
 International Journal of 

Molecular Sciences

Review

Progress in the Preparation of Functional and
(Bio)Degradable Polymers via Living Polymerizations

Si-Ting Lin 1, Chung-Chi Wang 2, Chi-Jung Chang 3, Yasuyuki Nakamura 4,* ,
Kun-Yi Andrew Lin 5,* and Chih-Feng Huang 1,*

1 Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST),
National Chung Hsing University, Taichung 402-27, Taiwan; eclipes3625@gmail.com

2 Division of Cardiovascular Surgery, Veterans General Hospital, Taichung 407-05, Taiwan;
chungchi@vghtc.gov.tw

3 Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen District,
Taichung 40724, Taiwan; changcj@fcu.edu.tw

4 Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated
System (MaDIS), National Institute for Materials Science, Tsukuba 305-0047, Japan

5 Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture
& Research Center of Sustainable Energy and Nanotechnology, i-Center for Advanced Science and
Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan

* Correspondence: NAKAMURA.Yasuyuki@nims.go.jp (Y.N.); linky@nchu.edu.tw (K.-Y.A.L.);
HuangCF@dragon.nchu.edu.tw (C.-F.H.)

Received: 26 November 2020; Accepted: 14 December 2020; Published: 16 December 2020 ����������
�������

Abstract: This review presents the latest developments in (bio)degradable approaches and functional
aliphatic polyesters and polycarbonates prepared by typical ring-opening polymerization (ROP)
of lactones and trimethylene carbonates. It also considers several recent innovative synthetic
methods including radical ring-opening polymerization (RROP), atom transfer radical polyaddition
(ATRPA), and simultaneous chain- and step-growth radical polymerization (SCSRP) that produce
aliphatic polyesters. With regard to (bio)degradable approaches, we have summarized several
representative cleavable linkages that make it possible to obtain cleavable polymers. In the section on
functional aliphatic polyesters, we explore the syntheses of specific functional lactones, which can
be performed by ring-opening copolymerization of typical lactone/lactide monomers. Last but
not the least, in the recent innovative methods section, three interesting synthetic methodologies,
RROP, ATRPA, and SCSRP are discussed in detail with regard to their reaction mechanisms and
polymer functionalities.

Keywords: aliphatic polyesters; aliphatic polycarbonates; ring-opening radical polymerizations;
simultaneous step- and chain-growth polymerizations; atom transfer radical polyadditions

1. Introduction

(Bio)degradable plastics contain degradable units that include several components including at
least one initiator, monomer, and cross-linker [1]. As demonstrated in Scheme 1, numerous studies and
reviews have reported on degradable or cleavable structural designs and their wide range of application
in biomedicine, biotechnology, agriculture, environmental protection and microelectronics. In synthetic
degradable polymers, the most prevalent degradable units are ester and disulfide linkages and the
other groups include hemiacetal ester, trithiocarbonate, retro-Diels–Alder, carbonate, amino-ester,
thio-ester, acetal, olefin, ortho-nitrobenzyl ester, and so on. Table 1 presents the cleavable units and their
corresponding cleavage methods/agents. Among the cleavable (bio)polymers, aliphatic polyesters,
including the well-known FDA-approved poly(ε-caprolactone) (PCL) and polylactide (PLA) have
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attracted significant attention, not only due to their high (bio)degradability and biocompatibility but also
their cost-effect features [2]. Several simple approaches to functionalized polyester-based copolymers
have been demonstrated through the copolymerization of epoxides and cyclic anhydrides [3–5],
Passerini reactions [6–8], or Baylis–Hillman reactions [9,10]. In this review, we have mainly focused
on representative studies of functional aliphatic polyesters and several new types of degradable
polyesters and polycarbonates. We start by examining innovative synthetic methods, including the
design of functional lactone (f-lactone) and trimethylene carbonate monomers, radical ring-opening
polymerization (RROP), atom transfer radical polyaddition (ATRPA), and simultaneous chain-
and step-growth radical polymerization (SCSRP) and investigate their degradable properties and
related applications.
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Table 1. Cleavable units, cleaving methods/agents, and main generated group(s) after cleavage.

Name of Cleavable Unit Cleaving Method/Agent Generated End-Group(s)
after Cleavage Ref

Ester acids/bases/enzymes hydroxyl & carboxylic acid [11]
Disulfide DTT/GSH/Bu3P thiol [12–14]

Hemiacetal ester acids/alcohols carboxylic acid [15,16]
Trithiocarbonate amines thiol [17,18]

Carbonate acids/bases/enzymes hydroxyl [19,20]
Amino-ester acids/bases/enzymes amine & carboxylic acid [21,22]

Thio-ester acids/bases thiol & carboxylic acid [23,24]
retro-Diels–Alder 1 heat furan & maleimide [25,26]

Acetal acids/TFA(g)
2 hydroxyl [27]

ortho-Nitrobenzyl ester UV (350 nm) ortho-nitrobenzaldehyde &
carboxylic acid [28,29]

Olefin ozone aldehyde [30]
1 An example of rDA reactions based on a pair of furan and maleimide moieties. 2 TFA(g): vapor of trifluoroacetic
acid (DTT: dithiothreitol; GSH: glutathione; Bu3P: tributylphosphine; TFA: trifluoroacetic acid).

2. Synthesis of Functional Aliphatic Polyesters and Polycarbonates by Ring-Opening
Polymerization (ROP)

Ring-opening polymerization (ROP) is one of the most widely used methods for the syntheses of
aliphatic polyesters [31]. In the presence of the initiator or the catalyst, lactones and lactides can be
polymerized efficiently through the fragmentation of the ring, typically in an anionic pathway under mild
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reaction conditions, which produces aliphatic polyesters with highly (bio)degradable and biocompatible
features. This analog of aliphatic polyesters can be reacted with the chain-end hydroxyl group(s) to perform
further functionalization, modifications, or chain extensions. Thus, the limited numbers of functionalizable
end(s) thus can be anticipated [32–34]. However, rendering a variety of functional groups on aliphatic
polyester backbones remains challenging since ROP cannot usually tolerate high-polar groups [35–39].
As shown in Scheme 2A, (co)polymerization of functional lactones (f-lactones) and lactones/lactides
provides a simple synthetic approach to render groups that are less polar but compatible with typical
ROP catalysts. Numerous studies on the synthesis of functional aliphatic polyesters (f-APs) are listed in
Scheme 2B. Most notably, Jérôme et al. [40] reported the first case of controlled/living ROP of 5-ethylene
ketal ε-caprolactone to produce well-defined PCL with cleavable pendant groups (Mn = ca. 7000 and
Mw/Mn = 1.15). PCL backbones with hydroxyl pendant groups can be quantitatively obtained through an
efficient deacetalization reaction. The novel amphiphilic PCL can also form stable and homogeneous
colloidal solutions in water. The study presented the pioneering idea of functional cyclic monomer designs
and explored the synthesis of f-APs and their application in aqueous solutions. In another example of the
synthesis of f-AP and their related applications, Chang et al. [41] reported the synthesis of f-APs possessing
pendant (pen) chlorides via ROP of α-chloro-ε-caprolactone and ε-caprolactone (i.e., PCL–pen–(n Cl),
n = 10, Mn = ca. 17,800 and Mw/Mn = 1.5). The pendent chlorides can subsequently be converted to
azides and used in Cu(I)-catalyzed alkyne-azide cycloaddition reactions to graft nucleobase hydrogen
bonding units, i.e., uracil (U)/adenine (A) along the PCL backbones. Mediation by multiple hydrogen
bonding units results in two types of complementary macromolecules that can form stable and reversible
physical crosslinking networks. Further evaluation by L929 cell cytotoxicity tests revealed that the
PCL-based supramolecular networks possess excellent biocompatible properties. This innovative study
demonstrates the preparation of physically crosslinked and mechanically stable PCL materials with
excellent biocompatible properties that have potential for biomedical engineering applications.
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Scheme 2. (A) Synthesis of functional aliphatic polyesters (f-Aps) via ring-opening polymerization
(ROP). (B) Examples of f-lactones to attain f-APs (α-propargyl-δ-valerolactone [42]; 5-ethylene ketal
ε-caprolactone (m’ = 3, X = H, Y = ketal) [40]; α-fluoro-ε-caprolactone (m’ = 3, X = F, Y = H) [43];
α-chloro-ε-caprolactone (m’ = 3, X = Cl, Y = H) [41]; α-iodo-ε-caprolactone (m’ = 3, X = I, Y = H) [44];
racemic 4-alkyl methylene-β-propiolactones (m’ = 0, X = H, Y = -CH3, -C2H5, -C4H9, -CH2C4F9)
and racemic 4-alkoxymethylene-β-propiolactones (m’ = 0, X = H, Y = -OCH = CH2, -O(CH2)3CH3,
-OCH2Ph) [45–49]; alkyl β-malolactonates (m’ = 0, X = H, Y = -COOCH3, -COOCH2CH = CH2,
-COOCH2Ph) [49–52]).
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On the other hand,β-propiolactone derivatives can be regarded as a renewable type monomer obtained
by effective and eco-friendly carbonylation of racemic epoxides [53]. Interestingly, Thomas et al. [54]
addressed the polymerization mechanism of “syndio-control” from stereo-monomers. For example, ROP of
racemic 4-alkyl-β-propiolactones (racBPL-Rs) with various alkyl groups (e.g., -R: -CH3, -C2H5, -C4H9,
-CH2C4F9) produces functional polyhydroxyalkanoates (PHAs) with well controlled tacticity. As revealed
from the in situ 1H NMR measurements, the formation of a highly alternating PHA was achieved.
The elegant syndio-controlled ROP provides a new type of promising (bio)degradable aliphatic polyesters.
With the design of effective and specific catalysts, Carpentier et al. [45–47,49] recently reported an elegant
strategy that uses rare-earth complexes that incorporate dianionic diamino-oramino-alkoxy-bis(phenolate)
ligands to obtain novel PHA copolymers. Basically, a simple and effective chain-end syndio-control
mechanism is used, which results in the stereo-selective ROP of chiral β-lactones. For example,
the ring-opening copolymerization of racemic 4-alkoxymethylene-β-propiolactones (racBPL-ORs) was
studied (-OR: -OCH2CH = CH2, -OCH3, -OCH2Ph, -OSi(CH3)2C(CH3)3). The results revealed
stereo-control via the catalysts and specific alternative poly(3-hydroxybutyrate) (PHB) copolymers of
P[(HB-OR1)-alt-(HB-OR2)] with various alkoxy groups (e.g., -OR1: -OCH2CH = CH2; -OR2: -OCH3)
were obtained. The main factors for achieving a high degree of alternation include the use of:
(i) a highly syndio-selective catalyst; and (ii) a proper ratio of (R)-BPL-OR1/(S)-BPL-OR2 monomers.
Accordingly, we can expect the formation of novel stereo-complexes through the blending of the resulting
enantiomorphic polyesters.

Besides the well-known aliphatic polyesters, another family of emerging, highly (bio)degradable
and biocompatible aliphatic polycarbonates, poly(trimethylene carbonate) (PTMC), have also been
extensively investigated [55]. Being the starting material for trimethylene carbonate (TMC),
1,3-propanediol can be acquired from the degradation of natural carbohydrates or ring-closure
carbonylation of carbon dioxide [56]. The analog of TMC monomers is thus referred to as a renewable
resource. As shown in Scheme 3a, f-PTMCs can be synthesized by ROP of f-TMCs through either typical
organometallic catalysts or organo-catalysts [57]. As illustrated in Scheme 3b, several representative
functional groups (FG) on the TMC ring are addressed, including (i) OH, (ii) COOH, (iii) allyl/SH,
(iv) propargyl, (v) epoxide, (vi) norbornene, (vii) maleimide, and so on. In order to further graft
specific (macro)molecules, post-reactions between FG and PG can be performed via (i) etherification,
(ii) esterification, (iii) thiol-ene, (iv) alkyne–azide cycloaddition, (v) epoxide–amine, (vi) Diels–Alder,
(vii) Michael addition, and so forth. For example, Harth et al. [58] reported the synthesis of PTMC-based
hydrogels with various crosslinking reagents. They first synthesized PTMCs with pendant functional
groups of both ethyl ester (i.e., PTMC-pen-(O)COEt) and allylic ester (i.e., PTMC-pen-(O)COCH2=).
Subsequently, thio-ene click reactions of the (PTMC-=) and (HS-(EG)n-SH) (EG: ethylene glycol; n = 1 or
35) were conducted to obtain PTMC-crosslinked hydrogels. A polyol of branched polyglycidol (PGY)
and a transesterification catalyst of zinc acetate (Zn(OAc)2) were further introduced into the hydrogels.
Interestingly, the composite underwent a chemical self-modification from the PTMC/PGY/(Zn(OAc)2)
hydrogels at high temperature (ca. 120 ◦C) on the basis of dynamic covalent bonds. Accordingly,
the attractive renewable feature of f-TMC monomers and their ability to render diverse pendant
functional (macro)molecules on f-PTMCs has led to very high expectations for their application to
various practical uses.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 17 
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(TMCs) and post-reactions with R-PG (macro)molecules. (b) Examples of post-reactions between
f-PTMCs and R-PG (macro)molecules through the formation of new linkages (i.e., forming “Link”).

3. Synthesis of Aliphatic Polyesters by Radical Ring-Opening Polymerization (RROP)

Polyesters are typically synthesized by either ROP of lactones/lactides [31] or polycondensation
of hydroxyl and acid monomers [59]. In the 1980s, Bailey et al. [60–64] reported the pioneering cases
of free radical ring-opening polymerizations (RROPs) of specific cyclic ketene acetal (CKA) and cyclic
acrylate (CA) monomers initiated by conventional thermal initiators (i.e., peroxide and azo compounds).
These studies established an innovative approach for producing a variety of functional polyesters on the
basis of radical chemistry. Thereafter in the 1990s, Endo et al. [65–67] and Rizzardo et al. [68] designed
a series of specific vinylcyclopropane (VCP) and cyclic allylic sulfide (CAS) monomers, respectively,
to produce f-APs as well. RROP of VCPs rendered ester linkages in the backbone and also improved
the introduction of other functionalities into the backbone (e.g., olefin and phenyl) and at the pendent
sides (e.g., benzyl and ethylene ketal) (Mn = 22,000 and Mw/Mn = 2.05). In the case of the RROP of CASs,
polyester backbones with sulfide linkages and pendant double bonds were obtained (Mn = 46,200 and
Mw/Mn = 2.3).

The monomers for RROP are classified into two types: the vinyl type such as VCP and the
exo-methylene type such as CKA. In the RROP mechanism of both monomers, a radical species is
added to the carbon–carbon double bond and thus generates a carbon-centered radical, then the radical
ring-opening reaction generates a new carbon-centered radical via the cleavage of a carbon–carbon bond
or a carbon-heteroatom bond (Scheme 4). The polymerization of these monomers proceeds inherently
via the RROP mechanism or a conventional vinyl polymerization mechanism. Only RROP provides an
ester structure in the polymer main chain, thus it is essential to use monomers that have high RROP
selectivity. Kinetic and thermodynamic factors are required for the selectivity: (i) the ring-opening
reaction is accelerated due to the strain of the ring; and (ii) the resulting new carbon-centered radical is
stabilized and/or the ring-opening reaction involves thermodynamically favored isomerization of the
functional group.
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Scheme 4. Mechanism of radical ROP (RROP) for vinyl type (a) and exo-methylene type
(b) monomers. For both monomer types, two possible polymerization mechanisms exist: (i) RROP and
(ii) vinyl polymerization.

Scheme 5a displays representative CKAs with high or exclusive RROP selectivity. One of the
most attractive features of RROP of CKA is the copolymerization with conventional vinyl monomers
including (meth)acrylates, styrenes, vinyl pyridine, vinyl acetate, and N-vinylpyrrolidone, which
can readily provide various (bio)degradable f-PE. The size of the ring of CKA is one of the major
factors controlling the selectivity in the mechanism. CKA with strained rings, for example, the 7 and
8-membered ones are more favorable in the RROP compared to the stable 5 and 6-membered ones.
Namely, the polymerization of the 7-membered ring monomer MDO exclusively provides polyester via
the selective RROP; however, the selectivity of the RROP mechanism of the corresponding 6-membered
ring monomer 2-methylene-1,3-dioxane decreases to about 50%. Another important structural factor is
the introduction of a stabilizing group for the carbon-centered radical generated by the ring-opening,
which are typically phenyl or alkyl groups. While the ring-opening occurs from both sides of an acetal
ring, the introduction of a radical stabilizing group regulates the side of the ring-opening that has
the group. In addition, the relative reactivity between CKA and the vinyl monomer is critical in the
copolymerization to prepare f-PE. Because the olefin of CKA is very electron-rich, the reaction with
propagating radicals formed from common vinyl monomers, which are nucleophilic or amphiphilic,
is relatively unfavored [69]. Therefore, the reactivity ratio in the copolymerization of CKA and vinyl
monomers is often rCKA << 1 < rvinyl, which impedes the incorporation of the CKA monomer and
causes a deviation between the composition of polymer from the monomer feeding ratio. For example,
in the copolymerization of MDO and MMA, the reactivity ratios are rMDO = 0.057 and rMMA = 34.12 [70],
and the composition of MDO in the resulting polymer is 4% (polymerization at 40 ◦C) or 30% (at 120 ◦C)
from copolymerization with a monomer feeding ratio of MDO/MMA = 54/46 or 50/50, respectively.
On the other hand, the copolymerization of CKA with vinyl acetate (VAc) undergoes in an almost
random manner (i.e., more statistical distribution of monomers in the chain), which is confirmed by
rCKA = 0.93 and rVAc = 1.71 in the copolymerization with MDO [71], and this provides a copolymer
with a homogeneous composition of CKA and VAc that is similar to the monomer feeding ratio.
This feature is not limited to VAc, and other vinyl carboxylate monomers also give a copolymer with
CKA in an almost random manner. Additionally, the copolymerization of vinyl bromobutanoate
and MDO [72], with post-modification through alkyne-azide cycloaddition results in PEG-grafted
degradable polyester.

Recently, interesting progress in the scope of copolymerization has been reported. Guillaneuf et al. [75]
reported the copolymerization of vinyl ether and MDO in a highly random manner. The composition
of monomers during the polymerization reaction was found to follow the initial feeding ratio of the
monomers. The copolymerization reactivity ratio was rMDO = 0.73 and rvinyl ether = 1.61, which is
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consistent with of the theoretical calculation of the reaction rate for the α-oxyethyl radical and MDO.
The highly random manner could also be related to the fact that vinyl ethers are not homopolymerized
by the radical polymerization. The synthetic benefit of vinyl ether for f-PE is the ready availability of
various functional monomers, and indeed, Cl, oligo(ethylene glycol) and terminal alkene functionalized
vinyl ethers have been shown to give copolymers with MDO. These copolymers were further modified to
obtain a fluorescent probe functionalized polymer and a degradable elastomer. Another recent example
is the copolymerization of BMDO and maleimide reported by Sumerlin [76]. The copolymerization
proceeded with the quantitative ring-opening of BMDO to the ester and in a highly alternating
manner. The copolymer was readily functionalized by utilizing N-substituent of maleimide, and the
alternating structure might be suitable for fast degradation to low molecular weight fragments.
Interestingly, although the alternative copolymerization of other CKAs such as MDO and maleimide
has been reported, the selectivity of the ring-opening of CKA was not enough, which indicates that
the appropriate combination of monomer and the reactivity is quite important in designing the CKA
copolymer as a f-PE.
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In conventional free radical polymerization, radicals are produced in the initiation step (kd = ca.
10−4–10−6 s−1) through the decomposition of thermal or photo-initiators. Subsequently, a moderate-to-fast
chain propagation (depending on the monomers: kp = ca. 102–104 M−1s−1) and very fast radical
terminations (kt = ca. 106–108 M−1s−1) occur [77]. Due to the irreversible radical generating step,
rather high concentrations of the unstable species cause a significant number of terminations, which leads
to broad molecular weight distributions and uncontrollable kinetics. Although RROP provides an
alternative approach to the synthesis of f-APs, the RROP method has to meet some application demands
that require a narrow range of molecular weight distributions. In the mid-1990s, reversible-deactivation
radical polymerization (RDRP) was discovered and it is still being developed in academia and industry [78].
In RDRP, reagents of dormant molecules and regulators (which act as activators and deactivators) are
necessarily present. The key to achieving controlled/living polymerization is to follow a number of general
steps [78]: (i) the initiating rate of the reaction between the activators and dormant molecules should
be faster than that of the chain propagating rate; (ii) meanwhile, deactivators and active radicals
are produced in order to proceed with certain monomer additions; (iii) the concentration of the
(macro)radicals is quickly deactivated by deactivators; and (iv) meanwhile, activators and dormant
(macro)molecules are reversibly generated so that another cycle can be conducted starting from step
(i). In a controlled/living polymerization, the concentrations of active radicals should remain low in
order to achieve the suppression of termination reactions and so that all polymer chains can grow evenly
and consecutively. A homogeneous dispersion of a regulator in the polymerization mixture provides
an effectively controlled/living process. However, the initiating sites (i.e., active centers) can be either
homogeneously dispersed in the polymerization mixture or attached to various heterogeneous surfaces of
silicon, metals, and plastics (e.g., wafers, plastic tubes, porous materials, (nano)fibers, (nano)particles, etc.).
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Among RDRPs, the most widely used techniques include atom transfer radical polymerization
(ATRP) [79–82], nitroxide-mediated radical polymerization (NMRP) [83], and reversible
addition-fragmentation chain transfer (RAFT) polymerization [84–87]. Accordingly, the diverse
techniques of RDRPs have been introduced to RROP systems to obtain well-defined (co)polymers with
ester linkages. For instance, Matyjaszewski et al. [73] carried out the atom transfer-mediated RROP
(AT-RROP) of CA or CKA monomers with typical MMA or St monomers. Scheme 5b shows an example
of the AT-RROP of MMA and MPDO to provide hydrolysable P(MMA-co-MPDO) random copolymers
(Mn = ca. 16,300 and Mw/Mn = 1.31). Interestingly, repeating units of ring-opened (i.e., forming
α-ketoester linkages) and non-ring-opened (i.e., proceeding 1,2-vinyl additions) from the MPDO
monomer were attained. Similar results were found in comparisons of AT-RROP and conventional
RROP methods. Some other AT-RROPs of CA or CKA type monomers with typical vinyl monomers
have also been demonstrated [74,88–96]. Accordingly, nitroxide-mediated RROP (NM-RROP) [97,98]
and reversible addition-fragmentation chain transfer-mediated RROP (RAFT-RROP) [99,100] have also
been effectively applied to obtain well-defined polymers with ester linkages in the backbone. Table 2
summarizes the monomers, polymer structures, their related synthetic methods, and applications on
the basis of a RROP approach.

Table 2. Summary of monomers, polymer structures, their related synthetic methods, and applications.

Monomer(s) Polymer Structure Synthetic
Method Application a Ref
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4. Synthesis of Degradable Polyesters by Atom Transfer Radical Polyaddition (ATRPA)

The normal ATRP and its derivative techniques [80] are based on atom transfer radical addition
(ATRA) [101,102]. Recently, extensions of multi-step ATRA created a novel analog of aliphatic polyesters
with functional groups on their polymer backbones that can be obtained through manipulation of the
different activation/deactivation rate constants of the inimers (i.e., initiator and monomer). In 1997,
preliminary research on the preparation of aliphatic polyesters through ATRP of AB-type inimers was
reported by Matyjaszewski et al. [103,104]. The studies addressed the possibility of obtaining aliphatic
polyesters during atom transfer-induced radical self-condensing vinyl polymerization (ATR-SCVP)
of aliphatic ester type inimers. Through the ATR-SCVP of 2-((2-bromopropionyl)oxy)ethyl acrylate
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(BPEA), topological (hyper)branched polymers comprising both aliphatic polyester and polyacrylates
structures were attained. Later, Li et al. coined the term, “atom transfer radical polyaddition” (ATRPA),
for the synthesis of perfect linear aliphatic polyesters.

Scheme 6 demonstrates the general mechanism of ATRPA, which provides perfect linear aliphatic
polyesters (i.e., the R2 linkage comprising the ester group). The first example of perfect control ATRPA
was demonstrated by Kamigaito et al. in 2007 [105]. Through the design of a specific AB type inimer
(e.g., allyl 2-chloropropanoate) with a reactive C–Cl bond (i.e., site B), they developed a novel and
radical polyaddition method perfectly controlled by transition metals. The specific inimer can be
activated by a lower-oxidation state transition metal (e.g., Cu(I), Ru(II), Fe(II), etc.) to form a radical
species (i.e., species 1) and react with a double bond (i.e., site A) of another inimer. More importantly,
the newly formed single addition radical species (i.e., species 2) can be deactivated by a higher-oxidation
state transition metal (e.g., Cu(II), Ru(III), Fe(III), etc.) to obtain a dimer that possesses extremely
inactive pendant C–Cl bonds (i.e., site B’ on species 3). By perfectly and slowly repeating the single
addition of inimers, linear aliphatic polyesters can be obtained [106,107]. Li et al. also designed an AB
type inimer (i.e., (4-vinylbenzyl 2-bromo-2-isobutyrate (VBBiB)) [108] or AA/BB paired monomers,
i.e., bis(styrenics)/bis(bromoisobutyrates) [109,110]. They made four critical breakthroughs on the basis
of the ATRPA technique including: (i) controlling the topology from hyperbranched to linear polymers;
(ii) improving the effectiveness of perfect-control ATRPA, i.e., polymerizations were reduced to a few
days; (iii) rendering a variety of functional groups into the linear polymer backbone, i.e., diverse
functional linkages between R1 and R2; and (iv) grafting different functional polymers onto the linear
polymer backbone, i.e., through post-reactions of C–X bond. In polymerizations of VBBiB in anisole at
0 ◦C with a homogeneous catalyst system, for example, a step-growth trend was detected. At such a
low temperature, high selectivity between the inactive B’ and active B sites can be retained, leading to
the formation of linear aliphatic polyesters. In polymerizations of VBBiB in toluene at 0 ◦C with a
heterogeneous catalyst system, the deactivation efficiency of the active B• radical (chain-)ends was
insufficient, which led to fast conventional free radical polymerizations to produce linear polymers with
C–C as the backbones and bromoisobutyryl as the pendant groups. Polymerizations of VBBiB in anisole
at high temperatures (i.e., 20–60 ◦C) with a homogeneous catalyst system resulted in low selectivity
between the inactive B’ and active B sites, leading to the formation of branched polymers through
the mechanism of atom transfer-induced radical self-condensing vinyl polymerization (ATR-SCVP).
Further, Kamigaito et al. and Li et al. utilized metal-catalyzed intermolecular radical polyadditions to
design sequence-regulated vinyl polymers by exact manipulation of functionality equivalents [102,107].
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Recently, Huang et al. [87,111,112] designed a highly reactive AB type inimer (i.e., 4-vinylbenzyl
2-bromo-2-phenylacetate (VBBPA)), which significantly improved the reactivity for ATRPA
(i.e., polymerizations were reduced to a few hours) but kept high selectivity, to obtain linear aliphatic
polyesters. Therefore, high molecular weight aliphatic polyesters (Mw = ca. 26,000 and Mw/Mn = 2.09)
can be effectively obtained in three hours. This significant improvement was due to two factors: (i) the
activation rate of the VBBPA initiating site is much faster than that of VBBiB (i.e., ka,VBBPA/ka,VBBiB = ca.
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2 × 103 at 35 ◦C), which results in highly reactive ATRPA; and (ii) the difference in the activation rate in
the C–X groups at the chain ends and the inactive C–X groups on the backbones is extremely large
(i.e., ka,C–X(PVBBPA end)/ka,C–X(PVBBPA backbone) = ca. 3 × 104 at 35 ◦C), which results in a highly selective
ATRPA. By tracing the ATRPAs of VBBiB and VBBPA, an interesting self-degrading behavior was
observed in the PVBBiB, which resulted in the formation of a five-membered-ring lactone structure
(i.e., (5-(4-(bromomethyl)phenyl)dihydro-3,3-dimethylfuran-2(3H)-one)). In the same circumstances,
the PVBBPA performed as a stable type polyester. Eventually, post-click reactions were applied
to obtain amphiphilic polymer brushes (i.e., aliphatic polyesters as the backbone; hydrophilic
poly(ethylene glycol) as the grafting chains). The novel polyesters possess pH-sensitive and reversible
thermoresponsive behaviors [110,113]. Therefore, the development of innovative ATRPAs provides an
alternative strategy for obtaining f-APs.

5. Synthesis of Degradable Polyesters by Simultaneous Chain- and Step-Growth Radical
Polymerization (SCSRP)

Kamigaito et al. developed another novel technique, which was similar but different to ATRPA,
for simultaneous chain- and step-growth radical polymerization (SCSRP) [114]. As shown in Scheme 7,
a common vinyl (i.e., methyl acrylate (MA)) and an inimer (i.e., compound 1) are both present in the
reaction mixture. Mediated by transition metal catalysts (e.g., Cu(I), Ru(II), Fe(II), etc.), the resulting
atom transfer reactions can effectively perform simultaneous ATRP (i.e., Path A) and ATRPA (i.e., Path B)
mechanisms. The proper design of the inimer (i.e., compound 1) means that the branching reactions
via the ATR-SCVP mechanism (i.e., Path D) can almost be suppressed. Eventually, novel polymer
structures are obtained that are comprised of both polyvinyl and polyesters as the backbone (Mw = ca.
36,000 and Mw/Mn = 2.01). That is, the chemical structures obtained via the SCSRP of vinyls and
effective inimers are similar to the copolymers obtained via the RROP of vinyls and CKAs. However,
the CKA monomers have very poor reactivity toward copolymerization with vinyls, which limits
the introduction of ester linkage into the polyvinyl backbones. Thus, copolymers with varying
compositions of polyvinyl and polyester can be effectively attained via the SCSRP technique [115–117].
Zhu et al. [118] performed fast and effective SCSRP of MA and ABP (i.e., allyl 2-bromopropanoate) to
obtain P(MA-co-ABP) copolymer (Mw = ca. 5100 and Mw/Mn = 1.78) with both a degradable ester group
and an undegradable poly(acrylate) segment. They also identified the α-double bond at the copolymer
chain end. Then, efficient thiol-ene click reactions of thiol-terminated PNIPAM (poly(N-isopropyl
amide)) and double bond-terminated P(MA-co-ABP)s were performed. Serial novel block copolymers
of PNIPAM-b-P(MA-co-ABP) were synthesized and these displayed thermoresponsive properties with
lower critical solution temperatures (LCSTs: 34–37 ◦C). SCSRP successfully linked the undegradable
polyvinyl (i.e., C–C linkages in the backbones) and the degradable polyester (i.e., ester groups in the
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6. Conclusions and Outlook

In this report, we first discussed the most recent novel synthetic methods for preparing functional
polyesters. Then, recent topics of interest in regard to the synthesis of polyesters, including the use
of bio-originated or “sustainable” monomers, organocatalyzed ROP for polyesters, and the efficient
functionalization of polyesters are summarized. Finally, recent innovations in the polymer chemistry of
RROP, ATRPA, and SCSRP methodologies have created a novel series of (bio)degradable and functional
polyester-containing polymers. These novel functional polyesters have great potential for application
in biomedical, biotechnology, nanomaterials, microelectronics as well as contributing to a circular
economy, environmental protection, and agriculture.

The development of degradable, especially biodegradable polymers with functional properties is
becoming increasingly important. For example, the European Chemicals Agency recently announced
a recommendation to restrict the amount of micro-plastic additives in products and there are other
demands for environmental protection. Biodegradable polymers are excluded from these regulations;
however, the polymers are required to reach degradability standards that are much stricter than in
the past. The regulations regarding use of micro-plastics are also expected to be imposed on various
(synthetic) polymer products. Therefore, polymers (as products and additives) with a wide range of
functionality and sufficient value, which have low environmental impact and high (bio)degradability
are highly desirable in the long run.
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