along with the 2-way interaction between Ptreat and sample
size (P ¼ 0.0214), were significantly associated with the
value of M that minimized MSE. The value of M that min-
imized MSE decreased as Ptreat increased. In general, when
Ptreat and R2 were fixed, the value of M that minimized MSE
tended to decrease as the sample size increased.

When using nearest-neighbor matching, the main effects
for sample size (P < 0.0001), Ptreat (P < 0.0001), a strong
versus weak association between covariates and treatment
selection (P ¼ 0.0142), and R2 (P < 0.0001), along with the
2-way interactions between N and Ptreat (P< 0.0001), N and
R2 (P < 0.0001), and Ptreat and R2 (P < 0.0001), were
significantly associated with the value of M that minimized
MSE. The value of M that minimized MSE was, on average,
lower when the baseline covariates were strongly associated
with treatment selection. When Ptreat and R2 were fixed, in
many settings the value of M that minimized MSE decreased
as N increased. In some settings, a U-shaped relation
between N and the value of M that minimized MSE was
observed. In a minority of settings, other relations were
observed. When N and R2 were fixed, the value of M that
minimized MSE either decreased as Ptreat increased or had
a U-shaped relation with Ptreat. Finally, when N and Ptreat

were fixed, in 75% of the scenarios the value of M that
minimized MSE decreased with increasing values of R2.
In the remaining scenarios, either the relation was U-shaped
or M increased with increasing R2.

The effect of the number of untreated subjects matched to
each treated subject on covariate balance in the matched
sample is shown in Web Figures 9 and 10 for nearest-
neighbor matching and caliper matching, respectively. (We
report results for only the settings with R2 ¼ 0.02, since the
results were identical regardless of the value of R2. This is
due to the standardized difference being independent of the
outcome—it depends only on baseline covariates.) With
nearest-neighbor matching, we observed that imbalance
tended to increase as M increased. In many settings, the
relation between the absolute standardized difference and
M was approximately linear. For some covariates, mean
standardized differences exceeded 100% in some settings
when 5:1 matching was used. Covariate imbalance in the
matched sample tended to be lower when caliper matching
was used in comparison with nearest-neighbor matching.
When using caliper matching, the mean absolute standard-
ized difference was less than 32% in all scenarios examined,
regardless of the choice of M. With caliper matching, there
were some scenarios in which modest improvements in bal-
ance were observed with 2:1 matching in comparison with
1:1 matching.

DISCUSSION

In our Monte Carlo simulations, we found that, on aver-
age, increasing the number of untreated subjects matched to
each treated subject increased the bias of the estimated treat-
ment effect; conversely, it tended to result in increased pre-
cision. When using nearest-neighbor matching, we found
that MSE was minimized in 67.7% of the 96 scenarios when
1 untreated subject was matched to each treated subject. For
either matching method, MSE was minimized in at least
84% of the scenarios when either 1 or 2 untreated subjects
were matched to each treated subject. These findings sug-
gest that in the majority of settings, using 1:1 or 2:1 match-
ing will result in optimal estimation of treatment effects
when employing fixed M:1 matching. When using caliper
matching, we observed that the optimal value of M tended to
decrease as the proportion of treated subjects increased.

There is a paucity of explicit research into the effect of
increasing the number of untreated subjects matched to each
treated subject. Imbens suggested that ‘‘within the class of
matching estimators, using only a single match leads to the
most credible inference with the least bias, at most sacrific-
ing some precision’’ (20, p. 14). The results of our extensive
Monte Carlo simulations provided confirmation of this sug-
gestion: We observed increased bias as the number of un-
treated subjects matched to each treated subject increased.
Furthermore, when using nearest-neighbor matching, MSE
was minimized in 67.7% of the scenarios when 1:1 match-
ing was employed.

Rosenbaum and Rubin (28) examined the bias due to in-
complete and inexact matching when matching treated and
untreated subjects on a set of baseline covariates. Incomplete
matching occurs when there are treated subjects for whom
no appropriate untreated subjects are identified. Inexact
matching occurs when a treated subject and an untreated
subject whose covariates are not identical are matched. In
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an empirical example, Rosenbaum and Rubin show that the
bias due to incomplete matching can be substantial (28).
Thus, in conventional matching, an important issue is not
whether there are unmatched untreated subjects; rather,
a much more important issue relates to whether there are
unmatched treated subjects. Rosenbaum and Rubin suggest
that, rather than use exact matching and risk bias due to
incomplete matching, one can match using a multivariate
nearest-neighbor method (such as the propensity score)
and thus avoid biases due to incomplete bias (28). The re-
sultant cost is only minor bias due to inexact matching. In
the current study, estimation using nearest-neighbor match-
ing would not have suffered from incomplete matching bias
because sufficient matches were found for all treated sub-
jects, since no constraints were placed upon the maximum
difference in propensity score between treated and untreated
subjects in the same matched set. However, estimation using
caliper matching may have suffered from incomplete match-
ing bias to a limited extent, since no matches may have been
found for some treated subjects due to the constraint that the
difference in the logit of the propensity score between
treated and untreated subjects was required to not exceed
a maximal value.

In the current study, we examined the impact of the num-
ber of untreated subjects matched to each treated subject in
the context of propensity-score matching. The issue of how
many subjects to include in a matched set has received
greater attention in case-control studies. In case-control stud-
ies, cases (subjects who experience the outcome of interest)
are matched with controls (subjects who did not experience
the outcome of interest). Ury demonstrated that ‘‘the theo-
retical efficiency of a 1:M case-control ratio for estimating
a relative risk of about 1, relative to having complete infor-
mation on the control population (M ¼ N), is M/(M þ 1).
Thus, 1 control per case is 50% efficient, while 4 per case is
80% efficient’’ (35, p. 169). Thus, in case-control studies,
increasing the number of controls matched to each case re-
sults in improved efficiency; however, the relative gains in
efficiency are minor once M exceeds 5 or so. In contrast,
when using propensity-score matching, there is a trade-off
between bias and variance that does not exist in case-control
studies. We have shown that, in many settings, the trade-off
can be optimized by matching either 1 or 2 untreated sub-
jects to each treated subject. In only a very small minority of
settings was using 5 untreated subjects per case optimal.

We have demonstrated that increasing the number of
untreated subjects matched to each treated subject can result
in increased bias in estimating treatment effects. However,
there are additional limitations to having more than 1 un-
treated subject matched to each treated subject. In particular,
it can make estimation of the variance of the estimated
treatment effect more difficult. For instance, when outcomes
are binary, McNemar’s test can be used to compare the pro-
portion of successes between the 2 treatment groups when
1:1 matching is employed. However, when multiple un-
treated subjects are matched to each treated subject, it is
unclear how the statistical significance of the risk difference
should be determined.

We have examined criteria for determining the optimal
number of untreated subjects to match to each treated sub-

ject when using fixed M:1 matching on the propensity score.
There are alternatives to M:1 matching that we have not
examined in the current paper because of space constraints.
Ming and Rosenbaum (36) demonstrated that matching with
a variable number of controls can reduce bias substantially
in comparison with matching with a fixed number of con-
trols. Furthermore, we have not considered full matching, in
which multiple untreated subjects are matched to each
treated subject or multiple treated subjects are matched to
each treated subject, resulting in all subjects being included
in a matched set (37–39). Full matching may often have
superior performance to fixed M:1 matching (38). In this
study, we have focused on M:1 matching because of its more
frequent use in the medical literature.

In summary, we recommend that, in most settings, re-
searchers match either 1 or 2 untreated subjects to each
treated subject when using fixed M:1 matching on the pro-
pensity score. Using only 1 untreated subject for each
treated subject will tend to minimize bias. In some settings,
attempting to match 2 untreated subjects to each treated
subject will result in improved precision without a commen-
surate increase in bias.
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