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Simple Summary: Camera traps acquire visual data in a non-disturbing and round-the-clock manner,
so they are popular for ecological researchers observing wildlife. Each camera trap may record
thousands of images of diverse species and bring about millions of images that need to be classified.
Many methods have been proposed to classify camera trap images, but almost all methods rely
on very deep convolutional neural networks that require intensive computational resources. Such
resources may be unavailable and become formidable in cases where the surveillance area is large or
becomes greatly expanded. We turn our attention to camera traps organized as groups, where each
group produces images that are processed by the edge device with lightweight networks tailored for
images produced by the group. To achieve this goal, we propose a method to automatically design
networks deployable for edge devices with respect to given images. With the proposed method,
researchers without any experience in designing neural networks can develop networks applicable
for edge devices. Thus, camera trap images can be processed in a distributed manner through edge
devices, lowering the costs of transferring and processing data accumulated at camera traps.

Abstract: Camera traps provide a feasible way for ecological researchers to observe wildlife, and
they often produce millions of images of diverse species requiring classification. This classification
can be automated via edge devices installed with convolutional neural networks, but networks may
need to be customized per device because edge devices are highly heterogeneous and resource-
limited. This can be addressed by a neural architecture search capable of automatically designing
networks. However, search methods are usually developed based on benchmark datasets differing
widely from camera trap images in many aspects including data distributions and aspect ratios.
Therefore, we designed a novel search method conducted directly on camera trap images with
lowered resolutions and maintained aspect ratios; the search is guided by a loss function whose
hyper parameter is theoretically derived for finding lightweight networks. The search was applied
to two datasets and led to lightweight networks tested on an edge device named NVIDIA Jetson
X2. The resulting accuracies were competitive in comparison. Conclusively, researchers without
knowledge of designing networks can obtain networks optimized for edge devices and thus establish
or expand surveillance areas in a cost-effective way.

Keywords: camera trap images; convolutional neural network; neural architecture search

1. Introduction

Visual data are a rich source of information about wildlife and can provide strong
support for wildlife conservation and ecological research. One cost-effective way to obtain
visual data of wildlife is via camera traps that work in a non-disturbing [1] and round-the-
clock manner [2], thus making them ideal for observing wild animals otherwise difficult
to monitor [3], e.g., nocturnal mammals [4] and large animals [5]. Because camera traps
are noninvasive [6], a single deployment may record a diverse range of species [7]. Con-
sequently, the recorded images have to be processed before being adopted in ecological
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research [8]. The images may go through several processing stages determined by the
research process, a fundamental stage of which is species identification that is usually
implemented as automatically and centrally classifying camera trap images at a data center
installed with very deep convolutional neural networks (CNNs) [9–13]. In practice, there
may be millions of images produced by camera traps [7,12,14,15], so image transfer and
processing at a data center is often computationally intensive and costly. Furthermore,
the scale of the surveillance area may also be restricted by the processing capability of the
data center.

Edge computing [16] was ideally developed for such cases, i.e., intensive computa-
tion centralized at a data center can be split and localized by edge devices near camera
traps [17,18]. Thus, fundamental processing steps such as removing images without
animals [6,7,12,19–21] and classifying images with animals [9–13] can be automatically
conducted on edge devices. However, edge devices are not only heterogeneous [22] but
also resource constrained [23]. These limitations of edge devices narrow down the range
of available neural networks [23,24]. Hence, lightweight networks [25] designed for edge
devices are critical in edge computing for camera trap images. Even so, “deep neural
network design is very difficult, and it requires the experience and knowledge of experts, a
lot of trial and error, and even inspiration” [26]. Luckily, network design can be automated
through neural architecture search (NAS) [27]. However, NAS is often developed regardless
of domain knowledge [28] regarding camera trap images of wildlife [29]. Specifically, NAS
is often designed based on benchmark datasets such as CIFAR-10 [30] and ImageNet [31],
which differ from camera trap images in many aspects, especially data distribution and
aspect ratios as described below.

The data distribution of benchmark datasets may differ from camera trap images,
e.g., in classes, image foregrounds and backgrounds. Camera trap images purely contain
animals, but only partial classes in benchmark datasets are relevant to animals. For instance,
six out of ten classes in CIFAR-10 are related to animals and 233 out of 1000 classes in
ImageNet are relevant to vertebrate [32]. Consequently, NAS based on benchmark datasets
may waste resources on designing networks optimized for data irrelevant to animals.
In addition to classes, animal images in benchmark datasets also differ from camera
trap images in foregrounds and backgrounds. For benchmark datasets [30,31], images
are usually artificially preprocessed to guarantee that foreground animals are large and
centered and their backgrounds are relatively small and may differ from animal habitats in
the wild. In contrast, animals in habitats are photographed by camera traps under various
conditions, so the animals may appear at random locations in images and are often closely
related with image backgrounds.

The image aspect ratios of benchmark datasets differ from camera trap images, e.g., the
aspect ratios of CIFAR-10 and ImageNet are both 1:1 (the image width and height are the
same), though this ratio may not hold for camera trap images. For instance, the resolutions
of camera trap images range from 2048 × 1536 (aspect ratio: 4:3) to 2616 × 1472 (16:9) in
North American Camera Trap Images, i.e., NACTI [13], and the resolutions range from
1920 × 1080 (16:9) to 2048 × 1536 (4:3) in Missouri Camera Trap Images, i.e., MCTI [33].
Therefore, networks found by NAS based on benchmark datasets may require that camera
trap images be resized to satisfy the aspect ratio 1:1. However, resizing images may alter
their aspect ratios and introduce interpolated pixels, often resulting in either misshaped
animals or memory waste.

In short, images from benchmark datasets adopted by NAS often differ from camera
trap images, and this difference potentially implies domain shift [34]. Additionally, it may
be hard to modify existing networks in line with the applications [29]. These issues inspired
us to develop NAS based on the domain knowledge of camera trap images for edge devices.
We used the proposed method to conduct searches directly on camera trap images rather
than images of benchmark datasets. The aspect ratios of camera trap images are maintained
during the search, which is guided by a loss function particularly derived for finding the
lightweight networks. The hyper parameter of loss function was theoretically analyzed
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and carefully chosen, and lightweight networks found by the search were tested on the
NVIDIA Jetson X2 edge device. The experimental results confirmed the validity of the
proposed method. The main contributions of this paper are as follows.

1. A method named Domain-Aware Neural Architecture Search (DANAS) was developed
regarding the domain knowledge of camera trap images. The proposed method
directly searches networks on camera trap images, thus avoiding negative effects such
as the domain shift incurred by benchmark datasets in conventional search methods.

2. Aspect ratios of camera trap images are maintained during the search. As part of
domain knowledge, the changes of aspect ratio may not be automatically tackled by
neural networks. Therefore, the changes are manually eliminated by first finding the
most frequent aspect ratio and then padding images whose aspect ratios differ from
the most frequent one.

3. A loss function was derived to guide DANAS to find lightweight networks applicable
for edge devices. A theoretical analysis of the proposed loss function was conducted,
and the analysis revealed the value of hyper parameter in the loss function to boost its
guiding effect on the search.

2. Materials and Methods
2.1. Datasets

Two datasets were employed in this study: MCTI and NACTI, containing 24 thousand
and 3.7 million camera trap images, respectively, with varying resolutions. Since label
errors are found in NACTI and its millions of images require too much computational
resources, NACTI was selectively adopted in this study in the form of a subset named
NACTI-a containing 29 thousand images with varying resolutions. The species data in
NACTI-a and MCTI are illustrated in Table 1.

Table 1. Dataset details.

Species in
NACTI-a 1

2048 × 1536
(4:3)

1920 × 1080
(16:9)

2616 × 1472
(16:9)

Species in
MCTI

2048 × 1536
(4:3)

1920 × 1080
(16:9)

Black bear 2 2420/534 10/1 Agouti 499/107 279/65
Marten 2 72/16 Bird 584/120 70/20

Red squirrel 2 313/75 Coiban
Agouti 1135/245 18/2

Jackrabbit 3 594/135 55/8 Collared
Peccary 372/83 398/85

Bobcat 2040/453 15/2 Opossum 454/94 295/73
California
quail 277/60 European

Hare 578/122

Cougar 2380/527 Great
Tinamou 681/148 380/66

Coyote 1416/322 55/14 6/1 Mouflon 1940/425
Gray squirrel 811/186 1/0 Ocelot 256/64 184/35
Elk 1754/393 8/1 Paca 772/162 200/62

Gray fox 1253/279 5/2 Red Brocket
Deer 425/94 384/78

Moose 978/216 Red Deer 2321/509
Mule deer 1761/397 Red Fox 410/91
Armadillo 4 521/113 Red Squirrel 343/78 182/36
Raccoon 1126/250 Roe Deer 1038/233
Red deer 1754/374 Spiny Rat 383/91 201/37

Red fox 266/59 White-nosed
Coati 883/192 179/41

Snowshoe
hare 1183/263 White-tailed

Deer 1363/287 452/106

Striped skunk 1080/243 Wild Boar 1538/345
Virginia
opossum 91/19 Wood Mouse 1105/245

Wild boar 1548/340 4/2
Wild turkey 643/155 17/0

1 Numbers before and after slashes, respectively, refer to the training and testing image numbers; 2 American
animals; 3 Black-tailed jackrabbit 4 Nine-banded armadillo.

2.2. Method

DANAS was developed within the framework of reinforcement learning [35,36], i.e.,
the search is implemented on sampling candidate networks from a search space through



Animals 2022, 12, 437 4 of 22

a sampler [29], as shown in Figure 1. In DANAS, the sampler is long short-term memory
(LSTM) [37]. The reason to use LSTM as the sampler is that this sampler does not rely on
parameter sharing [38], which may not be helpful for finding high-performance networks
(as reported by [39]). Around the sampler, there are five conceptual search steps (from

1© to 5© in Figure 1). By repeating these steps, the quality of the sampled network is
gradually improved via updates of the learnable parameters θ of the sampler. Starting from
the first step, all five steps are introduced sequentially next.

Figure 1. Flowchart of DANAS.

In Step 1© shown in Figure 1, LSTM samples candidate networks from the search
space defined by a meta architecture, i.e., a prototype from which all candidate networks
are derived. The meta architecture is similar to the ones defined in [35–38], i.e., a pipeline
segmented to groups of layers called cells. There are two types of cells, normal and
reduction cells, and the cells of the same type share the same inner structure. Besides the
inner structures, the normal and reduction cells differ in the way they process data, i.e.,
the width and height dimensions of data remain the same before and after normal cells
while the width and height of the input are halved through reduction cells. There are N
normal cells in the pipeline, and each normal cell is adjacent to two reduction cells. At the
end of the pipeline, a global average [40] is appended. In this study, the reduction cell was
simplified to a single pooling layer, i.e., an average pooling or a max pooling with a kernel
size of 5 × 5 or 3 × 3, and the normal cells were sampled based on the meta cell shown in
Figure 2.

Figure 2. Meta normal cell.

As shown in Figure 2, a normal cell is a group of blocks whose inputs come from
blocks in the same cell or previous B cells. For blocks not serving as inputs of any other
blocks, their outputs are concatenated to produce the cell output. Each normal cell has
B (a constant) blocks, and each block has M (determined by the sampler) operations.
The operation is sampled from the same set of operations as that in [38], e.g., a stack of
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3 × 3 depth-wise-separable convolution [41], batch normalization [42], and ReLU [43].
Accordingly, the sampler first determines the operation number M of a block by sampling
an integer from some predefined integers, and then it samples inputs and operations for
the block, and the sampling repeats for B blocks to form a normal cell. Once the normal cell
has been sampled, the sampler samples a pooling layer to form a reduction cell. Both the
sampled normal cell and the reduction cell are employed to build the candidate network.

In Step 2© shown in Figure 1, the candidate network is built based on the sampled
cells and the meta architecture, i.e., assembling the cells according to the cell pipeline. The
building process is identical with the one introduced in [44], i.e., we applied the adaptive
meta-architecture [44] to build candidate networks. Once the candidate network is properly
built, its performance is evaluated based on the camera trap images with maintained
aspect ratios.

In Step 3© shown in Figure 1, the candidate network is trained and validated on camera
trap images with the most frequent aspect ratio, i.e., the occurrences of unique aspect ratios
of camera trap images are counted and the aspect ratio with the maximal count is chosen
as the most frequent one. Images with aspect ratios different the most frequent one are
padded by zero pixels. In practice, camera trap images are processed to have the same
aspect ratio before the search starts, and the processed images are employed to train the
candidate network. The trained network is then validated to yield validation accuracy to
compute the loss.

In Step 4© shown in Figure 1, an accuracy reward [44] is generated based on accuracies
obtained by training and validating a candidate network, and both the produced accuracy
and the network parameter number [25] are employed to generate the loss J . The purpose
of this step is to train LSTM to sample “good” networks via gradient-based optimization
algorithms such as stochastic gradient descent (SGD). The meaning of “good” is twofold,
i.e., the parameter number s of the network should be close to the desired parameter
number (s∗ = 1.5 million in our case) and the accuracy reward R of the network should
be close to the ideal accuracy (R∗ = 100, i.e., 100% accuracy). Since the reward is twofold,
we need a bivariate reward function f (R, s) so that the gradient ∇θJ of the total loss J
synchronizes with the reward. According to the case of the unary loss function in studies
of reinforcement learning [45], we defined J (θ) as

J (θ) = aΣ(θ) f (R, s), (1)

where θ represents learnable parameters associated with the sampler, R is the accuracy
reward involving the training and the validation accuracies of the candidate network, and s
is the parameter number of the network in millions. The bivariate function f (R, s) provides
the reward based on (R, s), and aΣ summarizes probabilities of sampling the candidate
network through the sampler, i.e.,

aΣ(θ) =
nC

∑
i

Bi

∑
j

(
log
(

P
(
nj|θ

))
+

nj

∑
k

log
(

P
(

ak

∣∣∣a1 : (k−1), θ
)))

, (2)

where the notations are similar to [44], i.e., nC is the number of the cells in the candidate
network, Bi denotes the block number of the ith cell, nj is the operation number of the jth
block, and P(x|y ) is the probability of sampling x under condition y. The details of aΣ can
be found in Appendix A. Since

∇θ|R,sJ = f (R, s) · ∇θaΣ, (3)

and f (R, s) yields a scalar, the direction of∇θ|R,sJ is solely determined by∇θaΣ. However,
aΣ remains unknown due to the unknown probability distributions of nj and ak, which
means the direction of ∇θaΣ is out of our control, i.e., we cannot change the direction
of ∇θ|R,sJ to point to promising positions of high rewards. However, we can change
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its magnitude
∣∣∣∇θ|R,sJ

∣∣∣ via f (R, s) so that
∣∣∣∇θ|R,sJ

∣∣∣ synchronizes with the reward. For
example, suppose the sampler sampled a network of (R, s) close to (R∗, s∗); we expect the
sampler to sample networks alike, which requires that θ should not be largely updated
by SGD involving

∣∣∣∇θ|R,sJ
∣∣∣. However,

∣∣∣∇θ|R,sJ
∣∣∣ is partially determined by |∇θaΣ|, so∣∣∣∇θ|R,sJ

∣∣∣ may not remain small when (R, s) is close to (R∗, s∗). In this case, f (R, s)

should scale |∇θaΣ| to ensure that the resulting
∣∣∣∇θ|R,sJ

∣∣∣ is relatively small. This requires
the reward surface defined by f (R, s) to be similar to a whirlpool with vortex (R∗, s∗).
We chose Witch of Agnesi [46] to build f (R, s) on account of its bell-like curve and the
simple mathematical form that only introduces one hyper parameter. Therefore, f (R, s) is
defined as

f (R, s) =

(
R∗ − 8a3R

(s− s∗)2 + 4a2

)2

, (4)

where a ∈ R is the hyper parameter introduced by Witch of Agnesi. In practice,R∗ usually
equals 100 (100% accuracy) [44], s∗ is determined by the application, and only a remains
unknown. The value of a may be discovered by assuming both R and s are restrained
within some range, and this assumption may be reasonable under certain search conditions.
Specifically, let x = s− s∗ and y = R; then f (R, s) can be written as

f (x, y) =
(
R∗ − 8a3y

x2 + 4a2

)2

. (5)

Assuming x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2, the volume V of f (x, y) within the assumed
ranges is given by

V =
∫ y2

y1

∫ x2
x1

(
R∗ − 8a3y

x2+4a2

)2
dxdy

=
∫ y2

y1

∫ u2
u1

(
R∗ − 2ay

tan2 u+1

)2
d(2a tan u)dy

=
∫ y2

y1

∫ u2
u1

(
R∗ − 2ay cos2 u

)2 2a
cos2 u dudy

=
∫ y2

y1

∫ u2
u1

(
2aR∗2

cos2 u − 4a2R∗y + 8a3y2 cos2 u
)

dudy

=
∫ y2

y1

(
2aR∗2 tan u

∣∣∣∣ u2

u1

− 4a2R∗yu
∣∣∣∣ u2

u1

+ 2a3y2 sin(2u)
∣∣∣∣ u2

u1

+ 4a3y2u
∣∣∣∣ u2

u1

)
dy

where x = 2a tan u and u1 = tan−1( x1
2a
)
≤ u ≤ tan−1( x2

2a
)
= u2. Suppose u2 = −u1 =

u∗ < π/2 and 0 ≤ y ≤ R∗, then, the formula above can be simplified by substituting tan u
and sin(2u) by their Taylor series of order three, i.e.,

V =
∫ y2

y1

(
4aR∗2 tan u

∣∣∣∣ u∗

0
− 8a2R∗yu

∣∣∣∣ u∗

0
+ 4a3y2 sin(2u)

∣∣∣∣ u∗

0
+ 8a3y2u

∣∣∣∣ u∗

0

)
dy

=
∫ y2

y1

(
4aR∗2 tan u∗ − 8a2R∗yu∗ + 4a3y2 sin(2u∗) + 8a3y2u∗

)
dy

=
(
4aR∗2 tan u∗

)
y
∣∣∣∣ R∗

0
− 4a2R∗u∗y2

∣∣∣∣ R∗
0

+ 4
3 a3(sin(2u∗) + 2u∗)y3

∣∣∣∣ R∗
0

≈ 4aR∗3
(

u∗ + u∗3

3

)
− 4a2R∗3u∗ + 4

3 a3R∗3
(

4u∗ − (2u∗)3

3!

)
= 4

3 aR∗3
(

1− 4
3 a2
)

u∗3 + 4aR∗3
(

1− a + 4
3 a2
)

u∗

= 4
3 aR∗3

(
3−4a2

3 u∗3 +
(
3− 3a + 4a2)u∗),

(6)
which is equivalent to

u∗3 +
3
(
3− 3a + 4a2)

3− 4a2 u∗ =
9V

4aR∗3(3− 4a2)
, (7)
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which is a special case of monic cubic polynomials, i.e., the depressed cubic: u∗3 + c1u∗ = c2.
According to Cardano’s formula, the solution of the depressed cubic is

u∗ =
3

√√√√ c2

2
+

2

√
c2

2
4
+

c3
1

27
+

3

√√√√ c2

2
− 2

√
c2

2
4
+

c3
1

27
(8)

where c1 and c2 are  c1 =
3(3−3a+4a2)

3−4a2

c2 = 9V
4aR∗3(3−4a2)

. (9)

The solution u∗ of the depressed cubic requires

c2
2

4
+

c3
1

27
≥ 0, (10)

which holds if c1 ≥ 0. The numerator of c1 is 3− 3a + 4a2 and its determinant is ∆ < 0,
so 3− 3a + 4a2 > 0 holds regardless of a. The denominator of c1 is 3− 4a2, so c1 ≥ 0 is
equivalent to 3− 4a2 > 0, which leads to a2 < a < 3/4.

In practice, a = 3/4 − ε, where ε may take a small value such as 10−6. Figure 3
illustrates the surface of f (R, s) parameterized by a = 3/4− 10−6,R∗ = 100 and s∗ = 1.5
within the ranges 0 ≤ R ≤ 2R∗/3 and 0 ≤ s ≤ 5. As expected, f does have a whirlpool-
like surface with the vortex (R∗, s∗), and the sampler may be guided by∇θ|R,sJ involving
f to find lightweight networks.

Figure 3. Surface of f (R, s).

In step 5© shown in Figure 1, a selecting and training strategy is employed to find the
optimal network. The idea behind this strategy is concentrating computational resources
on promising networks found during the search, as the method first samples a relatively
large number of candidate networks with small training epochs, e.g., 2 epochs in our case,
and then finds the promising ones based on the sampled networks with large training
epochs. In practice, we ran a single search to sample 1500 networks, and then networks
with parameter numbers ranging from 1 to 1.5 million (the ideal parameter number in
our case) were sorted decreasingly by their validation accuracies. If there are more than
150 networks, then only top 150 networks are retained for retraining through 5 epochs,
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and then the trained networks are sorted based on accuracies. If there are networks with
accuracies >90%, then 15 networks are retained and retrained through 10 epochs; otherwise,
half of the networks are retained and retrained. We stopped this procedure at 15 epochs
and selected the top-1 network. If the difference between the accuracies between the top-1
and the top-2 networks was not large, e.g., less than 1%, then we would increase the epoch
number and continue the training.

3. Results

The performance evaluation of DANAS was individually conducted on the NACTI-a
and MCTI datasets. As shown in Table 1, the most frequent resolution of both NACTI-a and
MCTI is 2048 × 1536 (aspect ratio 4:3). Accordingly, the images of the two datasets were
resized to have the resolutions 85 × 64 (4:3) [44] for the search and 224 × 168 (4:3) for the
test; for each dataset, the search was conducted on 85 × 64 images, and then the optimal
network discovered by the search was trained and tested on 224× 168 images. Each dataset
was split to three subsets, i.e., the training set, the validation set and the test set, and the
search was conducted on the first two subsets. The split was implemented by randomly
sampling images from the dataset at a ratio of 0.64:0.16:0.2 of the sample numbers of three
subsets, namely, 20% images were randomly sampled from the dataset to build the test
set, then 20% images were randomly sampled from the remaining images to build the
validation set, and the rest of the images served as the training set. The candidate networks
found by the search were trained on the training set and then tested on the validation set,
so the test set remained unknown to the search.

In searches on NACTI-a and MCTI, the pipeline shown in Figure 2 had three pairs
of one reduction cell and five normal cells (N = 3) at most. The normal cell had five
blocks (B = 5), and each block may have had five operations (M = 5) at most. The input
channels of the normal cell and reduction cell were, respectively, fixed to 20 and 40. The
output channel of the reduction cell was fixed to 40, while the output channel of the normal
cell was automatically determined by its operations. The candidate network was trained
by using AMSGrad [47] with a batch size of 32, two epochs, and a learning rate of 0.005.
The training was conducted on 85 × 64 training images via a PyTorch module named
Distributed Data Parallel (DDP) that loaded the network and the batches to available GPUs,
individually trained networks on GPUs, collected the resulting gradients from all GPUs
and synchronized networks based on the collected gradients. The trained network was then
tested on 85 × 64 images of the validation set on each GPU, and the resulting accuracies
were retrieved via PyTorch module named Manager. The retrieved accuracies were then
averaged to yield the training and the validation accuracies that were used to generate the
accuracy reward. Finally, the loss was computed based on the accuracy reward through the
loss function whose hyper parameters were set as a = 3/4− 10−6,R∗ = 100 and s∗ = 1.5.
All searches were done on a workstation installed with 4 GPUs of NVIDIA TITAN Xp,
Ubuntu 20.04, PyTorch 1.7.0 and MySQL 8.0.13.

In tests, several networks famous for their lightweight designs or performance were cho-
sen for comparison with DANAS, i.e., MobileNet-v2 [48], EfficientNet [49], DenseNet [50],
Resnet-18 [51], ResNext [52] and Wide ResNet [53]. Each network was trained by using
SGD [54] of Nesterov momentum [55] with a batch size of 10, 20 epochs, and a learning
rate ranging from 0.005 to 0.0001. The learning rate was changed by cosine schedule [54].
The training was conducted on 224 × 168 images from both the training and the validation
sets via DDP, and the weights of the network at the last epoch were saved on the hard disk.
During tests, the weights were read from the disk and employed to populate the network,
and the network was tested on 224 × 168 images of the test set. All networks in comparison
were trained and tested on the workstation, and the optimal networks found by DANAS
were additionally tested on an NVIDIA Jetson X2 edge device installed with Ubuntu 18.06
and PyTorch 1.1.0.



Animals 2022, 12, 437 9 of 22

Since the camera trap images differ widely between MCTI and NACTI-a, DANAS found
different networks, which led to distinct accuracies and misclassifications for two datasets. The
detailed results are discussed in the following sections.

3.1. Search and Test on NACTI-a

The search on NACTI-a consumed roughly 74 hours and found a network with
1.36 million parameters. The search performance was compared with a random search
via steps like those shown in Figure 1. Specifically, the sampler in step 1 of Figure 1 was
replaced by random sampling, and both memory constriction [44] in step 2 and sampler
updating in step 4 of Figure 1 were removed. However, the memory constriction could not
truly be removed due to the limited physical GPU memory, and the constriction was thus
alleviated by resampling the networks until the pipeline shrinkage [44] did not happen.
The training and test configurations of networks explored by the random search were the
same as those in DANAS. The search procedures of the random search and DANAS are
visualized in Figures 4 and 5, respectively.

Figure 4. Scatter plot of parameter numbers and accuracies associated with the networks explored by
a random search on NACTI-a.

Figure 5. Scatter plot of parameter numbers and accuracies associated with the networks discovered
by DANAS on NACTI-a.



Animals 2022, 12, 437 10 of 22

As shown in Figure 4 regarding the random search, there were 57 networks with
parameter numbers exceeding 2.5 million and 79 networks with validation accuracies
exceeding 60%.

As shown in Figure 5 regarding DANAS, there were 32 networks with parameter
numbers exceeding 2.5 million and 140 networks with validation accuracies exceeding 60%,
and one of them was chosen as the optimal network according to step 5 in Figure 2. The
optimal network is highlighted by a yellow star in Figure 5 and its normal cell is depicted
in Figure 6; its reduction cell was simply a max pooling with a 3-by-3 kernel.

Figure 6. Normal cell found by DANAS on NACTI-a.

The detailed network structure based on the normal cell shown in Figure 6 is illustrated
in Figure 7, which shows how the data flowed through the normal and the reduction cells.
The connections between cells are denoted by arrows. In Figure 7, cells labeled “normal cell
i− 4”, “normal cell i− 3” . . . “normal cell i + 1” correspond to cells labeled “Cell i− 4”,
“Cell i− 3” . . . “Cell i + 1” in Figure 6.

Figure 7. Network built based on the cell found by DANAS on NACTI-a.

If we rotate Figure 6 clockwise by 90◦, then cell labels and arrow colors in Figure 6
will match labels and arrow colors in Figure 7. For instance, yellow arrows between “cell
i− 1” and “normal cell” in Figure 6 correspond to the yellow arrow between “3× 3 max
pool” and “normal cell i” in Figure 7, purple arrows between “cell i− 2” and “normal cell”
in Figure 6 correspond to the purple arrow between “normal cell i− 2” and “normal cell i”
in Figure 7, and so forth. For each normal cell shown in Figure 7, its inputs are signified by
“a direct arrow running from the previous cell” and “three curved arrows running from
another three previous cells”, and each arrow in Figure 7 corresponds to a group of arrows
with the same color in Figure 6.

The input channels of the normal and reduction cells were fixed to 20 and 40, respec-
tively. The output channel of the reduction cell was fixed to 40, and the output channel
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of the normal cell was automatically determined by its operations. The fixed channel
numbers served as element-wise additions within blocks, i.e., only tensors of the same
dimensions could be added element-wise. Therefore, channels of any block input were
assumed to be 20. If the input channel differed from this constant, then the input was fed
to an additional stack of 1-by-1 convolution, batch normalization and ReLU for changing
the channel number to 20. Accordingly, the channel numbers of all block outputs were the
same, i.e., 20, due to the fact that no operation within a block affected input data dimensions.
Besides the channel numbers of inputs, if an input to a block differed in widths or heights,
then all inputs were resized to have the minimal width and height found among the block
inputs. Therefore, all block inputs shared the same dimensions, and element-wise additions
worked in any block. As shown in Figure 6, the cell output was obtained by concatenating
block outputs, which required that outputs to concatenate had the same width and height.
If the outputs differed in width or height, then they were resized to the maximal width and
height found among outputs to concatenate. The number of cell output channels could thus
be easily derived by counting the number of outputs to concatenate, e.g., for the normal
cell in Figure 6, its output channel number was 60 = 3× 20, i.e., three block outputs were
concatenated to yield the cell output. For reduction cell, since the pooling layer only halved
the width and height dimensions of inputs, the output channel was the same as the input
channel, i.e., 40. If inputs of a reduction cell had different channel numbers other than 40,
then the inputs were fed to the channel-changing stack the same as the normal cell. All
convolutions in normal cells had strides set to 1 and paddings set to 1 or 2, respectively,
for 3× 3 or 5× 5 convolutions. All poolings had strides set to 2 and paddings set to 1 or 2,
respectively, for 3× 3 or 5× 5 poolings.

As shown in Figure 7, the output of the last normal cell was fed to a global average,
i.e., a w× h average pooling where w and h refer to the input width and height, respectively.
Here, a w× h× c tensor was pooled to c scalars via the global average where c denotes the
class number. If the input to the global average had channels other than c channels, then
the input was fed to an additional 1-by-1 convolution of stride set to 1 and padding set
to 0 before the input was fed to the global average. The results of the network shown in
Figure 7 are illustrated in Table 2, and the best accuracy within each row is highlighted by
bold texts.

Table 2. NACTI-a accuracy comparison.

Species or
Parameter
Number

DANAS
(Ours) MobileNet-v2 [48] EfficientNet [49] DenseNet [50] Resnet-18 [51] ResNext

[52]
Wide_ResNet

[53]
Random
Search

Para. num. 1.36 2.25 4.04 6.98 11.19 23.02 66.88 0.52
Black bear 1 98.32 97.57 96.07 99.44 98.13 98.88 98.88 98.69
Marten 1 25.00 6.25 25.00 62.50 37.50 31.25 37.50 0.00
Red
squirrel1 98.67 97.33 100 96.00 100 33.33 20.00 100

Jackrabbit 2 99.30 99.30 98.60 99.30 100 99.30 98.60 98.60
Bobcat 97.58 96.92 96.26 97.36 96.26 96.48 95.60 97.14
Quail 3 96.67 95.00 98.33 96.67 100 90.00 83.33 96.67
Cougar 98.10 96.20 96.20 99.05 98.48 95.26 95.83 97.53
Coyote 95.55 94.07 95.85 92.88 93.77 81.90 78.34 93.18
Gray
squirrel 4 100 97.31 97.85 96.24 98.92 93.01 97.85 96.77

Elk 99.24 99.24 97.97 99.75 99.49 98.98 98.98 99.49
Gray fox 99.64 97.15 96.09 98.22 97.86 97.51 97.15 98.58
Moose 96.76 96.76 95.83 93.52 95.83 58.80 62.96 95.37
Mule deer 98.49 97.48 96.98 98.49 98.24 94.71 94.96 98.49
Armadillo 5 100 98.23 100 100 97.35 97.35 100 100
Raccoon 99.20 96.80 97.20 98.00 98.00 96.00 93.20 97.20
Red deer 92.25 91.98 91.44 95.19 95.72 87.97 86.36 92.78
Red fox 62.30 62.30 60.66 75.41 62.30 40.98 36.07 47.54
Hare 6 99.62 98.86 97.34 96.96 98.48 98.48 97.34 98.10
Skunk 7 99.18 99.18 98.77 99.59 100 98.77 98.35 99.59
Opossum 8 94.74 89.47 89.47 94.74 100 94.74 94.74 94.74
Wild boar 95.32 96.78 95.61 96.49 97.08 86.84 87.13 94.44
Wild turkey 98.06 96.13 98.71 99.35 99.35 87.74 82.58 96.77
Average 92.91 90.92 91.83 94.78 93.76 84.47 83.44 90.53

1 American animals; 2 Black-tailed jackrabbit; 3 California quail; 4 Eastern gray squirrel; 5 Nine-banded armadillo;
6 Snowshoe hare; 7 Striped skunk; 8 Virginia opossum.
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As shown in Table 2, although the parameter number of the optimal network discov-
ered by DANAS was small, the average test accuracy associated with DANAS was the third
best of the compared networks. However, there were eight species accuracies in DANAS
that were the best (bold digits in Table 2) compared to other networks, and there were eight
best species accuracies in Resnet-18, which demonstrated the best average test accuracy.

There were 155 images misclassified by DANAS. Among all misclassifications, 78 were
color images and the rest were night-vision images, i.e., about half misclassified images
were night-vision images. The image samples of typical misclassifications are illustrated in
Figure 8, i.e., the partial animal body in the left sample, the small region occupied by the
animal in the middle left sample, and visually similar animals in the right and the middle
right samples.

Figure 8. Examples of misclassified images from NACTI-a.

Among all misclassifications, about 64% (99 samples) were misclassified due to the
visual similarity of animals, and these misclassifications mainly originated from the deer
and canine species. Samples of deer and canine misclassifications are shown in Figure 9. The
misclassifications were mainly made among red deer (29 samples) and red fox (23 samples).
For red deer samples, 14 samples were grayscale images without colors (the left sample
in Figure 9), and the remaining color samples always contained red deer whose heads
were obscured due to camera view limitations, body orientations (the middle-left sample
in Figure 9), etc. For red fox samples, 11 samples were grayscale images (the middle-right
sample in Figure 9), and the remaining color samples always contained foxes occupying
small image regions (the right sample in Figure 9).

Figure 9. Samples of misclassified deer images in NACTI-a.

Samples of misclassifications other than deer are shown in Figure 10. The misclassi-
fications were made among bobcat, cougar, coyote, moose, etc., due to reasons similar to
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those of the deer and red fox misclassifications. Additionally, misclassification samples
only containing animal heads are shown in Figure 10.

Figure 10. Samples of misclassified images of similar animals in NACTI-a.

3.2. Search and Test on MCTI

The search on MCTI consumed roughly 62 hours and found a network with 1.43 million
parameters. The search performance was compared with a random search whose configu-
ration was the same as the one introduced in the previous section. The search procedures
of DANAS and the random search are visualized in Figures 11 and 12, respectively.

Figure 11. Scatter plot of parameter numbers and accuracies associated with the networks explored
by a random search on MCTI.

As shown in Figure 11 regarding the random search, there were 66 networks with
parameter numbers exceeding 2.5 million (62 points on the right of vertical line at 2.5 in the
figure; four points are not shown due to limited space) and 16 networks with validation
accuracies exceeding 50%.

As shown in Figure 12 regarding DANAS, there were 15 networks with parameter
numbers exceeding 2.5 million (13 points on the right of vertical line at 2.5 in the figure; two
are not shown due to limited space) and 93 networks with validation accuracies exceeding
50%; one of them was chosen as the optimal network according to step 5 in Figure 2. The
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optimal network is highlighted by a yellow star in Figure 12, its normal cell is depicted in
Figure 13; its reduction cell was simply a max pooling with a 3-by-3 kernel.

Figure 12. Scatter plot of parameter numbers and accuracies associated with the networks discovered
by DANAS on MCTI.

Figure 13. Normal cell found by DANAS on MCTI.

The network structure based on the cell in Figure 13 was the same as the one shown
in Figure 7 because normal cells found on both NACTI-a and MCTI involved all previous
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cells, and the pipeline in Figure 7 illustrates how data flowed at the cell level (in contrast
to the data flow at the block level that is shown in Figures 6 and 13). The test results are
shown in Table 3, and the best accuracy within each row is highlighted by bold texts.

Table 3. MCTI accuracy comparison.

Species or
Parameter
Number

DANAS
(Ours)

MobileNet-v2
[48]

EfficientNet
[49]

DenseNet
[50]

Resnet-18
[51]

ResNext
[52]

Wide_ResNet
[53]

Random
Search

Para. num. 1.43 2.25 4.04 6.98 11.19 23.02 66.88 0.70
Agouti 91.86 91.86 94.19 91.86 93.60 93.02 86.05 83.72
Bird 97.02 88.10 87.50 91.07 92.26 89.29 92.26 88.69
Agouti 1 97.77 86.16 86.61 92.41 87.05 90.18 91.96 92.86
Peccary 2 90.12 86.63 81.98 88.95 77.91 83.72 86.63 90.12
Opossum 94.42 96.14 93.56 97.00 97.00 94.42 96.14 93.13
Hare 3 95.31 66.41 75.78 88.28 92.19 82.03 86.72 70.31
Tinamou 4 73.74 65.66 74.75 75.76 75.76 68.69 81.82 41.41
Mouflon 93.86 88.60 81.58 94.74 89.47 89.47 88.60 76.32
Ocelot 96.41 88.02 89.82 89.22 92.22 91.62 90.42 92.81
Paca 90.71 89.29 90.71 92.14 90.00 91.43 92.14 78.57
Deer 5 99.07 96.26 96.26 98.60 98.60 97.20 96.73 94.39
Red Deer 97.46 91.86 95.93 96.69 97.46 96.95 96.69 94.40
Red Fox 99.76 99.29 99.06 99.76 100 62.59 61.18 97.88
Red Squirrel 99.80 98.04 98.82 100 99.80 97.45 99.61 99.21
Roe Deer 94.85 97.00 95.71 97.85 97.00 97.00 98.71 94.42
Spiny Rat 98.26 96.81 97.39 98.84 98.55 95.36 96.23 95.07
Coati 6 79.12 71.43 81.32 72.53 75.82 80.22 79.12 68.13
Deer 7 96.72 89.34 88.52 91.80 90.16 92.62 87.70 92.62
Wild Boar 100 100 100 100 100 100 100 93.47
Mouse 8 100 100 99.19 97.57 100 97.57 98.38 99.19
Average 94.31 89.34 90.43 92.75 92.24 89.54 90.35 86.84

1 Coiban agouti; 2 Collared peccary; 3 European hare; 4 Great Tinamou; 5 Red brocket deer; 6 White-nosed coati; 7

White-tailed deer; 8 Wood mouse.

As shown in Table 3, the parameter number of the optimal network discovered by
DANAS was small, and the average test accuracy associated with DANAS was the best
throughout the networks in comparison. There were 167 images misclassified by DANAS.
Among all misclassifications, 45 were color images, and the rest were grayscale images.
Samples of typical misclassifications are shown in Figure 14, i.e., vagueness due to dirty
camera lens in the left sample, similar backgrounds and species in the middle samples, and
partial animal body in the right sample.

Figure 14. Examples of misclassified images from MCTI.

3.3. Tests on Jetson X2

The optimal networks discovered by DANAS with the MCTI and NACTI-a datasets
were tested on the NVIDIA Jetson X2 edge device shown in Figure 15. Because the versions
of PyTorch installed in the workstation and the Jetson X2 are different, the format of
network weights saved in the workstation was incompatible with Jetson X2. This issue
was tackled by loading and resaving weights in Pickle-based format through PyTorch’s
built-in function torch.save() with the parameter “_use_new_zipfile_serialization” set to
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False. The resaved network weights and 224 × 168 test images were copied to Jetson X2
through secure copy protocol as in [44]. The test results are shown in Table 4.

Figure 15. NVIDIA Jetson X2.

Table 4. Test results on Jetson X2.

Species in NACTI-a DANAS Species in MCTI DANAS

American black bear 97.94 Agouti 92.44
American marten 25.00 Bird 97.62
American red squirrel 98.67 Coiban Agouti 97.77
Black-tailed
jackrabbit 98.60 Collared Peccary 90.12

Bobcat 97.36 Opossum 93.56
California quail 96.67 European Hare 95.31
Cougar 98.29 Great Tinamou 69.70
Coyote 95.55 Mouflon 93.86
Eastern Gray squirrel 100 Ocelot 94.01
Elk 99.24 Paca 91.43
Gray fox 99.29 Red Brocket Deer 99.07
Moose 97.22 Red Deer 97.96
Mule deer 97.98 Red Fox 99.76
Nine-banded
armadillo 100 Red Squirrel 100

Raccoon 98.80 Roe Deer 94.85
Red deer 91.44 Spiny Rat 98.26
Red fox 63.93 White-nosed Coati 78.02
Snowshoe hare 99.24 White-tailed Deer 96.72
Striped skunk 99.59 Wild Boar 100
Virginia opossum 94.74 Wood Mouse 100
Wild boar 95.32 Average 94.02
Wild turkey 98.06
Average 92.86

As shown in Table 4, the average accuracies on Jetson X2 were 92.91% and 94.31% for
NACTI-a and MCTI, respectively. The average accuracies on Jetson X2 were slightly lower
than the corresponding accuracies obtained on the workstation, i.e., 92.86% and 94.02% for
NACTI-a and MCTI, respectively.

3.4. Comparisons between DANAS and other Search Methods

Since comparisons of search methods based on custom-defined search space and
various hardware may introduce bias, we compared our method with other methods
via Nasbench-201 [39]. Nasbench-201 provides a database and application programming
interfaces (APIs) for comparing search methods with the same search space and hardware.
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In Nasbench-201, all candidate networks in a specific search space were trained, validated
and tested on the CIFAR-10, CIFAR-100 and ImageNet-16-120 datasets [39]. The training,
validating and testing accuracies were saved in databases and could be programmatically
retrieved via an API, a network code encoding the network architecture. There were
five operations scattering in three cells, i.e., the first cell containing one operation, the
second containing two, and the last containing three. For each operation, there were
five options available for sampling, i.e., “nor_conv_3 × 3”, “none”, “nor_conv_1 × 1”,
“avg_pool_3 × 3” and “skip_connect” [39]. Nasbench-201 does not distinguish networks
of different operation inputs (i.e., for all networks of operations arranged in the same
encoding order, only one network is trained, validated and tested on the aforementioned
datasets.), so there are 5× 52 × 53 = 15, 625 [39] networks in Nasbench-201, and a sampler
tested on Nasbench-201 is restricted to sample operations only. Accordingly, we simplified
our sampler and applied Bayesian optimization [21] to automatically find values of the
sampler hyper parameters, i.e., the embedding dimension, the hidden unit number, the
layer number, and the learning rate were set to 19, 33, 1, and 0.005, respectively. The rest of
the configuration was the same as that of DANAS.

According to [39], there are two types of search methods tested on Nasbench-201, i.e.,
methods dependent on or independent of parameter sharing. Parameter sharing often
means weights of a newly-sampled network are initialized by using weights from the
previously-sampled networks trained on the dataset, so the weights of previously trained
networks are not abandoned during the search. In [39], parameter-sharing-dependent
methods were repeated three times and other methods were repeated 500 times. For each
run of the method independent of parameter sharing, the method continued to run until
the simulated training time [39] of its sampled networks reached a predefined limit called
time budget, i.e., 12,000 s. [39]. The simulated training time of the sampled network was
obtained by adding its training and validation time saved in Nasbench-201.

Since our method (DANAS) is independent of parameter sharing, DANAS was tested
according to the configuration of search methods independent of parameter sharing, i.e.,
the search based on DANAS was repeated 500 times and each search automatically stopped
once the time budget was reached. Different from methods in [39], our method requires
an additional hyper parameter, i.e., the ideal parameter number s∗. This parameter is set
to the parameter number of the candidate network with the optimal validation accuracy.
Accordingly, DANAS was tested against three datasets available in Nasbench-201, i.e.,
CIFAR-10 (s∗ = 0.87 in millions), CIFAR-100 (s∗ = 0.86 in millions), and ImageNet-16-120
(s∗ = 1.29 in millions). Because network weights required by parameter-sharing-dependent
methods were not available at the time of paper submission, we only tested parameter-
sharing-independent methods with Nasbench-201 on our own hardware. Specifically, all
search steps except for training, validating and testing sampled networks were conducted
on our hardware, and network accuracies and parameter numbers were directly retrieved
from Nasbench-201. The configurations of all methods except DANAS were the same
as [39]. The results are illustrated in Table 5.

Table 5. Comparisons with other search methods.

Method
Search

(Seconds)

CIFAR-10 CIFAR-100 ImageNet-16-120

Validation Test Validation Test Validation Test

REA [56] 0.03 91.56 ± 0.13 94.35 ± 0.18 73.15 ± 0.49 73.05 ± 0.56 46.08 ± 0.77 46.08 ± 0.78
RS [57] 1.00 91.48 ± 0.12 94.08 ± 0.26 72.63 ± 1.09 72.44 ± 0.70 45.90 ± 0.58 45.64 ± 0.85

REINFORCE [45] 1.00 91.70 ± 0.06 94.35 ± 0.19 73.52 ± 0.30 73.43 ± 0.52 46.49 ± 0.41 45.98 ± 0.72
BOHB [58] 6.12 88.52 ± 1.39 91.77 ± 1.30 62.62 ± 9.73 62.74 ± 9.79 33.43 ± 9.18 33.22 ± 9.51

DANAS (ours) 4.24 91.58 ± 0.17 94.28 ± 0.21 72.85 ± 0.64 72.71 ± 0.87 45.99 ± 0.56 45.75 ± 0.83

Bold text: optimal mean accuracies; underlined text: suboptimal mean accuracies.

As shown in Table 5, five search methods were compared on three benchmark datasets,
i.e., CIFAR-10, CIFAR-100 and ImageNet-16-120 [39]. Among methods in comparison, i.e.,
REA [56], RS [57], REINFORCE [45] and BOHB [58], our method (DANAS) achieved the
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second best test accuracy on CIFAR-10 and the third best test accuracy on both CIFAR-100
and ImageNet-16-120.

4. Discussion

DANAS was evaluated on two datasets, NACTI-a and MCTI. For both datasets, the
random searches significantly differed from DANAS in changes of validation accuracy and
parameter number over time.

In the case of NACTI-a, the number of networks with parameter numbers exceeding
2.5 million in the random search was almost twice that of DANAS, and the number of
networks with validation accuracies exceeding 50% in the random search was roughly
half that of DANAS. More importantly, the distribution of points from DANAS in Fig-
ure 5 illustrates a growing trend towards networks with few parameter numbers and
high validation accuracies, i.e., the search tended to find Pareto solutions good for both
accuracy and parameter number, while no such trend can be seen in Figure 4 regarding the
random search.

In the case of MCTI, the ratio between the numbers of networks with 2.5 million
parameter numbers or above for random search and DANAS was higher than the case of
NACTI-a, i.e., about 4:1, and the ratio between the numbers of networks with validation
accuracies exceeding 50% for the random search and DANAS was lower than the case of
NACTI-a, i.e., about 1:8. The distribution of points from DANAS in Figure 12 illustrates
the same trend as the case of NACTI-a, and the random search showed no such trend, as
depicted in Figure 11.

The performance of the networks found by DANAS was evaluated by comparing the
test accuracies with seven CNNs with parameter numbers ranging from 0.7 to 66.8 million
on two datasets, NACTI-a and MCTI. Although the parameter numbers of networks found
on both datasets were lower than 1.5 M, the test accuracy was the third best for NACTI-a
and the best for MCTI. These results reveal the benefit of designing CNNs with structures
highly customized for studied data and used device. Generally, the experimental results
confirmed the validity of DANAS.

The search efficiency of DANAS was compared with search methods reported in [39]
based on Nasbench-201, and the search methods with parameter sharing were retested on
our hardware. For all benchmark datasets of Nasbench-201, our method outperformed all
parameter-sharing-dependent methods reported in [39] and most of parameter-sharing-
independent methods including the random search. Generally, DANAS outperformed
NAS methods with parameter sharing and was competitive compared with NAS methods
without parameter sharing.

5. Conclusions

In this study, DANAS is proposed to automatically design lightweight CNNs for
ecological research powered by camera traps and edge computing. DANAS was developed
based on domain knowledge of camera trap images, i.e., the search is conducted on camera
trap images whose resolutions are lowered while the original aspect ratios are maintained.
Therefore, the data distribution of the original dataset is preserved during the search, so
the data distribution difference incurred by using benchmark datasets in traditional NAS
is reduced in DANAS. Furthermore, the search in DANAS is guided by a loss function
designed based on Witch of Agnesi whose hyper parameter was theoretically derived. In
experiments, DANAS was shown to successfully find lightweight networks for two datasets
of wildlife camera trap images. The found networks were then trained on a workstation
and tested on both the workstation and an edge device. In comparison with CNNs of
classical lightweight designs and good performance, the networks found by DANAS had
low parameter numbers and competitive test accuracies. Generally, researchers without
knowledge of designing CNNs can obtain lightweight CNNs optimized for edge devices
through DANAS and thus expand surveillance areas in a cost-effective way.
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Appendix A

Since LSTM plays the role of a sampler, options to sample have to be converted to
length-fixed vectors to feed the LSTM. This conversion is accomplished via a technique
called word embedding, i.e., options are uniquely represented by plain words such as
“conv 3 × 3” and each word is mapped to a row of a |V| × d matrix, where V denotes
the set of unique words, |V| is the number of unique words, and d is a hyper parameter.
The word-embedding matrix is implemented as a standalone layer in our sampler, which
means the matrix elements were learned during the search. To sample a network from
our search space, LSTM starts with a random word from V, i.e., a random row of word-
embedding matrix is fed to the input layer of LSTM. The data flow through LSTM and
yield two tensors: “hidden states” and “cell states”. Hidden states are associated with the
immediately previous sampling, and cell states are associated with long-term sampling
found useful during training. Hidden states are then fed to some linear layer whose output
corresponds to the sampling options. For example, suppose there are five different inputs
and four different types; then there are two separate linear layers (matrices) of size h× 5
and h× 4, where h denotes the dimension of hidden states. If an operation input is desired,
then the hidden states are only fed to the h× 5 linear layer, which yields a five-element
vector, and the resulting vector is fed to SoftMax function to produce five probabilities. The
probabilities are then used to build a categorical distribution, and the input is sampled
based on the built distribution.

Mathematically, suppose the last sampling results in hidden states ht−1; then, for tth
sampling, LSTM attempts to sample blocks of the normal cell. For the jth block, LSTM
firstly samples the number of operations in the block and then samples inputs and types of
operations, namely, ht−1 is fed to LSTM to produce ht, and ht is fed to a linear layer. The
linear layer produces a vector that is converted to probabilities via softmax(), and an integer
nj is sampled based on the probability P

(
nj|θ

)
via categorical distribution. Thus, current

block has nj operations. Starting from the first operation, ht is fed to LSTM to produce ht+1
which is fed to a linear layer, and the vector produced by the linear layer is converted to
probabilities. The operation input a1 is then sampled based on P

(
a1
∣∣nj, θ

)
, and ht+1 is fed

to LSTM to yield ht+2, which is used to produce the probabilities to sample the operation
type a2 based on P

(
a2
∣∣a1, nj, θ

)
. For the kth sampling, ht+k−1 is fed to LSTM to yield ht+k

which is fed to a linear layer to sample the option ak based on P
(

ak

∣∣∣a1 :(k−1), nj, θ
)

. This
sampling procedure continues until all blocks have been sampled. Then, LSTM starts to
sample blocks of the reduction cell.

Specifically, suppose there are nC cells to sample; for the ith cell, LSTM needs to
sample Bi blocks. For the jth block, suppose LSTM samples the operation number nj based
on P

(
nj|θ

)
; then, LSTM needs to sample inputs and types for every nj operations. For

the kth operation, suppose LSTM samples the input and type denoted by ak based on

http://lila.science/datasets/nacti
https://lila.science/datasets/missouricameratraps
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P
(

ak

∣∣∣a1 :(k−1), θ
)

; then, the samplings related with the kth operation may be quantitatively
represented by

nj

∑
k

log
(

P
(

ak

∣∣∣a1 :(k−1), θ
))

, (A1)

and the samplings related with the jth block may be quantitatively represented by

log
(

P
(
nj|θ

))
+

nj

∑
k

log
(

P
(

ak

∣∣∣a1 :(k−1), θ
))

, (A2)

and the samplings related with the ith cell may be quantitatively represented by

Bi

∑
j

(
log
(

P
(
nj|θ

))
+

nj

∑
k

log
(

P
(

ak

∣∣∣a1 :(k−1), θ
)))

. (A3)

Finally, the samplings related with nC cells may be quantitatively represented by

aΣ(θ) =
nC

∑
i

Bi

∑
j

(
log
(

P
(
nj|θ

))
+

nj

∑
k

log
(

P
(

ak

∣∣∣a1 :(k−1), θ
)))

. (A4)

Thus, the value of aΣ(θ) is associated with θ of LSTM, and θ can be optimized via
some optimization algorithm such as SGD. Even so, aΣ(θ) alone cannot make SGD work
because aΣ(θ) contains no information about rewards, i.e., the gradient ∇θaΣ used in SGD
is out of control since we are not sure whether ∇θaΣ leads to a promising position of high
reward or not. This can be alleviated by introducing rewards, as described in the paper.
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