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Abstract: Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as
sites of viral genome replication and particle assembly. These highly specialized structures concentrate
viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the
release of progeny particles. Reoviruses are common pathogens of mammals that have been linked
to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped,
double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles
in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins
partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous
webs likely serve to anchor viral RNA–protein complexes for the replication of the reovirus genome
and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance
our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and
may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.

Keywords: reovirus; rotavirus; bluetongue virus; double-stranded RNA; viral factories; viral inclusions;
viral replication organelles; endoplasmic reticulum; viral nonstructural proteins

1. Introduction

Viruses are obligate intracellular pathogens that require host cells in order to replicate and produce
infectious progeny. Virus entry into host cells is followed by capsid uncoating, genome transcription
and replication, synthesis of viral proteins, assembly of progeny virions, and egress. For most viruses,
genome replication and assembly take place in specialized intracellular compartments known as
viral factories or inclusions [1–4], which are often composed of membranous scaffolds, viral and
cellular factors, and mitochondria [5]. Viral inclusions (VIs) serve multiple purposes during infection,
including the concentration of viral and host factors to ensure the high efficiency of replication,
sequestration of viral nucleic acids and proteins from innate immune responses, and the spatial
coordination of consecutive replication cycle steps [1,4,5]. Most double-stranded RNA (dsRNA)
viruses form cytoplasmic inclusions with a characteristic morphology. These neoorganelles constitute
sites of genome replication and virion assembly, and contain abundant viral RNA and proteins [6–8].

Viruses 2019, 11, 288; doi:10.3390/v11030288 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-5388-8934
https://orcid.org/0000-0002-1630-8734
https://orcid.org/0000-0003-1853-8741
http://dx.doi.org/10.3390/v11030288
http://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/11/3/288?type=check_update&version=2


Viruses 2019, 11, 288 2 of 16

The combination of ultrastructural and functional studies has enhanced our knowledge about VI
biogenesis. However, for many viruses, it is still not known how these structures form and mediate
functions in viral replication. Here, we describe the current understanding of the morphogenesis and
function of reovirus inclusions and compare these neoorganelles with the replication factories formed
by other members of the Reoviridae family.

2. Composition of Reovirus Inclusions

Mammalian orthoreoviruses (called reoviruses here) are nonenveloped, icosahedral viruses
consisting of two concentric protein shells—an outer capsid and inner core—that contain a genome of
ten dsRNA segments [9]. The reovirus replication cycle is entirely cytoplasmic (Figure 1). Following
entry into the cells, the viral outer capsid is proteolytically cleaved in the late endosomes to
form transcriptionally active cores [10–12]. These particles are released into the cytoplasm and
synthesize full-length, positive-sense, capped, and nonpolyadenylated single-stranded RNAs (ssRNAs)
corresponding to each viral genome segment [13,14]. Reovirus ssRNAs are translated to synthesize
new viral proteins and also serve as templates for negative-sense ssRNA synthesis within the replicase
particles to produce nascent genomic dsRNA [15,16]. The addition of outer-capsid proteins onto newly
formed viral cores completes the reovirus assembly process.
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Figure 1. The reovirus replication cycle. VI—viral inclusions; ER—endoplasmic reticulum.

In a variety of cell types, reovirus inclusions can be detected by light microscopy as early as
4 h post-infection. VIs contain several types of filaments, viral proteins, ssRNAs, dsRNAs, and viral
particles at various stages of morphogenesis [17–21]. At late times post-infection, VIs are filled with
mature virions arranged in paracrystalline arrays [19,22,23]. Reovirus nonstructural proteins µNS
and σNS and structural protein µ2 function in the formation and structural organization of reovirus
inclusions [24,25]. Specific interactions between µ2 and µNS are required to form VIs and to recruit the
additional viral (and perhaps host) factors that mediate viral genome replication and assembly [26,27].
High-resolution structures of the inclusion-forming proteins (µNS, σNS, and µ2) are not available.
This information would help us to better understand the interactions between these (and other viral
and host) proteins during inclusion biogenesis. Ultrastructural studies of reovirus inclusions show that
these structures contain macromolecular complexes, ribosomes, and microtubules [23,28,29], indicating
that these neoorganelles are rich in the cellular components required for viral progeny production.
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Until recently, it was thought that reovirus inclusions did not contain membranes. However,
studies employing sophisticated light and transmission electron microscopy (TEM) revealed that
VIs are formed from membranes [30,31]. Transmission electron micrographs of oriented serial
sections and three-dimensional (3D) reconstructions of the reovirus inclusions demonstrated that these
neoorganelles contain membranous scaffolds and are surrounded by mitochondria, lipid droplets, and
endoplasmic reticulum (ER) cisternae [30]. Viral proteins, dsRNAs, and viral particles appear to adhere
to the membranes inside the inclusions [31]. The high concentration of macromolecular complexes,
viral particles, and membranes of VIs might explain the high density of these structures compared with
that of the cytosol, which is consistent with the highly refractive nature of these structures, as observed
by phase-contrast microscopy (Figure 2).
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Figure 2. Reovirus inclusions imaged by light and electron microscopy. (A–C) Human brain
microvascular endothelial cells were infected with reovirus strain T1L M1-P208S for 24 h, and were fixed,
permeabilized, and processed for immunofluorescence staining with a chicken anti-µNS polyclonal
serum and a secondary antibody conjugated with Alexa 594 (green). This strain forms large, globular
VIs. (A) The phase-contrast microscopy shows dark, dense, globular structures (asterisks) in the cytosol
of reovirus-infected cells. (B) The localization of µNS by fluorescence microscopy confirms that the
dense structures seen by phase-contrast microscopy are viral inclusions (asterisks). (C) The merging of
phase-contrast and fluorescence microscopy images. (D,E) HeLa cells were infected with T1L M1-P208S
and fixed at 24 h. (D) Ultrathin sections (~70 nm) of infected cells were imaged by transmission electron
microscopy (TEM). A characteristic viral inclusion (VI) is shown. The VI contains mature virions (black
arrowheads) and empty viral particles (white arrowheads). Mitochondria (mi), endoplasmic reticulum
(ER) cisternae, and microtubules (arrows) surround the VI. N—nucleus. (E) VI as visualized by TEM
of serial sections, 3D reconstruction, and image processing. The mitochondria (red) and ER cisternae
(gold) surround a network of smooth membranes (light yellow) with mature virions (black) and empty
viral particles (white). The nucleus is colored in blue and the microtubules in green. Scale bars are
10 µM in (A–C) and 250 nm in (D,E).

3. Morphology and Functions of Reovirus Inclusions

Following entry into the cells, reovirus ssRNAs are released into the cytoplasm from transcribing
core particles and are translated, yielding eleven reovirus proteins (eight structural and three



Viruses 2019, 11, 288 4 of 16

nonstructural proteins) [32]. The viral nonstructural protein µNS, one of the first viral proteins
synthesized, plays a crucial role in the biogenesis of VIs. The µNS protein expressed alone can form
globular VI-like structures, which grow and fuse like the VIs in reovirus-infected cells [25,33,34].
These observations suggest that µNS is the viral protein responsible for inclusion nucleation [26].
In turn, the µNS protein recruits viral core proteins and the nonstructural protein σNS, which is a
key factor for viral RNA replication [35–37]. The µ2 protein, which is a minor constituent of the viral
core, defines the morphology of VIs. Most reovirus strains produce filamentous inclusions, which
are attributable to the interactions of µ2 with microtubules and the stabilization of the microtubule
network [27]. Inside cells, the amino-terminal domain of µ2 associates with microtubules, and the
carboxy-terminal domain binds to µNS [38]. However, some laboratory isolates of reovirus strain type
3 Dearing, which is commonly used for studies of reovirus replication and pathogenesis [9], produce
globular inclusions [39]. The globular shape of these VIs is due to a single mutation in µ2, P208S,
which abrogates its capacity to interact with microtubules [27]. The µNS protein also associates with
microtubules and mediates inclusion movement and enlargement during infection. Both filamentous
and globular inclusions rely on an intact microtubule network for VI assembly, maintenance, and
dynamics [34]. Thus, small inclusions track along microtubules and coalesce to form large perinuclear
structures [25,27,34,40].

The cytoskeleton also participates in reovirus genome packaging. VIs formed by reovirus strains
deficient in microtubule-binding accumulate relatively more empty (genome-lacking) viral particles,
while microtubule-binding reovirus strains form VIs that have a higher percentage of complete
(genome-containing) virions [40]. Interestingly, the inefficient genome packaging observed with the
strains deficient in microtubule-binding can be ameliorated by rerouting the viral factories to the
actin cytoskeleton [40], suggesting that viral inclusions can track along different cytoskeletal filaments.
Reovirus also usurps vimentin intermediate filaments, which are reorganized during infection [20].
Thus, reovirus uses the cellular cytoskeleton to facilitate VI functions.

Within inclusions, the reovirus core particles synthesize viral RNAs. The reovirus RNA-dependent
RNA polymerase (RdRp) is composed of one subunit of λ3, which is responsible for the catalytic
activity, and two subunits of µ2, which function as cofactors [29,41]. The reovirus polymerase catalyzes
fully conservative transcription using negative-strand RNAs as templates for positive-strand RNA
synthesis [42]. Nascent positive-strand RNAs are capped and methylated by the viral λ2 protein during
release from the core [43]. The parental positive-sense RNA strand re-anneals with the negative-sense
RNA strand to reform the dsRNA genome. Thus, VIs protect viral mRNAs from the cytoplasmic
environment to favor viral transcription.

The nonstructural protein σNS, an RNA-binding protein with a strong affinity for ssRNAs,
is essential for inclusion development and viral replication. During infection, σNS is found within
the VIs and co-localizes with µNS at the periphery of these structures [44]. In contrast to µNS, σNS
appears to diffuse in the cytoplasm when expressed alone and localizes to inclusions through its
interactions with µNS [36]. The first eleven amino acids of σNS, which contain several positively
charged residues, are required for σNS distribution to the inclusions [36]. The σNS protein binds and
stabilizes the viral RNAs, which might be necessary for sequestering the viral transcripts inside the
inclusions. This function of σNS might also protect these RNAs from cytoplasmic nucleases, prevent
the activation of innate immune responses, and facilitate viral translation [37]. Additionally, σNS likely
recruits the translational machinery to VIs, as σNS co-localizes with eukaryotic translation initiation
factor 3 subunit A, ribosomal P protein, phosphorylated ribosomal protein S6, and ribosomal protein
S3 in the reovirus inclusions [28]. Inside these structures, σNS also co-localizes with ER proteins,
suggesting that σNS couples the host translational machinery to the sites of particle morphogenesis [28].
Moreover, σNS functions in stress granule disassembly, which could amplify its role as a translational
activator [45].

Viral translation also is enhanced by the reovirus σ3 outer-capsid protein [46]. The σ3 protein
binds dsRNA during infection, blocking the activation of protein kinase RNA-activated (PKR), an
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interferon-induced enzyme that is activated by binding to dsRNA [47]. Activated PKR phosphorylates
and thus inhibits the eukaryotic translation initiation factor 2 subunit α, an essential translation
initiation factor, resulting in the suppression of host protein synthesis [48–50]. These effects may
contribute to the preferential synthesis of reovirus proteins in or near the inclusions where σ3
is abundant [51]. Reovirus infection also impairs the function of interferon regulatory factor 3,
a transcription factor required for the induction of an antiviral state, by sequestering it inside the
inclusions via interactions with µNS [52]. Thus, several viral proteins interact intimately with the host
machinery to promote replication steps within VIs, and impede innate immune activation.

4. Hsp70, Hsp90, and the TRiC Chaperonin are Required for Reovirus Assembly

In addition to remodeling host membranes, engaging the cytoskeleton, and commandeering the
translational machinery to form functional VIs, reovirus recruits an array of protein-folding chaperones
that participate in viral assembly. Heat shock protein 70 (Hsp70), heat shock protein 90 (Hsp90), and
the T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1)
chaperonin fold several reovirus proteins.

Hsp70 and Hsp90 are protein-folding chaperones that bind and stabilize nascent polypeptide
chains during or immediately after translation, in an ATP-dependent manner [53,54]. Both chaperones
facilitate the assembly of the reovirus σ1 outer-capsid protein, an event that likely occurs inside
the VIs as the last step in reovirus particle assembly. The σ1 protein is a homotrimer responsible
for engaging cell-surface receptors [55]. The biogenesis of the σ1 trimer is a multistep process
that involves a co-translational trimerization event at the amino-terminus and a post-translational
Hsp70/90-dependent trimerization event at the carboxy-terminus [56]. A complex of Hsp70, Hsp90,
and σ1 monomers may be the functional structures responsible for σ1 trimerization [57]. If present,
this complex may exist at spatially defined locations within the VIs to coordinate the final step in
the assembly process. Along with Hsp70, another chaperone, the heat shock cognate protein 70
(Hsc70), is recruited to the VIs. Hsc70 is anchored to the VIs by interactions with the µNS protein [58],
highlighting a potential function for µNS in concentrating the folding machinery required for assembly.

The TRiC chaperonin serves an essential function in reovirus replication by folding the major
outer-capsid protein σ3. TRiC is a large, one-megadalton protein complex composed of two identical
eight-member rings stacked back-to-back, forming a central cavity that catalyzes protein folding [59,60].
TRiC is ubiquitous in eukaryotes and functions as a highly specialized chaperone that folds essential
substrates, including actin and tubulin [61,62]. The σ3 protein is a structural component of the viral
outer capsid that complexes with the reovirus µ1 protein, forming a heterohexamer composed of three
σ3 molecules and three µ1 molecules. TRiC redistributes to the VIs in reovirus-infected cells and folds
σ3 into its native conformation [63]. The exact mechanism by which TRiC folds σ3 is not clear, and it is
not known whether TRiC participates in the assembly of the σ3–µ1 heterohexamer. Interestingly, TRiC
also is required for proper VI morphogenesis [63]. The viral outer-capsid proteins are likely translated
in close proximity to the inclusions and may assemble onto nascent core particles in a mechanism
involving TRiC or another chaperone complex. Therefore, multiple chaperone networks cooperate to
assemble nascent reovirus particles within VIs.

5. Viral Inclusions are Formed from Remodeled ER Membranes

State-of-the-art imaging methods have led to the discovery that membranes within the reovirus
VIs are derived from the ER. Using light and electron microscopy, ER-specific markers are observed
in VI membranes [31]. The immunogold labeling of thawed cryosections, a technique known as the
Tokuyasu method, shows the specific labeling of ER proteins in VI membranes (Figure 3A,B). Because
of the lack of a dehydration step, this method provides the optimal preservation of membranes and
epitopes [64,65]. Electron tomography (ET) of Tokuyasu cryosections showed the fine details of the
internal organization of the VIs. Interestingly, the viral particles inside the VIs are attached to the
membranes (Figure 3C). This inner membranous network within the VIs may provide physical support
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for processes such as translation, genome replication, and progeny particle assembly [9,28,43]. Based
on studies localizing viral RNA synthesis with BrU, it appears that reovirus genome replication and
secondary rounds of transcription occur within newly synthesized cores associated with ER-derived
membranes [31]. There is no evidence that reovirus buds into the lumen of a membrane-bound
compartment to obtain its outer-capsid proteins. However, given that the µ1 outer-capsid protein
is myristoylated [66], it is also possible that inclusion-associated membranes function in µ1 folding,
targeting, or assembly onto newly forming virions.
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Figure 3. Reovirus inclusions contain ER membranes. (A,B) HeLa cells were infected with reovirus T1L
M1-P208S for 14 h, frozen in liquid nitrogen, and sectioned at −120 ◦C. The thawed cryosections were
processed for immunogold labeling with primary antibodies specific for two ER proteins—protein
disulfide isomerase (PDI) (A) and calreticulin (CLT) (B)—and for secondary antibodies conjugated with
10 nm colloidal gold particles. The rough ER (RER) cisternae around the VIs and membranes inside the
VIs are labeled with antibodies specific for ER proteins (white arrows in A and B). These membranes are
in close contact with the viral particles (black arrows in B). V—viral particle. (C) Electron tomography
(ET) of a single VI. A thawed cryosection was processed by single-tilt-axis ET, 3D reconstruction, and
image processing. The 3D model shows that the VI is a collection of vesicles and tubules with
viral particles attached to membranes (white arrows). RER—yellow; viral particles—light blue;
mitochondria—red; nuclear membrane—dark blue; tubules and membrane fragments inside the
inclusion—brown; vesicles inside the inclusion—orange. Scale bars are 500 nm in (A) and 200 nm in
(B,C). Modified from Tenorio et al., 2018 [31].
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The membranous matrix of reovirus VIs derives from the extensive remodeling of the peripheral
ER [31]. Peripheral ER elements become thinner, fragment, and partially aggregate throughout the
course of reovirus infection. These changes are observed at very early stages of infection, in both fixed
and living cells [31]. Confocal microscopy and stimulated emission depletion (STED) super-resolution
microscopy revealed that viral nonstructural proteins σNS and µNS localize in close proximity to the
ER in reovirus-infected cells. The remarkable changes in the ER architecture that occur during infection
can be reproduced by ectopically expressing σNS and µNS. σNS causes ER tubulation, whereas µNS
causes ER vesiculation [31] (Figure 4). It is not known whether this extensive remodeling triggers an
ER stress responses or affects ER function. Future studies should clarify these points.

Metal-tagging TEM (METTEM) is a sensitive method for molecular mapping in situ [67,68]. This
technique uses the metal-binding protein metallothionein (MT) as a tag for TEM. MT binds gold
atoms in vivo and builds an electron-dense nanoparticle that is easily visible by TEM. METTEM of
reovirus-infected cells revealed that µNS attaches to the remodeled ER tubules and vesicles before VIs
are formed [31]. These observations suggest that µNS mediates ER vesiculation by direct interaction
with ER membrane components.
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Figure 4. Model of ER remodeling and VI biogenesis. The ER in uninfected cells is composed of sheets
and tubules. (A) In reovirus-infected cells, σNS binds to the ER tubules and transforms them into thin
structures. (B) µNS binds to these thin tubules and triggers their fragmentation. Small tubules and
vesicles coalesce to form the VI. The schematics at the bottom demonstrate how σNS and µNS might
remodel the ER. NUC—nucleus. Modified from Tenorio et al., 2018 [31].

6. Viruses and the ER

The ER is rearranged by many viruses to facilitate different steps in viral replication [69]. Members
of the Bromoviridae, Flaviviridae, and Tombusviridae families transform the ER into vesicles, invaginations,
or spherules [70–73]. Viruses in other families, such as the Arteriviridae, Coronaviridae, Flaviviridae,
and Picornaviridae, use ER membranes to build single-membrane tubules or double-membrane
vesicles [74–77]. Coronaviruses and flaviviruses also produce convoluted membranes from the
ER [78,79], and gamma coronaviruses use the ER to form zippered membranes [80]. For reoviruses,
a collection of ER tubules and vesicles associated with a network of modified ER cisternae form VIs.
However, the mechanisms responsible for the ER remodeling observed in reovirus-infected cells are
not clear.

As reovirus nonstructural proteins σNS and µNS lack predicted transmembrane domains, their
effects on ER remodeling could be mediated by interfering with ER-shaping proteins such as atlastins,
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Rab GTPases, reticulons, or Lunapark [81–83]. These proteins are involved in the ER remodeling
induced by other viruses, such as brome mosaic virus [84], hepatitis C virus [85], and enterovirus [86].
Lipid-transfer proteins also could be targeted by reovirus nonstructural proteins. The ER-resident
vesicle-associated membrane protein (VAMP)-associated proteins and oxysterol-binding protein
1 exchange lipids between the ER and other organelles. These proteins modify the membrane
composition and structure by regulating the ER–organelle contact sites, and they are usurped by
some RNA viruses to stabilize the replication complexes [87–89].

Another possible mechanism for ER remodeling involves direct interactions between reovirus
proteins with ER lipids. Several viral proteins interact with lipids in cell membranes and disrupt or
modify their structures to build replication organelles [90]. However, there are few examples of proteins
from nonenveloped viruses that directly interact with membrane lipids. Reovirus fusion-associated
small transmembrane (FAST) proteins are expressed by avian and reptilian reoviruses as well as some
reovirus isolates from bats. They are not expressed by mammalian orthoreoviruses. The FAST proteins
bind to lipid rafts in the plasma membrane and function to approximate the adjacent cell membranes
to induce cell-to-cell fusion [91]. These proteins are not thought to function in VI formation. How
reovirus σNS and µNS proteins transform the ER to build VIs remains to be elucidated.

7. Comparison of Reovirus Inclusions to Other Members of the Reoviridae

Reoviruses represent one genus of the Reoviridae family and share a number of characteristics
with other viruses in this family. Rotaviruses, which comprise another Reoviridae genus, also form large
cytoplasmic inclusions, termed viroplasms, that house key viral replication steps. Like reovirus VIs,
rotavirus viroplasms are dynamic structures that move to the perinuclear region during infection and
fuse with each other [92]. The co-expression of rotavirus NSP5 with either NSP2 [93] or VP2 [92,94,95] in
uninfected cells leads to the formation of viroplasm-like structures. Rotavirus NSP5 and NSP2 appear
to have functions in inclusion biogenesis analogous to those of the reovirus σNS and µNS proteins.
In addition, viroplasm assembly requires the phosphorylation of NSP5 and NSP2 by cellular casein
kinase 1α (CK1α) [96–99]. The phosphorylation of NSP2 is essential for the protein to traffic to sites
of viroplasm formation, which is most likely at cellular lipid droplets [100,101]. In rotavirus-infected
cells, NSP5 is hyperphosphorylated by a CK1/2-dependent mechanism [96,98,99,102]. Interestingly,
the form of NSP2 located within the viroplasm interacts only with hyperphosphorylated NSP5, and
this interaction is required for viroplasm formation [98].

Much like reovirus VIs, microtubules are important components of rotavirus viroplasms and form
complexes with NSP2 and structural proteins VP1 and VP2 [92,98,103]. Viroplasm morphogenesis
depends on other components of the host machinery, such as the proteasomes and elements of the
autophagy pathway [104–106]. Lipid droplets also might have a function in viroplasm formation,
as lipid droplet-associated proteins co-localize with rotavirus viroplasms during infection [100,107].
Interestingly, reovirus VIs are frequently surrounded by lipid droplets [30], but their role in reovirus
infection is not known. Some nuclear factors also redistribute to viroplasms during infection. Nuclear
hnRNPs and AU-rich element-binding proteins, nuclear transport proteins, and some cytoplasmic
proteins directly interact with the viroplasmic NSP2 and NSP5 proteins in an RNA-independent
manner and become sequestered in the viroplasms of infected cells [108].

In contrast to reovirus VIs, rotavirus viroplasms are not thought to contain ER membranes,
although ultrastructural imaging studies like those conducted for reovirus have not been
reported. Nonetheless, rotavirus uses ER membranes during particle maturation and assembly.
The incorporation of viral outer-capsid proteins onto nascent virions occurs in the ER lumen and
not in viroplasms and is mediated by rotavirus NSP4, a transmembrane glycoprotein that mainly
distributes to ER membranes [109,110]. Following the assembly of the outer capsid, the fully formed
virions exit the ER and are transported to the cell surface using small smooth vesicles [111]. These
observations suggest that the use of ER membranes at different steps of infection is a common feature
of the Reoviridae.
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Bluetongue virus (BTV) is the prototype member of the Orbivirus genus of the Reoviridae
family. The BTV NS2 protein is the principal component of viral inclusion bodies, which are
equivalent to the VIs of reovirus and viroplasms of rotavirus [112,113]. NS2 recruits the viral
ssRNAs and protein components required for core assembly and genome replication [114–116].
NS2 may be a µNS homolog [114,117]. Similar to rotavirus, the BTV outer-capsid proteins are
not recruited to the viral inclusion bodies. Instead, they interact with host factors such as the
soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) regulatory protein
synaptotagmin I [118], vimentin [119], and endosomal sorting complex required for trafficking
(ESCRT) [120] in the cytoplasm. This process appears to be coupled to a non-lytic, exocytic
pathway [121]. As in reovirus and rotavirus infection, host proteins modulate the dynamics and
function of the BTV inclusion bodies. Casein kinase 2 and protein phosphatase 2A are host enzymes
that regulate inclusion morphology and BTV replication [122]. Contrary to reovirus and rotavirus, the
microtubule network does not appear to be involved in the morphogenesis of the inclusion bodies
formed by BTV [115]. Therefore, microtubules are not essential for the replication of all members of
the Reoviridae family.

Avian reoviruses belong to the genus Orthoreovirus and also replicate in cytoplasmic inclusions
with a globular morphology [123,124]. Avian reovirus inclusions are not microtubule-associated
and are formed by nonstructural protein µNS [125]. Analogous to mammalian orthoreovirus µNS,
avian reovirus µNS is the minimal viral factor required for inclusion formation during avian reovirus
infection [126]. Avian reovirus σNS is homologous to mammalian orthoreovirus σNS, and both
proteins bind RNA [127]. Avian reovirus assembly occurs exclusively within cytoplasmic inclusions,
starting with the selective recruitment of σNS and structural protein λA to small µNS-containing
inclusions [126].

Collectively, these studies suggest that the inclusions formed by members of the Reoviridae family
share some characteristics related to their composition and structure. Viral proteins and frequently
cytoskeletal elements have an essential role in the first steps of inclusion formation. In addition,
different steps of the replication cycle of Reoviridae viruses are associated with membranes and cellular
organelles, such as the ER, which functions in reovirus and rotavirus replication. Structural and
biochemical studies are required in order to determine whether the viral inclusions formed by other
members of the Reoviridae contain membranous scaffolds, as is the case for reovirus.

8. Conclusions

Relative to the initial steps of reovirus infection (receptor engagement and cell entry), less is
known about the later replication steps, especially those required for the formation of viral replication
organelles (Table 1). These neoorganelles are specialized structures required for productive viral
infection and represent the morphological rewiring of host cells to foster the assembly of thousands of
progeny viral particles. A common strategy used to build these structures by viruses with cytoplasmic
replication programs involves the establishment of membranous scaffolds, but the precise scaffolding
mechanisms vary by virus and are not entirely understood. Mammalian orthoreovirus employs a
strategy of ER fragmentation to build replication organelles that are dependent on viral nonstructural
proteins σNS and µNS and structural protein µ2. As facets of this replication strategy may be conserved
across virus families, understanding which host factors are required for reovirus inclusion formation
(e.g., ER-shaping proteins), capsid assembly (e.g., protein-folding networks), and egress of viral
progeny, may be broadly applicable. The identification of these key viral and cellular factors involved
in the biogenesis and function of viral replication organelles will enhance the knowledge of basic cell
biology and may illuminate new targets for antiviral drug development.
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Table 1. Key unanswered questions in studies of reovirus replication organelles. ER—endoplasmic
reticulum; VI—viral inclusion.

(1) How do the reovirus σNS and µNS proteins remodel the ER?
(2) How does ER remodeling affect its function?
(3) What is the role of VI membranes in reovirus replication and morphogenesis?
(4) How do reovirus proteins interact with host factors to promote viral replication and morphogenesis?
(5) What are the precise functions of σNS and µNS inside VIs?
(6) Do other members of the Reoviridae assemble membranous replication neoorganelles?
(7) How do mitochondria become recruited to and interact with VIs?
(8) How do chaperone networks participate in the morphogenesis of reovirus particles?
(9) What mechanisms are used by reovirus to exit infected cells?
(10) Can the host factors required for reovirus inclusion formation and morphogenesis be targeted by small
molecules as an antiviral strategy?
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