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This study investigated themain factors influencing the genetic variance and the

variance of breeding values (EBV). The first is the variance of genetic values in

the base population, and the latter is the variance of genetic values in the

population under evaluation. These variances are important as improper

variances can lead to systematic bias. The inverse of the genetic relationship

matrix (K−1) and the phenotypic variance are the main factors influencing the

genetic variance and heritability (h2). These factors and h2 are also the main

factors influencing the variance of EBVs. Pedigree- and genomic-based

relationship matrices (A and G as K) and phenotypes on 599 wheat lines

were used. Also, data were simulated, and a hybrid (genomic-pedigree)

relationship matrix (H as K) and phenotypes were used. First, matrix K

underwent a transformation (K* = wK + α11′ + βI), and the responses in the

mean and variation of diag(K−1) and offdiag(K−1) elements, and genetic variance

in the formof h2 were recorded. Then, the originalKwas inverted, andmatrixK−1

underwent the same transformations as K, and the responses in the h2 estimate

and the variance of EBVs in the forms of correlation and regression coefficients

with the EBVs estimated based on the original K−1 were recorded. In response to

weighting K by w, the estimated genetic variance changed by 1/w. We found

that μ(diag(K)) − μ(offdiag(K)) influences the genetic variance. As such, α did not

change the genetic variance, and increasing β increased the estimated genetic

variance. Weighting K−1 by w was equivalent to weighting K by 1/w. Using the

weighted K−1 together with its corresponding h2, EBVs remained unchanged,

which shows the importance of using variance components that are compatible

with the K−1. Increasing βI added to K−1 increased the estimated genetic

variance, and the effect of α11′ was minor. We found that larger variation of

diag(K−1) and higher concentration of offdiag(K−1) around the mean (0) are

responsible for lower h2 estimate and variance of EBVs.
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1 Introduction

Best linear unbiased prediction (BLUP, Henderson (1975a))

segregates genetic and environmental effects influencing

phenotypes, for predicting breeding values. The statistical

model, including fixed effects, non-genetic random effects,

and random genetic effects, defines how this segregation

should be done. Depending on the BLUP type, additive

genetic relationships between individuals are modelled via A,

G, orHmatrices (A for the pedigree-based BLUP (PBLUP),G for

genomic BLUP (GBLUP, VanRaden (2008)), and H for single-

step genomic BLUP (ssGBLUP, Aguilar et al., 2010; Christensen

and Lund, 2010), whereH is a pedigree-genomic hybrid additive

relationship matrix). The inverses of these matrices are used in

BLUP. DenotingA,G, andH as K, BLUP (in its simplest form) is

written as:

X′X X′Z
Z′X Z′Z + K−1λ

[ ] b̂
û

[ ] � X′y
Z′y[ ], (1)

where X and Z are matrices relating phenotypes to fixed

effects and individuals, respectively, y, b̂ and û are the vectors of

phenotypes, estimated fixed effects and estimated breeding values

(EBV), λ is the residual to genetic variance ratio, equal to (1—h2)/

h2, and h2 is the heritability of the trait. The greater the genetic

variance, the lower the λ, and the wider the distribution of EBVs

deviated from the mean. Matrix K and the phenotypic variance

(within and across families) are other factors influencing the

genetic variance and the variance of EBVs. The more related the

individuals in a population, the less the genetic variation in that

population. Genetic variance is a function of μ(diag(K)) −

μ(offdiag(K)) = Dk (Searle, 1982; Speed and Balding, 2015;

Legarra, 2016), and μ(K) is heavily ((1–1/n)%, where n is K’s

dimension) influenced by μ(offdiag(K)). According to Legarra

(2016): “the genetic variance is the variance of the genetic values of

a set of individuals who constitute the reference, or base,

population”, and it is a function of Dk. The higher the Dk

value, the higher the genetic variance.

For the same population, trait, and model, different K may

result in different estimates of genetic variance (Legarra, 2016),

which can be practically confusing. Also, due to different genetic

variances imposed by differentK, genomic EBVs fromGBLUP or

ssGBLUP may show a different variance and distribution

compared with those from PBLUP, which can be interpreted

as bias in the validation of genomic evaluations (Nilforooshan

et al., 2010). Tsuruta et al. (2019) studied bias in genomic EBV

and reported the incompatibility between A and G, ignoring

inbreeding coefficients in A−1, strong selection on a trait

(especially when the incompatibility between A and G is

large), inaccurate estimates of unknown parent groups, and

using outdated or improper genetic parameters as the main

sources of bias in ssGBLUP evaluations. It is interesting to

know which properties of K elements cause different estimates

of genetic variance and distributions of EBVs for different K.

Whereas,G is built and inverted for GBLUP, A−1 andH−1 are

directly obtained without formingA andH. MatrixG−1 is needed

as a part of H−1 (Aguilar et al., 2010). In fact, forming and

inverting A is computationally very intensive (Nilforooshan

et al., 2021), even more intensive for H. Therefore, knowing

about the relationships between the K−1 properties and the

genetic variance can be as important as the relationships

between the K properties and the genetic variance. There is

little known about the effect of K−1 properties on the estimated

genetic variance and the distribution of EBVs.

The aim of this study is to find distribution properties of K

and K−1 influencing the estimated h2 and the distribution of

EBVs. Matrix K influences the estimated h2 and the distribution

of EBVs via K−1. It defines the way the phenotypic variation is

distributed within and across relatives (e.g., full-sib and half-sib

families), and the covariance made between phenotypes and

genetic effects (equal to the genetic variance). However, the

phenotypic variance, individuals on which phenotypes are

recorded (via Z), and other blocks of the mixed model

equations, such as those corresponding to additional random

effects (if any) also play a role in the proportion of total variance

allocated to additive genetic effects, and the distribution of EBVs.

2 Materials and methods

2.1 Data

2.1.1 Wheat data
The built-in data from R package BGLR (de los Campos and

Perez Rodriguez, 2021) was used in this study. The data consist of

a pedigree-based additive genetic relationship matrix, genotypes

on 1,279 Diversity Array Technology markers, and phenotypes in

four environments on 599 CIMMYT wheat lines. Twenty

markers were deleted due to having a minor allele frequency

less than 0.02. Genotypes and phenotypes (2-year average grain

yield) were available for all the lines. Phenotypes in environment

one were considered as a single trait to study. Phenotypes were

available on all lines and had a μ ± sd of 0 ± 1.

2.1.2 Simulated data
Data were simulated to test the hypotheses on more than the

wheat data. The R package pedSimulate (Nilforooshan, 2022c)

was used for data simulation. The simulation began with a

founder population (F0) of 100 males and 100 females

randomly mated to each other to produce the next generation.

Ten generations were simulated following F0, with no generation

overlap. There were 3,144 individuals in the simulated pedigree.

The mating ratio was 1:1, and the litter size was 4. Females were

selected based on own phenotypes, and in each generation 50% of

females were randomly mated to 50% of males. Genotypes were

simulated on 5,000 markers. Phenotypes were set to missing for

F0, and for 25% of males onwards. Genotypes were retained for
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generations 8 to 10 (700 individuals), and the rest of genotypes

were set to missing. For generations 1 to 10, 10% of sires and 5%

of dams were randomly set to missing. Phenotypes were available

on 2,554 individuals and had a μ ± sd of 48.08 ± 6.48.

2.2 Methods

The statistical model was y = μ + Zu + e. There was no fixed

effect other than the overall mean. Matrix G was formed using

method 1 of VanRaden (2008): G =WW′/2∑pl(1 − pl), and then

combined with A as 0.95G + 0.05A, where pl is the marker allele

frequency at locus l, and W is the centered and scaled genotype

matrix. The wheat data underwent PBLUP and GBLUP, and the

simulated data underwent ssGBLUP (i.e., using A−1, G−1 andH−1

in BLUP (Eq. 1), respectively).

Variance components (genetic and residual variances) were

estimated using ASReml statistical software (Gilmour et al.,

2015). Breeding values were predicted using the R function

solver in the data repository ([Dataset] Nilforooshan, 2022b)

to form and solve the mixed model equations. The equation

systems were small (600 and 3,145 equations for the wheat and

the simulated data, respectively) and the mixed model equations

were solved directly.

2.2.1 Properties of K
To study the relationships between the properties of K and

the estimated h2 and the distribution of EBVs, matrix K

underwent the following transformation.

Kp � wK + α11′ + βI (2)

Different combinations of w (0.9, 1, and 1.1), α (–0.05, 0, and

0.05), and β (–0.05, 0, and 0.05) were tested on K, and the

influences on the distributions of diag(K−1), offdiag(K−1), and the

estimated h2 were studied. For PBLUP (K =A), α = –0.05 was not

tested, as it was leading to negative offdiag(A) values. Similarly,

α = 0 and β = –0.05 was not tested on A, as it was leading to

diagonal values less than 1. One of the main characteristics of A

as opposed toG (andH) is having a 1-tailed distribution with the

minimum diagonal and off-diagonal values of 1 and 0,

respectively.

Coefficients α and β re-base K and diag(K), respectively.

Coefficient w weights K, which also changes μ(diag(K)) −

μ(offdiag(K)), the variation in K elements, and the variation

in diag(K) relative to the variation in offdiag(K).

2.2.2 Properties of K−1

The originalK (w = 1, α = 0, and β = 0) was inverted, and then

K−1 was transformed using Eq. 2 (replacing K with K−1 in the

equation). Different combinations of w, α, and β were tested on

K−1 (same as those tested on K), and the influences on the h2

estimate, and the distribution of EBVs were studied. Distribution

of EBVs were compared to those using the originalK−1 (w = 1, α =

0, and β = 0) by regressing the latter to the first, and estimating

the Pearson correlation between the two sets of EBV. EBVs were

predicted using the h2 estimate applying the original K−1 vs.

(K−1)*.
Similar and other transformations are applied toK andK−1 in

the context of ssGBLUP (e.g., Aguilar et al. (2010); Chen et al.

(2011); Vitezica et al. (2011); Misztal et al. (2015);

MiX99 Development Team (2016); Martini et al. (2018)).

However, we emphasize that the transformation in this study

(Eq. 2) was for studying the properties of K and K−1, not fine-

tuning them.

3 Results and discussion

For the wheat data, K corresponds to A and G, and for the

simulated data, K corresponds to H.

TABLE 1 The effect ofw, α, and β (wK + α11′ + βI) on the distribution of
diag(K−1).

K1 w α β

–0.05 0 0.05

A 0.9 0 NA 18.221 ± 52.028 3.653 ± 3.705

0.05 –5.433 ± 34.812 18.220 ± 52.028 3.653 ± 3.706

1 0 NA 16.399 ± 46.825 3.478 ± 3.621

0.05 –3.460 ± 53.157 16.398 ± 46.825 3.477 ± 3.621

1.1 0 NA 14.908 ± 42.568 3.323 ± 3.542

0.05 –5.966 ± 117.207 14.908 ± 42.568 3.323 ± 3.542

G 0.9 –0.05 87.558 ± 170.569 18.570 ± 29.717 6.437 ± 2.568

0 539.138 ± 1127.180 18.587 ± 29.733 6.443 ± 2.566

0.05 105.853 ± 208.039 18.572 ± 29.720 6.438 ± 2.568

1 –0.05 –16.488 ± 44.850 16.712 ± 26.745 6.092 ± 2.553

0 –11.828 ± 40.305 16.729 ± 26.759 6.099 ± 2.551

0.05 –15.978 ± 44.288 16.715 ± 26.748 6.094 ± 2.552

1.1 –0.05 22.828 ± 58.845 15.193 ± 24.314 5.789 ± 2.533

0 23.852 ± 59.374 15.208 ± 24.327 5.795 ± 2.531

0.05 22.988 ± 58.921 15.196 ± 24.316 5.790 ± 2.532

H 0.9 –0.05 4.633 ± 2.400 3.119 ± 1.081 2.480 ± 0.676

0 4.634 ± 2.401 3.120 ± 1.080 2.480 ± 0.676

0.05 4.633 ± 2.400 3.119 ± 1.081 2.480 ± 0.676

1 –0.05 3.938 ± 1.918 2.807 ± 0.972 2.276 ± 0.634

0 3.939 ± 1.919 2.808 ± 0.972 2.276 ± 0.634

0.05 3.938 ± 1.918 2.807 ± 0.972 2.276 ± 0.634

1.1 –0.05 3.433 ± 1.601 2.552 ± 0.884 2.103 ± 0.596

0 3.434 ± 1.601 2.552 ± 0.884 2.103 ± 0.596

0.05 3.433 ± 1.601 2.552 ± 0.884 2.103 ± 0.596

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.
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3.1 Properties of K

In animal populations, matrices A and G have 1-tailed

and 2-tailed distributions skewed toward right, with diagonal

and off-diagonal elements centered around 1 and 0,

respectively (Simeone et al., 2011; Nilforooshan, 2020).

The wheat data showed unusual distributions of A and G

compared to animal data. Also, genotypes for all the markers

were 0s and 1s. Distributions of the diagonal and off-diagonal

elements of A and G for the wheat data are presented in

Supplementary Figure S1, and the distributions of the

diagonal and off-diagonal elements of A, G and H for the

simulated data are presented in Supplementary Figure S2.

Diagonal elements of K had a larger mean and a smaller

variation than the off-diagonal elements. Thus, w >
1 increased the mean of diag(K) further than the mean of

offdiag(K), and increased the variance of offdiag(K) further

than the variance of diag(K).

Table 1 shows the effect of re-basing and re-scaling K via α

and w, and re-basing diag(K) via β, on the distribution (μ ± sd) of

diag(K−1). The corresponding results for offdiag(K−1) are

presented in Table 2. Increasing w from 0.9 to 1.1, and β

from –0.05 to 0.05 reduced both the mean and sd of

diag(K−1). The reductions by the increase of β were more

noticeable than the reductions by the increase of w. The effect

of αwas marginal. For the wheat data, reduction of β to –0.05 had

severe consequences on the properties of K−1 as in some cases

μ(diag(K−1)) became negative or largely positive, and

sd(diag(K−1)) and sd(offdiag(K−1)) increased tremendously.

This numerical instability can be due to K getting close to

singular by the reduction of μ(diag(K)) − μ(offdiag(K)). The

consequences were less severe forw = 1.1 andmore severe forw =

0.9. The reason is again due to the change of μ(diag(K)) −

μ(offdiag(K)) because of w. Like A, an A−1 in a good

numerical condition is expected to have a minimum of

diagonal values equal to 1 (for an individual with no known

parent and progeny). Matrix A, which compared to G had

3.11 times μ(diag(K)) − μ(offdiag(K)), 0.611 times

sd(diag(K)), and 2.893 times sd(offdiag(K)), showed

μ(diag(K−1)) and μ(offdiag(K−1)) close to those for G,

1.750 times sd(diag(K−1)), and 1.887 times sd(offdiag(K−1)).

The effects of w, α, and β on μ(offdiag(K−1)),

sd(offdiag(K−1)), and μ(diag(K−1)) − μ(offdiag(K−1)) were

similar to those for the mean and sd of diag(K−1)). For the

simulated data, μ(offdiag(K−1)) remained –0.001, regardless of w,

α, and β. For α = 0, μ(diag(K−1)) − μ(offdiag(K−1)) was slightly

higher compared with α = –0.05 and α = 0.05, indicating a better

numerical condition for K−1, since 11′ is completely singular.

Every covariance matrixK can be decomposed to SQS, where

S2 is a diagonal matrix of variances equal to diag(K), and Q is a

correlation matrix. Adding α11′ + βI to K changes it to S*Q*S*,

TABLE 2 The effect ofw, α, and β (wK + α11′ + βI) on the distribution of
offdiag(K−1).

K1 w α β

–0.05 0 0.05

A 0.9 0 NA –0.030 ± 2.099 –0.006 ± 0.142

0.05 0.009 ± 1.342 –0.030 ± 2.099 –0.006 ± 0.142

1 0 NA –0.027 ± 1.889 –0.006 ± 0.139

0.05 0.006 ± 2.134 –0.027 ± 1.889 –0.006 ± 0.139

1.1 0 NA –0.025 ± 1.718 –0.006 ± 0.136

0.05 0.010 ± 6.924 –0.025 ± 1.718 –0.006 ± 0.136

G 0.9 –0.05 –0.146 ± 90.017 –0.031 ± 1.111 –0.011 ± 0.156

0 –0.899 ± 536.710 –0.030 ± 1.112 –0.010 ± 0.156

0.05 –0.177 ± 107.602 –0.031 ± 1.111 –0.011 ± 0.156

1 –0.05 0.028 ± 18.065 –0.028 ± 1.000 –0.010 ± 0.151

0 0.021 ± 15.930 –0.027 ± 1.001 –0.010 ± 0.151

0.05 0.027 ± 17.785 –0.028 ± 1.000 –0.010 ± 0.151

1.1 –0.05 –0.038 ± 20.896 –0.025 ± 0.909 –0.010 ± 0.147

0 –0.039 ± 21.028 –0.025 ± 0.910 –0.009 ± 0.147

0.05 –0.038 ± 20.913 –0.025 ± 0.909 –0.010 ± 0.147

H 0.9 –0.05 --0.001 ± 0.097 –0.001 ± 0.046 –0.001 ± 0.030

0 –0.001 ± 0.097 –0.001 ± 0.046 –0.001 ± 0.030

0.05 –0.001 ± 0.097 –0.001 ± 0.046 –0.001 ± 0.030

1 –0.05 –0.001 ± 0.077 –0.001 ± 0.041 –0.001 ± 0.028

0 –0.001 ± 0.077 –0.001 ± 0.041 –0.001 ± 0.028

0.05 –0.001 ± 0.077 –0.001 ± 0.041 –0.001 ± 0.028

1.1 –0.05 –0.001 ± 0.065 –0.001 ± 0.037 –0.001 ± 0.026

0 –0.001 ± 0.065 –0.001 ± 0.037 –0.001 ± 0.026

0.05 –0.001 ± 0.065 –0.001 ± 0.037 –0.001 ± 0.026

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.

TABLE 3 The effect of w and β (wK + α11′ + βI) on the heritability
estimate.

K1 w β

–0.05 0 0.05

A 0.9 0.3533 0.3596 0.3662

1 0.3302 0.3357 0.3415

1.1 0.3099 0.3148 0.3199

G 0.9 0.7331 0.7610 0.7911

1 0.7148 0.7413 0.7698

1.1 0.6974 0.7226 0.7497

H 0.9 0.2769 0.2808 0.2848

1 0.2566 0.2600 0.2634

1.1 0.2392 0.2421 0.2450

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.

Frontiers in Genetics frontiersin.org04

Nilforooshan and Ruíz-Flores 10.3389/fgene.2022.1000228

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1000228


where (S*)2 � S2 + (α + β)I. Positive α and negative β increase

the absolute values in Q*. With the correlations getting closer to

each other and to 1 or –1, the co-linearity in Q* increases and

consequently K* becomes closer to singular. That would cause

irregular and unstable distribution of the K−1 elements. When K

reaches singularity and becomes non-positive-definite, it turns

non-invertible. Also, wK is equivalent to multiplying S by
��
w

√
.

The h2 was estimated for the simulated data, before and after

setting some pedigree information to missing (10% of sires and

5% of dams, for generations 1–10), and the estimates were

0.2910 and 0.2600, respectively. The reduction in the h2 is

expected as missing pedigree information makes A−1 sparser

and closer to an identity matrix. Table 3 shows the effects of w

and β applied to K, on the h2 estimate. There was no h2 estimate

for A, α = 0, and β = –0.05. The effect of α was minor and it did

not change the h2 estimate rounded to four decimal points. The

h2 estimate increased slightly by increasing β and largely by

decreasing w. The estimated genetic variance changed 1/w times

in response to w (results not shown). Multiplying K by w, is

equivalent to multiplying the genetic variance by w. In response,

the estimated genetic variance changed by 1/w. Similarly,

increasing S to S* with a positive α + β is expected to

increase the variances in K and reduce the estimated genetic

variance and h2. However, change of the correlation matrix Q to

Q* worked in the opposite direction. Consequently, no h2 change

was observed by changing α, and the h2 estimate was even

increased by increasing β. The correlations (Q) are expected

to increase by increasing α. On the other hand, a positive β is

expected to bring correlations closer to 0, and a negative β is

expected to deviate correlations from 0.

The h2 estimates were considerably lower for A than for G

(for the wheat data). The results (Table 3) confirmed previous

reports about the role of Dk or alternatively μ(diag(K)) −

μ(offdiag(K)) in the genetic variance (Searle, 1982; Speed and

Balding, 2015; Legarra, 2016). For A, μ(diag(K)) − μ(offdiag(K))

was considerably higher than for G. The higher genetic variance

imposed by A compared with G was compensated by a lower

estimate of genetic variance and h2. Also, α did not make any

change to μ(diag(K)) − μ(offdiag(K)), neither to the estimates of

genetic variance and h2. Given the magnitude of β in changing

μ(diag(K)) − μ(offdiag(K)), it played a small role in changing the

genetic variance and the h2 estimate.

3.2 Properties of K−1

We studied the distributions of A−1 and G−1 for their large h2

difference, and the results are presented in Figure 1. Though the

difference between the averages of diag(A−1) and diag(G−1) was

small (Table 1), diag(A−1) had a wider range (0.5–540.490 vs.

3.324–303.766) compared with diag(G−1) (Figure 1). The

averages of offdiag(A−1) and offdiag(G−1) were also similar

(Table 2), but offdiag(A−1) had a wider range (–500 to

2.936 vs. –172.679 to 26.056) compared with offdiag(G−1)

(Figure 1). Both A−1 and G−1 had off-diagonal elements

concentrated around 0. Whereas, 97.96% of offdiag(A−1) were

between –0.02 and 0.02, it was 6.37% for offdiag(G−1) (Figure 1).

Off-diagonal elements corresponding to max(diag(A−1))

showed a lower mean and a higher sd compared with those

for max(diag(G−1)), –0.904 ± 20.477 vs. –0.500 ± 9.064. Diagonal

elements corresponding to min(offdiag(K−1)) were 590.490 and

500 for A−1, and 303.766 and 243.530 for G−1, all amongst the

largest diagonal elements. Diagonal elements corresponding to

max(offdiag(K−1)) were moderate to large, 7.666 and 9.089 for

A−1, and 85.750 and 188.623 for G−1.

To determine whether the lower estimates of genetic variance

and h2 for PBLUP are due to the large ranges of diag(A−1) and

offdiag(A−1), or due to the high concentration of A−1 elements

(Figure 1), rows and columns of A−1 that showed diagonal

elements greater than max(diag(G−1)) and off-diagonal

elements less than min(offdiag(G−1)) were discarded.

Discarding 10 rows/columns of A−1 and their corresponding

FIGURE 1
Distribution of K−1 elements for the wheat data.
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phenotypes changed the range of diag(A−1) to 0.5 and 259.224,

and the range of offdiag(A−1) to –166.667 and 2.936. The h2

estimate changed from 0.3357 (Table 3) to 0.3474, which

indicated that the high concentration of A−1 elements is

mainly responsible for the lower h2 estimate for PBLUP

compared with that for GBLUP.

The H−1 (simulated data) had a range of –1.45 to 2.62 for the

off-diagonal elements, and 1 to 6.90 for the diagonal elements.

96.9% of the off-diagonal elements were between –0.02 and 0.02.

The distribution of diag(H−1) is presented in Supplementary

Figure S3. Six rows/columns of H−1 corresponding to the

largest diag(H−1) (ranging from 6.45 to 6.90) were discarded

to study the effect of a lower range and variation of diag(H−1) on

the h2 estimate. That reduced max(diag(H−1)) to 5.12. Also,

μ(diag(H−1)) − μ(offdiag(H−1)) reduced from 2.808 to 2.801,

but the range of offdiag(H−1) did not change. The h2 estimate

increased from 0.2600 to 0.2637, which confirmed the results

from the wheat data, where a lower variation in diag(K−1)

resulted in a higher h2 estimate.

The same transformations applied to K (Eq. 2) were

applied to the original K−1 (i.e., inverted K with w = 1, α =

0, and β = 0), and the responses in the h2 estimate and EBV

distribution were measured. The effects of w, α, and β applied

to K−1 on the h2 estimate are presented in Table 4. The h2

estimate increased slightly by increasing w and largely by

increasing β. The effect of α was insignificant. The h2 estimates

were similar for α = –0.05 and α = 0.05. For the simulated data,

α = 0 resulted in a slightly higher h2 estimate. For the wheat

TABLE 4 The effect of w, α, and β (wK−1 + α11′ + βI) on the heritability
estimate.

K−11 w α β

–0.05 0 0.05

A−1 0.9 –0.05 0.2184 0.3164 0.3793

0 0.1866 0.3127 0.3843

0.05 0.2184 0.3164 0.3793

1 –0.05 0.2513 0.3396 0.3987

0 0.2108 0.3357 0.4041

0.05 0.2514 0.3397 0.3987

1.1 –0.05 0.2807 0.3613 0.4169

0 0.2296 0.3573 0.4226

0.05 0.2808 0.3614 0.4170

G−1 0.9 –0.05 0.6897 0.7198 0.7437

0 0.6831 0.7206 0.7458

0.05 0.6898 0.7199 0.7437

1 –0.05 0.7150 0.7406 0.7611

0 0.7102 0.7413 0.7631

0.05 0.7151 0.7407 0.7612

1.1 –0.05 0.7365 0.7584 0.7764

0 0.7328 0.7592 0.7783

0.05 0.7366 0.7585 0.7765

H−1 0.9 –0.05 0.1121 0.2176 0.2829

0 0.1433 0.2402 0.3004

0.05 0.1122 0.2176 0.2830

1 –0.05 0.1402 0.2360 0.2988

0 0.1725 0.2600 0.3175

0.05 0.1403 0.2361 0.2988

1.1 –0.05 0.1650 0.2536 0.3139

0 0.1982 0.2788 0.3337

0.05 0.1651 0.2537 0.3140

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.

TABLE 5 The effect ofw, α, and β (wK−1 + α11′ + βI) on the correlation of
predicted breeding values with those using the original K−1 (w = 1,
α = 0, and β = 0). The same heritability (based on the original K−1) was
used in all the analyses.

K−11 w α β

–0.05 0 0.05

A−1 0.9 –0.05 0.9925 0.9926 0.9922

0 0.9789 0.9998 0.9956

0.05 0.9926 0.9926 0.9923

1 –0.05 0.9921 0.9925 0.9926

0 0.9745 1.0000 0.9963

0.05 0.9921 0.9925 0.9926

1.1 –0.05 0.9913 0.9921 0.9925

0 0.9691 0.9998 0.9967

0.05 0.9914 0.9922 0.9925

G−1 0.9 –0.05 0.9987 0.9986 0.9985

0 0.9997 0.9998 0.9997

0.05 0.9987 0.9986 0.9986

1 –0.05 0.9987 0.9987 0.9987

0 0.9998 1.0000 0.9999

0.05 0.9987 0.9988 0.9988

1.1 –0.05 0.9985 0.9985 0.9986

0 0.9996 0.9998 0.9998

0.05 0.9985 0.9986 0.9986

H−1 0.9 –0.05 0.2691 0.2650 0.2610

0 0.9980 0.9998 0.9970

0.05 0.2773 0.2736 0.2699

1 –0.05 0.2712 0.2712 0.2634

0 0.9978 1.0000 0.9982

0.05 0.2803 0.2768 0.2733

1.1 –0.05 0.2729 0.2692 0.2654

0 0.9975 0.9999 0.9989

0.05 0.2829 0.2796 0.2763

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.
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data and β = 0.05, α = 0 resulted in a slightly higher h2

estimate, but it was the opposite when β = –0.05. For both

K and K−1, the increase of β resulted in a higher h2 estimate,

and as expected the effect of w applied to K−1 on the h2

estimate was the opposite to that of K. The constant α

almost had no effect on the h2 estimate when applied to K,

and had a small effect on the h2 estimate when applied to K−1.

Correlation coefficients between EBV from different K−1 and

the original K−1 (w = 1, α = 0, and β = 0) are presented in Table 5.

The h2 estimate from the original K−1 was used for the EBV

prediction in all the analyses, (1) to be able to distinguish between

the effects of K−1 and h2 used in the mixed model equation, and

(2) estimation of variance components is computationally

intensive, and in routine genetic evaluations, usually, it is not

affordable to update them regularly. Deviation of w from 1, and α

and β from 0 reduced the EBV correlations. Differences in the

correlations due to w and β were minor. Differences were also

minor for α and the wheat data. However, deviation of α from

0 substantially reduced the correlations for the simulated data,

which might be an indication of K−1 further inflicted by

singularity than for the wheat data.

Regression coefficients of the EBVs using differentK−1 on the

EBVs using the originalK−1 (w = 1, α = 0, and β = 0) are presented

in Table 6. The h2 estimate using the originalK−1 was used for the

EBV prediction in all the analyses. Increasing w and β and

deviation of α from 0 reduced the regression coefficient, as a

result of inflated evaluations. Where the regression coefficient is

greater than the correlation coefficient, it means that the variance

of EBVs has increased, and vice versa. Generally, decreasing w

and β resulted in increasing the variance of EBVs. Unless K−1 has

not inflicted by the singularity of α11′ (e.g., the simulated data),

the role of α on changing the variance of EBVs was marginal.

For different w, α = 0, and β = 0, EBVs remained unchanged

using the h2 estimate from the same K−1 rather than the original

K−1 ([Dataset] Nilforooshan, 2022b). This means that weighting

K−1 by a scalar, that scalar is captured by the variance component

estimation, and using the estimated variance components from

the same K−1, EBVs remain unchanged. Matrix K−1 can be

decomposed to S−1Q−1S−1. Multiplying w to K−1 corresponds

to dividing S by
��
w

√
. Adding α11′ + βI to K−1 changes it to

(S−1)*(Q−1)*(S−1)*, where (S−2)* � S−2 + (α + β)I.

3.3 Factors defining the elements of K
and K−1

Different factors define the elements ofA andG (similarlyH,

in which the genomic information in G is propagated to non-

genotyped individuals). Diagonal elements of A are twice the

probability of two random gametes from an individual carrying

identical by descent alleles, and offdiag(A) are equal to the

numerator of the coefficients of relationship between pairs of

individuals (Wright, 1922). Diagonal elements of G increase as

an individual’s homozygosity rate increases, further by

homozygosity for rare alleles (VanRaden, 2008). Off-diagonal

elements of G increase as the shared homozygosity rate (i.e.,

homozygosity at the same loci) between pairs of individuals

increases, further by shared homozygosity for rare alleles.

Following method 1 of VanRaden (2008), diagonal element of

G for individual i, and the off-diagonal element of G between

individuals i and j equal:

Gii � ∑n
l�1

Mil − 2pl + 1( )2/2∑n
l�1

pl 1 − pl( ), (3)

Gij � ∑n
l�1

Mil − 2pl + 1( ) Mjl − 2pl + 1( )/2∑n
l�1

pl 1 − pl( ), (4)

TABLE 6 The effect of w, α, and β (wK−1 + α11′ + βI) on the regression
coefficient of predicted breeding values on those using the
original K−1 (w = 1, α = 0, and β = 0). The same heritability (based on the
original K−1) was used in all the analyses.

K−11 w α β

–0.05 0 0.05

A−1 0.9 –0.05 1.0685 0.9975 0.9359

0 1.0412 1.0335 0.9453

0.05 1.0686 0.9975 0.9359

1 –0.05 1.0292 0.9624 0.9044

0 0.9974 1.0000 0.9147

0.05 1.0293 0.9625 0.9044

1.1 –0.05 0.9934 0.9304 0.8755

0 0.9567 0.9693 0.8866

0.05 0.9935 0.9304 0.8755

G−1 0.9 –0.05 1.0296 1.0154 1.0016

0 1.0400 1.0225 1.0069

0.05 1.0297 1.0155 1.0017

1 –0.05 1.0063 0.9926 0.9793

0 1.0168 1.0000 0.9850

0.05 1.0064 0.9927 0.9794

1.1 –0.05 0.9848 0.9715 0.9587

0 0.9953 0.9791 0.9646

0.05 0.9849 0.9716 0.9588

H−1 0.9 –0.05 0.1759 0.1558 0.1400

0 1.2041 0.9957 0.8434

0.05 0.1807 0.1603 0.1443

1 –0.05 0.1646 0.1466 0.1324

0 1.2023 1.0000 0.8508

0.05 0.1696 0.1514 0.1369

1.1 –0.05 0.1549 0.1387 0.1257

0 1.1974 1.0012 0.8554

0.05 0.1601 0.1436 0.1304

1Matrices A and G correspond to the wheat data, and matrix H corresponds to the

simulated data.
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WhereMij is the genotype (coded as –1, 0, 1) of individual i at

locus l, and n is the total number of genotype markers.

Diagonal elements of A−1 increase by the number of

individual’s progeny, known mates, and known parents

(Henderson, 1975b). Considering no parent-progeny mating

for an easier explanation, positive offdiag(A−1) are those

between mates, which increase as the number of their progeny

increases, and negative offdiag(A−1) are those between parent and

progeny. Individual i’s inbreeding coefficient adds to the

elements of A−1 corresponding to its progeny and to Aii (the

diagonal element of A−1 for individual i), and deducts from the

elements corresponding to its mates (Nilforooshan, 2022a). Little

is known about factors influencing elements of G−1. We found a

correlation of 0.091 between diag(A) and diag(A−1), and

–0.194 between diag(G) and diag(G−1).

4 Conclusion

Different K and K−1 result in different h2 estimates and

distributions of EBVs. We studied some distribution

properties of K and K−1 elements to learn about the

properties of the two matrices influencing the h2 estimate and

the distribution of EBVs. Higher phenotypic variance and h2

result in higher genetic variance and the variance of EBVs.

Furthermore, the distribution of K and K−1 elements are

important as they directly and indirectly (via the estimated

h2) influence the genetic variance and the variance of EBVs.

Matrix K, which defines the genetic relatedness among

individuals and the amount of inbreeding, underwent a

combination of three transformations, each with three levels.

Adding α11′ to K is equivalent to re-basing the base population

to a former generation with a positive α (Chen et al., 2011;

Vitezica et al., 2011), which is applied in the context of ssGBLUP

for improving the compatibility between G and A. Note that 11′
is completely singin the ular, and an α largely deviated from

0 would bring K closer to singular. Similarly, adding βI to K with

a negative β brings K closer to singular. Therefore, the

conclusions of this study exclude odd observations that might

occur because of K or K−1 becoming singular or nearly singular.

Though eigenvalues of K are direct indicators of K’s numerical

condition, negative or high μ(diag(K−1)), and/or very large

sd(diag(K−1)) and sd(offdiag(K−1)) are indirect indicators of

K’s ill numerical condition.

Depending on the sign of β, μ(diag(K)) − μ(offdiag(K)) or Dk

is changed. A positive β means adding to inbreeding coefficients

while keeping genetic covariances (i.e., offdiag(K)) unchanged. It

also means adding unstructured variance to the structured

genetic variance, which resulted in the increase of the genetic

variance, the h2 estimate, and the variance of EBVs. In inbred

populations, offdiag(K) increase further than diag(K) by

inbreeding. As a result of the reduced Dk, the genetic

variance, and the variance of EBVs are expected to reduce.

Weighting K by w, both the genetic variance and Dk are

weighted. This weight is captured by the variance component

estimation and in response to the genetic variance multiplied by

w, 1/w of the genetic variance is estimated, which is equivalent to

changing h2 from 1/(1 + λ) to w/(w + λ). Similarly, weighting K−1

by w, w times the genetic variance is estimated, which is

equivalent to changing h2 to 1/(1 + wλ). Applying the

weighted K−1 and its corresponding variance components in

the form of h2, EBVs remained unchanged. This shows the

importance of using variance components corresponding to

the K−1 that is used in BLUP. Using improper or outdated

variances is an important source of bias in genetic evaluations

(Tsuruta et al., 2019). Variance component estimates need to be

updated regularly, and the use of variance components estimated

based on a type of K−1 (e.g., A−1) should be avoided in BLUP

using other K−1 (e.g., G−1 and H−1). This study showed very

different h2 estimates for the same population and trait, based on

different K−1 (between A−1 and G−1 for the wheat data, between

transformed K, and between transformed K−1).

In agreement with previous studies, we found Dk as a

distribution parameter of K influencing the genetic variance. We

studied μ(diag(K)) − μ(offdiag(K)) instead of Dk, however for large

matrices like K (individual × individual), μ(K) is heavily defined by

μ(offdiag(K)). Matrix K−1 underwent the same transformations as

matrix K. Coefficient α re-bases the matrix, coefficient β re-bases

the diagonal elements, and coefficient w inversely weights the

genetic variance and changes the mean and the variance of the

matrix, further for the diagonal elements, since those have larger

mean and variance.We found that,w and β applied toK−1 influence

the h2 estimate and the distribution of EBVs. The effect of α was

marginal for bothK andK−1, unless it inflicts themwith singularity.

We also found that lower variance of diag(K−1) can result in higher

h2 and thus greater variance of EBVs. For the off-diagonal elements

ofK−1, more important than the variation of the elements, was how

they are concentrated around their mean. For example, the h2

estimate byG−1 was considerably greater than forA−1, for the wheat

data. Whereas the off-diagonal elements of G−1 showed a smaller

range and variation, those were more widely centered around

0 than the off-diagonal elements of A−1.
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