

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aquacarbonyl(ferrocenyldithiophosphonato- $\kappa^2 S.S'$)bis(triphenvlphosphane- κP)ruthenium(II) dichloromethane monosolvate

Hang Zhu,^a Qing Ma,^b Hua-Tian Shi,^b Qun Chen^a and **Oian-Feng Zhang**^{b,a}*

^aDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China, and ^bInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 6 May 2013; accepted 23 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.054; wR factor = 0.154; data-to-parameter ratio = 19.2.

The structure of the title complex, $[FeRu(C_5H_5)(C_5H_4OPS_2)-$ (CO)(C₁₈H₁₅P)₂(H₂O)]·CH₂Cl₂, consists of one neutral [{FcP- $(O)S_{2}Ru(CO)(H_{2}O)(PPh_{3})_{2}$ complex $[Fc = Fe(\eta^{5}-C_{5}H_{4})(\eta^{5} C_5H_5$] and one CH_2Cl_2 solvent molecule. The geometry around the Ru^{II} atom is pseudo-octahedral, with two cisbinding PPh₃ ligands and one chelating bidentate $[Fc(O)PS_2]^{2-}$ ligand via two S atoms. The average Ru-S and Ru - P bond lengths are 2.434 (1) and 2.398 (1) Å, and the Ru-O and Ru-C bond lengths are 2.157 (3) and 1.826 (4) Å, respectively. In the crystal, pairs of O-H···O hydrogen bonds link adjacent molecules into dimers.

Related literature

For background to ferrocenyl-phosphonodithiolato complexes, see: Foreman et al. (1996); Gray et al. (2003, 2004); Haiduc (2001); Thomas et al. (2001); Van Zyl (2010). For a related structure, see: Liu et al. (2005); Wang et al. (2010); Zhang et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

32262 measured reflections

 $R_{\rm int} = 0.039$

refinement

 $\Delta \rho_{\rm max} = 3.98 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.67~{\rm e}~{\rm \AA}^{-3}$

10536 independent reflections

8221 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

[FeRu(C5H5)(C5H4OPS2)(CO)- $\beta = 98.278 \ (1)^{\circ}$ $(C_{18}H_{15}P)_2(H_2O)]\cdot CH_2Cl_2$ $\gamma = 109.759 (1)^{\circ}$ $M_r = 1052.67$ V = 2277.7 (3) Å³ Triclinic, $P\overline{1}$ Z = 2a = 12.1493 (9) Å Mo $K\alpha$ radiation b = 14.2208 (11) Å $\mu = 1.01 \text{ mm}^{-1}$ c = 14.7100 (11) ÅT = 296 K $0.24 \times 0.15 \times 0.08 \text{ mm}$ $\alpha = 101.811 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1997) $T_{\min} = 0.794, T_{\max} = 0.924$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$
$wR(F^2) = 0.154$
S = 1.05
10536 reflections
549 parameters
2 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$03 - H1S \cdots O1^{i}$ $03 - H2S \cdots O3^{i}$	0.82 (1) 0.82 (1)	1.72 (2) 2.52 (6)	2.515 (4) 2.980 (6)	162 (4) 117 (5)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Science Foundation of China (20771003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2231).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Foreman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653-3657.
- Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). Dalton Trans. pp. 3450-3457.

Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477-2486.

Haiduc, I. (2001). J. Organomet. Chem. 623, 29-42.

Liu, X., Zhang, Q. F. & Leung, W. H. (2005). J. Coord. Chem. 58, 1299–1305.

- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, C. M., Neels, A., Stoeckli-Evans, H. & Sűss-Fink, G. (2001). J. Organomet. Chem. 633, 85-90.
- Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.

Wang, X. Y., Li, Y., Ma, Q. & Zhang, Q. F. (2010). Organometallics, 29, 2752-2760. Zhang, Q. F., Chim, J. L. C., Lai, W., Wong, W. T. & Leung, W. H. (2001). Inorg. Chem. 40, 2470-2471.

supplementary materials

Acta Cryst. (2013). E69, m343 [doi:10.1107/S1600536813014311]

Aquacarbonyl(ferrocenyldithiophosphonato- $\kappa^2 S, S'$)bis(triphenylphosphane- κP)ruthenium(II) dichloromethane monosolvate

Hang Zhu, Qing Ma, Hua-Tian Shi, Qun Chen and Qian-Feng Zhang

Comment

Lawesson's Reagent (LR) $[(p-MeO-C_6H_4)P(S)(\mu-S)]_2$ was initially used for the purpose of a sulfur transfer reagent, especially to convert ketones to thiones, but was later used to form dithiophosphonic acids as well (Haiduc, 2001; Van Zyl, 2010). LR is formed through the reaction between P_4S_{10} and anisole. Recognizing anisole to be an electron-rich aromatic, Woollins and co-workers skillfully introduced ferrocene, which performs similar electrophilic substitution type chemistry to afford the ferrocenyl derivative $[FcP(S)(\mu-S)]_2$ ($Fc = Fe(\eta^5-C_5H_4)(\eta^5-C_5H_5)$) (Gray *et al.*, 2004). This chemistry has been extended further by forming interesting ferrocenyl-type heterocycles. Similarly, $[FcP(S)(\mu-S)]_2$ can undergo a ring opening reaction by nucleophilic attack under suitable conditions, resulting in formation of the typical ferrocenyl-dithiophosphonate ligands, which may directly react with a range of metal ions to produce new heterometallic complexes containing the electron-rich and aromatic ferrocene groups (Gray *et al.*, 2003; Thomas *et al.*, 2001). As a part of research interest to the later transition metal-sulfur chemistry, we have recently reported ruthenium complexes with ferrocenyl-phosphonodithiolate as a dithio ligand (Wang *et al.*, 2010). We here describe the crystal structure of a ruthenium(II)-ferrocenyl-dithiophosphonato complex [{FcP(O)S_2}Ru(CO)(H_2O)(PPh_3)2].CH_{2Cl}2 (Fc = Fe($\eta^5-C_5H_4$)($\eta^5-C_5H_5$)) in this paper.

The title complex crystallizes in triclinic space group *P*-1 with two molecules in the unit cell, as shown in Fig. 1. The ruthenium center has an octahedral coordination environment with the H₂O and CO ligands mutually *trans*. The $[FcP(O)S_2]^{2*}$ acts as a chelating ligand through its two sulfur atoms to bond the ruthenium center with the bite angle S(1) —Ru(1)—S(2) of 79.74 (4)° which agrees with those in *cis*-[Ru(CO){FcP(OCH₃)PS₂}₂(PPh₃)] [78.43 (3)° and 79.84 (3)°] (Wang *et al.*, 2010). Two *cis* PPh₃ ligands bind to the ruthenium center with the P—Ru—P angle of 106.97 (4)°, and one chelating [FcP(O)S₂]²⁻ ligands form the basal plane. The average Ru—S bond length (av. 2.4337 (20) Å) in the title complex is compatible to that in *cis*-[Ru(CO){FcP(OCH₃)PS₂}₂(PPh₃)] (av. 2.4854 (11) Å) (Wang *et al.*, 2010). The Ru—O bond length of 2.159 (3) Å is similar to that observed for *trans*-Ru[N(Ph₂PS)₂]₂(H₂O)(NH₃) (2.118 (4) Å) (Zhang *et al.*, 2001). The Ru—C bond length and Ru—C—O bond angle in the title complex are 1.826 (4) Å and 176.9 (4)°, respectively, which are comparable to those in [Ru(CO){*ARP*(O)S₂}(PPh₃)₂] (Ru—C = 1.829 (4) Å and Ru—C —O = 175.4 (4)°) (Wang *et al.*, 2010) and [RuH(CO){S₂P(OEt₂}(PPh₃)₂] (Ru—C = 1.829 (4) Å and Ru—C —O = 175.4 (4)°) (Liu *et al.* 2005). A pair of head-to-tail intermolecular O—H···Oa (a: x + 1, y + 2, z + 1) hydrogen bonds (O3—H1S···O1a: 1.719 (16) Å, 2.516 (4) Å, 162 (4)°; O3—H2S···O3a: 2.53 (6) Å, 2.981 (6) Å, 116 (5)°) linking adjacent molecules to form a dimmer was observed in the crystal packing.

Experimental

To a slurry of $[FcP(S)(\mu-S)]_2$ (56 mg, 0.10 mmol) and 17% NH₃.H₂O (0.2 ml) in THF (10 ml) was added the grey solid $[RuHCl(CO)(PPh_3)_3]$ (188 mg, 0.20 mmol). The mixture was stirred at room temperature overnight and the brown solution was obtained. The solvent was removed *in vacuo* and the residue was recrystallized from CH₂Cl₂/hexane to give yellow crystalline solids of $[{FcP(O)S_2}Ru(CO)(H_2O)(PPh_3)_2].CH_2Cl_2$ in five days at room temperature. Yield: 68 mg, 0.065 mmol, 32% (based on Ru). Anal. Calcd. for C₄₇H₄₁O₃P₃S₂FeRu.(CH₂Cl₂): C, 54.76; H, 4.12%. Found: C, 54.72; H, 4.08%.

Refinement

The structure was solved by direct methods and refined by full-matrix least-squares procedure based on F². All C Hydrogen atoms were placed in geometrically idealized positions and refined isotropically with a riding model for C-*sp*² [C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$] and C-*sp*³ [C—H = 0.97 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$].

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The structure of the title complex, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Two complex molecules are connected by intermolecular O—H···O(P) hydrogen bonds (dashed lines), forming a dimeric arrangement.

Aquacarbonyl (ferrocenyl dithiophosphonato- $\kappa^2 S, S'$) bis (triphenyl phosphane- κP) ruthenium (II) dichloromethane monosolvate

Crystal data	
$[FeRu(C_5H_5)(C_5H_4OPS_2)(CO)]$	V = 2277.7 (3) Å ³
$(C_{18}H_{15}P)_2(H_2O)]\cdot CH_2Cl_2$	Z = 2
$M_r = 1052.67$	F(000) = 1072
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.535 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.1493 (9) Å	Cell parameters from 6761 reflections
b = 14.2208 (11) Å	$\theta = 2.4 - 25.7^{\circ}$
c = 14.7100 (11) Å	$\mu = 1.01 \text{ mm}^{-1}$
$\alpha = 101.811 \ (1)^{\circ}$	T = 296 K
$\beta = 98.278 \ (1)^{\circ}$	Block, yellow
$\gamma = 109.759 \ (1)^{\circ}$	$0.24 \times 0.15 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1997) $T_{min} = 0.794, T_{max} = 0.924$ Refinement	32262 measured reflections 10536 independent reflections 8221 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.154$ S = 1.05 10536 reflections 549 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0853P)^2 + 2.0442P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 3.98$ e Å ⁻³ $\Delta\rho_{max} = -0.67 \circ Å^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	v	7	Uine*/Une	
 D., 1	0.57692 (2)	<u> </u>	0 (0921 (2)		
Kul	0.37082 (3)	0.84933 (2)	0.00821 (2)	0.02000 (10)	
Fe1	0.34922 (7)	0.55279 (5)	0.22580 (5)	0.04881 (18)	
03	0.5232 (3)	0.9764 (2)	0.5934 (2)	0.0406 (7)	
H1S	0.541 (4)	1.0333 (16)	0.632 (2)	0.029 (11)*	
H2S	0.460 (3)	0.962 (5)	0.555 (4)	0.09 (2)*	
S1	0.40195 (9)	0.74574 (8)	0.47898 (7)	0.0361 (2)	
S2	0.66350 (9)	0.87473 (8)	0.47088 (7)	0.0378 (2)	
P1	0.49822 (9)	0.78762 (7)	0.38051 (7)	0.0305 (2)	
P2	0.44859 (9)	0.80208 (7)	0.71339 (7)	0.0299 (2)	
P3	0.76866 (9)	0.97232 (8)	0.70618 (7)	0.0306 (2)	
01	0.4530 (3)	0.8442 (2)	0.3179 (2)	0.0418 (7)	
O2	0.6390 (3)	0.6647 (2)	0.6043 (3)	0.0588 (9)	
C1	0.5005 (4)	0.6752 (3)	0.3034 (3)	0.0354 (8)	
C2	0.5009 (5)	0.5821 (4)	0.3236 (3)	0.0514 (12)	
H2	0.5042	0.5688	0.3831	0.062*	
C3	0.4953 (5)	0.5126 (4)	0.2371 (4)	0.0593 (13)	

Н3	0.4951	0.4461	0.2304	0.071*
C4	0.4899 (5)	0.5611 (4)	0.1627 (4)	0.0629 (14)
H4	0.4848	0.5321	0.0988	0.075*
C5	0.4937 (5)	0.6615 (3)	0.2028 (3)	0.0495 (11)
Н5	0.4920	0.7104	0.1698	0.059*
C6	0.2098 (7)	0.5002 (9)	0.2869 (7)	0.109 (3)
H6	0.2179	0.4986	0.3503	0.131*
C7	0.2044 (7)	0.4244 (6)	0.2133 (8)	0.107 (3)
H7	0.2062	0.3607	0.2183	0.128*
C8	0.1960 (6)	0.4522 (6)	0.1304 (6)	0.093 (2)
H8	0.1915	0.4117	0.0706	0.111*
C9	0.1952 (7)	0.5517 (8)	0.1503 (8)	0.114 (3)
H9	0.1916	0.5910	0.1074	0.136*
C10	0.2012 (6)	0.5817 (7)	0.2517 (8)	0.112 (3)
H10	0.1995	0.6435	0.2865	0.135*
C11	0.3794 (3)	0.8935 (3)	0.7572 (3)	0.0352 (8)
C12	0.3908 (4)	0.9360 (3)	0.8534 (3)	0.0473 (10)
H12	0.4339	0.9171	0.8991	0.057*
C13	0.3380 (5)	1.0067 (4)	0.8819 (4)	0.0642 (14)
H13	0.3455	1.0344	0.9466	0.077*
C14	0.2758 (5)	1.0353 (4)	0.8160 (5)	0.0689 (17)
H14	0.2415	1.0832	0.8356	0.083*
C15	0.2630 (5)	0.9939 (4)	0.7202 (5)	0.0608 (14)
H15	0.2199	1.0137	0.6753	0.073*
C16	0.3142 (4)	0.9226 (4)	0.6904 (4)	0.0479 (11)
H16	0.3048	0.8942	0.6255	0.058*
C20	0.6172 (3)	0.7368 (3)	0.6083 (3)	0.0349 (8)
C21	0.3166 (4)	0.6803 (3)	0.6583 (3)	0.0378 (9)
C22	0.3325 (4)	0.5913 (3)	0.6148 (3)	0.0485 (11)
H22	0.4094	0.5950	0.6103	0.058*
C23	0.2363 (5)	0.4970 (4)	0.5777 (4)	0.0632 (14)
H23	0.2485	0.4380	0.5483	0.076*
C24	0.1235 (5)	0.4914 (4)	0.5847 (5)	0.0755 (18)
H24	0.0585	0.4284	0.5593	0.091*
C25	0.1053 (5)	0.5774 (5)	0.6287 (5)	0.0790 (19)
H25	0.0285	0.5722	0.6349	0.095*
C26	0.2008 (4)	0.6723 (4)	0.6642 (4)	0.0592 (13)
H26	0.1874	0.7311	0.6922	0.071*
C31	0.5046 (4)	0.7699 (3)	0.8209 (3)	0.0344 (8)
C32	0.4262 (4)	0.7171 (3)	0.8702 (3)	0.0430 (10)
H32	0.3440	0.6993	0.8496	0.052*
C33	0.4688 (5)	0.6907 (4)	0.9492 (3)	0.0532 (12)
H33	0.4154	0.6559	0.9818	0.064*
C34	0.5900 (5)	0.7156 (4)	0.9800 (3)	0.0547 (12)
H34	0.6187	0.6975	1.0332	0.066*
C35	0.6690 (5)	0.7675 (4)	0.9317 (3)	0.0531 (12)
H35	0.7511	0.7843	0.9522	0.064*
C36	0.6264 (4)	0.7946 (3)	0.8530 (3)	0.0420 (9)
H36	0.6803	0.8300	0.8210	0.050*

C41	0.8587 (3)	1.0592 (3)	0.6437 (3)	0.0332 (8)
C42	0.8153 (4)	1.1299 (3)	0.6144 (3)	0.0447 (10)
H42	0.7427	1.1315	0.6262	0.054*
C43	0.8791 (4)	1.1975 (3)	0.5681 (4)	0.0500 (11)
H43	0.8490	1.2441	0.5485	0.060*
C44	0.9874 (5)	1.1962 (4)	0.5508 (4)	0.0587 (13)
H44	1.0303	1.2416	0.5194	0.070*
C45	1.0315 (5)	1.1275 (4)	0.5800 (5)	0.0682 (16)
H45	1.1048	1.1270	0.5691	0.082*
C46	0.9668 (5)	1.0587 (4)	0.6261 (4)	0.0563 (13)
H46	0.9969	1.0120	0.6452	0.068*
C51	0.8706 (3)	0.9121 (3)	0.7488 (3)	0.0367 (9)
C52	0.8946 (4)	0.8419 (3)	0.6820 (3)	0.0413 (9)
H52	0.8600	0.8274	0.6175	0.050*
C53	0.9693 (4)	0.7934 (4)	0.7102 (4)	0.0519 (12)
Н53	0.9858	0.7475	0.6646	0.062*
C54	1.0187 (5)	0.8123 (4)	0.8038 (4)	0.0593 (13)
H54	1.0689	0.7793	0.8223	0.071*
C55	0.9948 (5)	0.8805 (4)	0.8720 (4)	0.0607 (14)
H55	1.0275	0.8923	0.9364	0.073*
C56	0.9218 (4)	0.9312 (4)	0.8444 (3)	0.0490 (11)
H56	0.9072	0.9782	0.8902	0.059*
C61	0.7790 (4)	1.0714 (3)	0.8121 (3)	0.0356 (8)
C62	0.6762 (4)	1.0715 (3)	0.8422 (3)	0.0453 (10)
H62	0.6019	1.0203	0.8094	0.054*
C63	0.6843 (5)	1.1488 (4)	0.9222 (4)	0.0610 (14)
H63	0.6154	1.1477	0.9432	0.073*
C64	0.7919 (5)	1.2250 (4)	0.9693 (4)	0.0605 (14)
H64	0.7963	1.2762	1.0219	0.073*
C65	0.8950 (5)	1.2269 (4)	0.9395 (4)	0.0604 (13)
H65	0.9688	1.2789	0.9725	0.072*
C66	0.8888 (4)	1.1513 (4)	0.8603 (3)	0.0508 (11)
H66	0.9581	1.1540	0.8392	0.061*
C1S	0.8456 (18)	0.6112 (13)	0.2091 (9)	0.264 (11)
H1S1	0.7820	0.5791	0.2390	0.317*
H1S2	0.9174	0.6505	0.2597	0.317*
Cl1S	0.8099 (3)	0.6917 (4)	0.1639 (4)	0.2144 (19)
Cl2S	0.8735 (4)	0.5084 (4)	0.1346 (4)	0.2133 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.02830 (16)	0.02926 (16)	0.02479 (16)	0.01314 (12)	0.00753 (12)	0.00756 (11)
Fe1	0.0577 (4)	0.0377 (3)	0.0416 (4)	0.0124 (3)	0.0055 (3)	0.0049 (3)
03	0.0535 (19)	0.0318 (15)	0.0399 (17)	0.0233 (14)	0.0068 (15)	0.0077 (13)
S1	0.0323 (5)	0.0421 (5)	0.0291 (5)	0.0102 (4)	0.0071 (4)	0.0061 (4)
S2	0.0344 (5)	0.0441 (5)	0.0301 (5)	0.0086 (4)	0.0113 (4)	0.0077 (4)
P1	0.0372 (5)	0.0279 (4)	0.0271 (5)	0.0140 (4)	0.0073 (4)	0.0060 (4)
P2	0.0315 (5)	0.0345 (5)	0.0289 (5)	0.0156 (4)	0.0109 (4)	0.0116 (4)
P3	0.0287 (5)	0.0366 (5)	0.0280 (5)	0.0145 (4)	0.0065 (4)	0.0087 (4)

01	0.0580 (19)	0.0330 (14)	0.0340 (15)	0.0203 (13)	0.0051 (13)	0.0071 (12)
02	0.055 (2)	0.0425 (17)	0.087 (3)	0.0301 (16)	0.0137 (19)	0.0167 (17)
C1	0.040 (2)	0.0319 (19)	0.033 (2)	0.0151 (16)	0.0078 (17)	0.0031 (15)
C2	0.072 (3)	0.048 (2)	0.046 (3)	0.037 (2)	0.012 (2)	0.015 (2)
C3	0.083 (4)	0.042 (2)	0.058 (3)	0.035 (3)	0.018 (3)	0.004 (2)
C4	0.087 (4)	0.048 (3)	0.048 (3)	0.024 (3)	0.029 (3)	-0.002 (2)
C5	0.067 (3)	0.041 (2)	0.039 (2)	0.018 (2)	0.021 (2)	0.0084 (19)
C6	0.061 (4)	0.141 (8)	0.102 (7)	0.005 (5)	0.030 (4)	0.033 (6)
C7	0.084 (5)	0.066 (4)	0.134 (8)	-0.008 (4)	0.017 (5)	0.021 (5)
C8	0.077 (5)	0.082 (5)	0.078 (5)	0.016 (4)	-0.013 (4)	-0.019 (4)
C9	0.073 (5)	0.122 (7)	0.142 (8)	0.034 (5)	-0.019 (5)	0.065 (6)
C10	0.044 (3)	0.105 (6)	0.143 (8)	0.024 (4)	0.002 (4)	-0.038 (6)
C11	0.0313 (19)	0.0363 (19)	0.043 (2)	0.0152 (16)	0.0177 (17)	0.0122 (17)
C12	0.049 (3)	0.049 (2)	0.046 (3)	0.023 (2)	0.016 (2)	0.006 (2)
C13	0.067 (3)	0.055 (3)	0.073 (4)	0.032 (3)	0.027 (3)	0.001 (3)
C14	0.065 (3)	0.047 (3)	0.114 (5)	0.037 (3)	0.042 (4)	0.021 (3)
C15	0.054 (3)	0.067 (3)	0.092 (4)	0.040 (3)	0.034 (3)	0.046 (3)
C16	0.046 (3)	0.055 (3)	0.057 (3)	0.027 (2)	0.022 (2)	0.027 (2)
C20	0.0305 (19)	0.0347 (19)	0.038 (2)	0.0132 (16)	0.0042 (17)	0.0090 (16)
C21	0.039 (2)	0.039 (2)	0.034 (2)	0.0123 (17)	0.0093 (17)	0.0130 (17)
C22	0.051 (3)	0.042 (2)	0.053 (3)	0.017 (2)	0.016 (2)	0.013 (2)
C23	0.071 (4)	0.034 (2)	0.070 (4)	0.011 (2)	0.006 (3)	0.007 (2)
C24	0.056 (3)	0.044 (3)	0.102 (5)	0.001 (2)	-0.006 (3)	0.014 (3)
C25	0.038 (3)	0.059 (3)	0.125 (6)	0.009 (2)	0.009 (3)	0.017 (4)
C26	0.043 (3)	0.049 (3)	0.083 (4)	0.016 (2)	0.012 (3)	0.014 (3)
C31	0.045 (2)	0.0371 (19)	0.0268 (19)	0.0196 (17)	0.0129 (17)	0.0112 (15)
C32	0.051 (3)	0.053 (2)	0.034 (2)	0.023 (2)	0.020 (2)	0.0179 (19)
C33	0.076 (4)	0.054 (3)	0.041 (3)	0.028 (3)	0.028 (2)	0.024 (2)
C34	0.078 (4)	0.060 (3)	0.036 (2)	0.034 (3)	0.011 (2)	0.021 (2)
C35	0.054 (3)	0.066 (3)	0.045 (3)	0.028 (2)	0.007 (2)	0.022 (2)
C36	0.043 (2)	0.051 (2)	0.036 (2)	0.0176 (19)	0.0098 (19)	0.0195 (19)
C41	0.0304 (19)	0.0360 (19)	0.032 (2)	0.0111 (15)	0.0083 (16)	0.0085 (16)
C42	0.039 (2)	0.048 (2)	0.054 (3)	0.0187 (19)	0.013 (2)	0.021 (2)
C43	0.053 (3)	0.042 (2)	0.058 (3)	0.017 (2)	0.013 (2)	0.021 (2)
C44	0.074 (4)	0.047 (3)	0.063 (3)	0.018 (2)	0.037 (3)	0.023 (2)
C45	0.065 (3)	0.066 (3)	0.106 (5)	0.037 (3)	0.058 (3)	0.042 (3)
C46	0.054 (3)	0.056 (3)	0.082 (4)	0.032 (2)	0.036 (3)	0.036 (3)
C51	0.032 (2)	0.045 (2)	0.040 (2)	0.0177 (17)	0.0098 (17)	0.0185 (18)
C52	0.038 (2)	0.049 (2)	0.042 (2)	0.0217 (19)	0.0088 (19)	0.0153 (19)
C53	0.045 (3)	0.058 (3)	0.066 (3)	0.031 (2)	0.019 (2)	0.023 (2)
C54	0.050 (3)	0.069 (3)	0.075 (4)	0.035 (3)	0.012 (3)	0.036 (3)
C55	0.055 (3)	0.079 (4)	0.050 (3)	0.028 (3)	-0.002(2)	0.029(3)
C56	0.049 (3)	0.062 (3)	0.041 (2)	0.027 (2)	0.005 (2)	0.018 (2)
C61	0.042 (2)	0.038 (2)	0.0287 (19)	0.0179 (17)	0.0078 (17)	0.0077 (16)
C62	0.046 (2)	0.044 (2)	0.043 (2)	0.0159 (19)	0.015 (2)	0.0040 (19)
C63	0.067(3)	0.059(3)	0.057(3)	0.024 (3)	0.031(3)	0.002 (2)
C64	0.084 (4)	0.053 (3)	0.041 (3)	0.029 (3)	0.012 (3)	0.001(2)
C65	0.059 (3)	0.053 (3)	0.048 (3)	0.010(2)	-0.004(2)	0.000(2)
C66	0.041 (2)	0.052 (3)	0.046 (3)	0.011(2)	0.004(2)	0.000(2)
						····· ()

supplementary materials

C1S	0.42 (3)	0.192 (14)	0.090 (9)	0.012 (16)	-0.011 (12)	0.071 (10)
Cl1S	0.0880 (19)	0.266 (5)	0.281 (5)	0.041 (2)	0.017 (2)	0.122 (4)
Cl2S	0.175 (3)	0.190 (4)	0.221 (4)	0.019 (3)	0.041 (3)	0.034 (3)

Geometric parameters (Å, °)

Ru1—C20	1.826 (4)	C21—C22	1.385 (6)
Ru1—O3	2.157 (3)	C21—C26	1.389 (6)
Ru1—P2	2.3842 (10)	C22—C23	1.385 (7)
Ru1—P3	2.4110 (10)	C22—H22	0.9300
Ru1—S1	2.4232 (10)	C23—C24	1.366 (8)
Ru1—S2	2.4443 (10)	С23—Н23	0.9300
Fe1—C7	2.015 (7)	C24—C25	1.365 (8)
Fe1—C6	2.023 (7)	C24—H24	0.9300
Fe1—C9	2.027 (7)	C25—C26	1.386 (7)
Fe1—C8	2.027 (6)	C25—H25	0.9300
Fe1—C2	2.028 (5)	C26—H26	0.9300
Fe1—C1	2.033 (4)	C31—C36	1.384 (6)
Fe1—C5	2.033 (5)	C31—C32	1.392 (6)
Fe1—C3	2.035 (5)	C32—C33	1.376 (6)
Fe1—C4	2.040 (5)	С32—Н32	0.9300
Fe1—C10	2.045 (7)	C33—C34	1.374 (8)
O3—H1S	0.824 (10)	С33—Н33	0.9300
O3—H2S	0.818 (10)	C34—C35	1.380 (7)
S1—P1	2.0472 (14)	С34—Н34	0.9300
S2—P1	2.0517 (14)	C35—C36	1.379 (6)
P1—O1	1.502 (3)	С35—Н35	0.9300
P1-C1	1.772 (4)	С36—Н36	0.9300
P2—C11	1.834 (4)	C41—C46	1.376 (6)
P2—C31	1.836 (4)	C41—C42	1.394 (5)
P2—C21	1.844 (4)	C42—C43	1.381 (6)
P3—C61	1.831 (4)	C42—H42	0.9300
P3—C51	1.837 (4)	C43—C44	1.381 (7)
P3—C41	1.846 (4)	C43—H43	0.9300
O2—C20	1.136 (5)	C44—C45	1.373 (7)
C1—C2	1.417 (6)	C44—H44	0.9300
C1—C5	1.439 (6)	C45—C46	1.393 (7)
C2—C3	1.421 (6)	C45—H45	0.9300
С2—Н2	0.9300	C46—H46	0.9300
C3—C4	1.412 (7)	C51—C56	1.384 (6)
С3—Н3	0.9300	C51—C52	1.388 (6)
C4—C5	1.410 (6)	C52—C53	1.379 (6)
C4—H4	0.9300	С52—Н52	0.9300
С5—Н5	0.9300	C53—C54	1.354 (7)
C6—C7	1.339 (12)	С53—Н53	0.9300
C6—C10	1.391 (12)	C54—C55	1.381 (8)
С6—Н6	0.9300	C54—H54	0.9300
C7—C8	1.358 (11)	C55—C56	1.385 (6)
С7—Н7	0.9300	С55—Н55	0.9300
C8—C9	1.388 (11)	С56—Н56	0.9300

С8—Н8	0.9300	C61—C62	1.384 (6)
C9—C10	1.449 (12)	C61—C66	1.395 (6)
С9—Н9	0.9300	C62—C63	1.403 (6)
C10—H10	0.9300	С62—Н62	0.9300
C11—C12	1.387 (6)	C63—C64	1.355 (8)
C11—C16	1.388 (6)	С63—Н63	0.9300
C12—C13	1.393 (6)	C64—C65	1.379 (8)
C12—H12	0.9300	С64—Н64	0.9300
C13—C14	1.355 (8)	C65—C66	1.387 (7)
C13—H13	0.9300	С65—Н65	0.9300
C14—C15	1.376 (8)	С66—Н66	0.9300
C14—H14	0.9300	C1S—Cl1S	1.582 (16)
C15—C16	1.391 (6)	C1S—Cl2S	1.80 (2)
C15—H15	0.9300	C1S—H1S1	0.9700
C16—H16	0.9300	C1S—H1S2	0.9700
C20—Ru1—O3	174.49 (15)	С9—С8—Н8	125.9
C20—Ru1—P2	90.26 (13)	Fe1—C8—H8	125.7
O3—Ru1—P2	92.66 (9)	C8—C9—C10	105.8 (8)
C20—Ru1—P3	94.08 (12)	C8—C9—Fe1	70.0 (4)
O3—Ru1—P3	89.54 (9)	C10-C9-Fe1	69.8 (4)
P2—Ru1—P3	106.97 (4)	С8—С9—Н9	127.1
C20—Ru1—S1	91.03 (13)	С10—С9—Н9	127.1
O3—Ru1—S1	84.48 (9)	Fe1—C9—H9	124.7
P2—Ru1—S1	86.51 (4)	C6—C10—C9	106.7 (7)
P3—Ru1—S1	165.53 (4)	C6-C10-Fe1	69.1 (4)
C20—Ru1—S2	90.95 (13)	C9-C10-Fe1	68.5 (4)
O3—Ru1—S2	85.10 (9)	С6—С10—Н10	126.7
P2—Ru1—S2	166.20 (4)	С9—С10—Н10	126.7
P3—Ru1—S2	86.65 (3)	Fe1-C10-H10	127.3
S1—Ru1—S2	79.73 (4)	C12—C11—C16	118.7 (4)
C7—Fe1—C6	38.7 (3)	C12—C11—P2	123.2 (3)
C7—Fe1—C9	66.7 (4)	C16—C11—P2	118.0 (3)
C6—Fe1—C9	68.5 (4)	C11—C12—C13	120.3 (5)
C7—Fe1—C8	39.3 (3)	C11—C12—H12	119.8
C6—Fe1—C8	66.7 (4)	C13—C12—H12	119.8
C9—Fe1—C8	40.0 (3)	C14—C13—C12	120.3 (5)
C7—Fe1—C2	118.0 (3)	C14—C13—H13	119.8
C6—Fe1—C2	106.7 (3)	C12—C13—H13	119.8
C9—Fe1—C2	166.5 (4)	C13—C14—C15	120.3 (5)
C8—Fe1—C2	151.0 (3)	C13—C14—H14	119.8
C7—Fe1—C1	152.2 (3)	C15—C14—H14	119.8
C6—Fe1—C1	119.6 (3)	C14—C15—C16	120.1 (5)
C9—Fe1—C1	129.5 (3)	C14—C15—H15	119.9
C8—Fe1—C1	167.3 (3)	C16—C15—H15	119.9
C2—Fe1—C1	40.84 (17)	C11—C16—C15	120.1 (5)
C7—Fe1—C5	164.7 (3)	C11—C16—H16	119.9
C6—Fe1—C5	155.7 (4)	C15—C16—H16	119.9
C9—Fe1—C5	109.9 (3)	O2—C20—Ru1	176.9 (4)

	100 ((0)		110 0 (1)
C8—Fel—C5	128.6 (3)	C22—C21—C26	118.0 (4)
C2—Fe1—C5	69.0 (2)	C22—C21—P2	119.7 (3)
C1—Fe1—C5	41.46 (17)	C26—C21—P2	122.2 (3)
C7—Fe1—C3	107.4 (3)	C23—C22—C21	121.4 (5)
C6—Fe1—C3	125.1 (4)	C23—C22—H22	119.3
C9—Fe1—C3	152.2 (4)	C21—C22—H22	119.3
C8—Fe1—C3	117.9 (3)	C24—C23—C22	119.4 (5)
C2—Fe1—C3	40.93 (19)	С24—С23—Н23	120.3
C1—Fe1—C3	68.67 (18)	С22—С23—Н23	120.3
C5—Fe1—C3	68.2 (2)	C23—C24—C25	120.6 (5)
C7—Fe1—C4	126.8 (3)	C23—C24—H24	119.7
C6—Fe1—C4	162.2 (4)	C25—C24—H24	119.7
C9—Fe1—C4	119.5 (4)	C24—C25—C26	120.2 (5)
C8—Fe1—C4	108.2 (3)	C24—C25—H25	119.9
C2—Fe1—C4	69.0 (2)	C26—C25—H25	119.9
C1—Fe1—C4	69.13 (18)	C_{25} C_{26} C_{21}	1204(5)
C_{5} Fe1 C_{4}	40 51 (18)	$C_{25} = C_{26} = H_{26}$	119.8
C_3 Fe1 C_4	40.51(10)	$C_{23} = C_{20} = H_{20}$	119.8
C_{3} C_{1} C_{1} C_{1} C_{1}	40.0(2)	$C_{21} = C_{20} = 1120$	119.0
C/-FeI-CIO	03.9 (4)	$C_{30} = C_{31} = C_{32}$	118.2(4)
$C_0 = F_0 = C_{10}$	40.0 (4)	C_{30} C_{31} P_2	120.5 (3)
C9—FeI—C10	41.7 (4)	C_{32} — C_{31} — P_2	121.2 (3)
C8—Fe1—C10	67.5 (3)	$C_{33} = C_{32} = C_{31}$	120.9 (5)
C2—Fe1—C10	126.7 (3)	С33—С32—Н32	119.6
C1—Fe1—C10	109.5 (2)	С31—С32—Н32	119.6
C5—Fe1—C10	122.4 (3)	C34—C33—C32	120.2 (5)
C3—Fe1—C10	163.0 (4)	С34—С33—Н33	119.9
C4—Fe1—C10	156.0 (4)	С32—С33—Н33	119.9
Ru1—O3—H1S	130 (3)	C33—C34—C35	119.8 (4)
Ru1—O3—H2S	116 (5)	С33—С34—Н34	120.1
H1S—O3—H2S	110 (5)	С35—С34—Н34	120.1
P1—S1—Ru1	90.85 (5)	C36—C35—C34	120.1 (5)
P1—S2—Ru1	90.15 (4)	С36—С35—Н35	120.0
O1—P1—C1	106.63 (18)	С34—С35—Н35	120.0
O1—P1—S1	116.18 (13)	C35—C36—C31	120.9 (4)
C1—P1—S1	109.51 (14)	С35—С36—Н36	119.5
O1—P1—S2	114.15 (13)	С31—С36—Н36	119.5
C1—P1—S2	111.17 (14)	C46—C41—C42	118.7 (4)
S1—P1—S2	99.14 (6)	C46—C41—P3	123.4 (3)
C11—P2—C31	103.93 (18)	C42—C41—P3	117.9 (3)
$C_{11} = P_{2} = C_{21}$	102.26 (19)	C43 - C42 - C41	1207(4)
$C_{31} = P_{2} = C_{21}$	98 52 (18)	C43 - C42 - H42	1197
$C_{11} = P_{2} = R_{11}$	116 26 (13)	C_{41} C_{42} H_{42}	119.7
$C_{11} = P_{2} = R_{11}$	110.20 (13)	C42 - C43 - C44	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113 37 (13)	$C_{12} = C_{13} = C_{14}$	120.1 (+)
$C_{21} - 12 - Ku_1$ C61 D2 C51	113.37(13) 104.10(10)	$C_{42} = C_{43} = 1143$	120.0
C(1 - r) = C(1)	104.19(19)	$C_{44} = C_{43} = \Pi_{43}$	120.0
C_{01} - P_{3} - C_{41}	90.20 (18) 102 50 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.7 (4)
C_{1} P_{2} P_{1}	102.50(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.1
Col—P3—Kul	121.55 (14)	C43—C44—H44	120.1
C51—P3—Ru1	113.93 (14)	C44—C45—C46	120.2 (5)

C41—P3—Ru1	114.01 (13)	C44—C45—H45	119.9
C2—C1—C5	107.2 (4)	C46—C45—H45	119.9
C2—C1—P1	129.1 (3)	C41—C46—C45	120.6 (4)
C5—C1—P1	123.5 (3)	C41—C46—H46	119.7
C2—C1—Fe1	69.4 (3)	C45—C46—H46	119.7
C5—C1—Fe1	69.3 (2)	C56—C51—C52	118.5 (4)
P1—C1—Fe1	123.3 (2)	C56—C51—P3	123.2 (3)
C1—C2—C3	107.9 (4)	C52—C51—P3	118.3 (3)
C1-C2-Fe1	69.8 (3)	C53—C52—C51	120.7 (4)
C3—C2—Fe1	69.8 (3)	С53—С52—Н52	119.7
C1—C2—H2	126.0	С51—С52—Н52	119.7
С3—С2—Н2	126.0	C54—C53—C52	120.4 (5)
Fe1—C2—H2	125.9	С54—С53—Н53	119.8
C4—C3—C2	108.7 (4)	С52—С53—Н53	119.8
C4—C3—Fe1	69.9 (3)	C53—C54—C55	120.2 (4)
C2—C3—Fe1	69.3 (3)	С53—С54—Н54	119.9
С4—С3—Н3	125.6	С55—С54—Н54	119.9
С2—С3—Н3	125.6	C54—C55—C56	119.9 (5)
Fe1—C3—H3	126.8	С54—С55—Н55	120.1
C5—C4—C3	107.8 (4)	С56—С55—Н55	120.1
C5—C4—Fe1	69.5 (3)	C51—C56—C55	120.3 (5)
C3—C4—Fe1	69.6 (3)	С51—С56—Н56	119.8
C5—C4—H4	126.1	С55—С56—Н56	119.8
C3—C4—H4	126.1	C62—C61—C66	118.8 (4)
Fe1—C4—H4	126.4	C62-C61-P3	120.2(3)
C4—C5—C1	108.4 (4)	C66—C61—P3	120.9(3)
C4-C5-Fe1	70.0(3)	$C_{61} - C_{62} - C_{63}$	120.9(3) 120.0(4)
C1-C5-Fe1	693(2)	$C_{61} = C_{62} = H_{62}$	120.0 (1)
C4—C5—H5	125.8	C63 - C62 - H62	120.0
C1	125.8	C64 - C63 - C62	120.5(5)
Fe1—C5—H5	126.5	C64-C63-H63	119.8
C7-C6-C10	107.9 (9)	C62 - C63 - H63	119.8
C7-C6-Fe1	70 3 (5)	C63 - C64 - C65	120.3 (5)
C10-C6-Fe1	70.9 (5)	C63 - C64 - H64	119.8
C7_C6_H6	126.0	C65 - C64 - H64	119.8
C_{10} C_{6} H6	126.0	C64 - C65 - C66	120.0(5)
Ee1-C6-H6	124.0	C64 - C65 - H65	120.0 (3)
C6 $C7$ $C8$	111 4 (8)	C66 C65 H65	120.0
C6 C7 Eal	70.0(4)	C65 C66 C61	120.0 120.3(5)
C_{0} C_{7} E_{2}	70.9(4)	C65 C66 H66	120.3 (3)
	124.2	$C_{00} = C_{00} = 1100$	119.0
C_{0} C_{7} H_{7}	124.3	$C_{11} = C_{10} = C_{100}$	119.0
$C_0 - C_1 - \Pi_1$	124.3	$C_{115} = C_{15} = C_{125}$	117.0 (0)
$\frac{1}{2} \frac{1}{2} \frac{1}$	123.3		107.4
$C_{1} = C_{0} = C_{1}$	100.1(0)		107.4
$C_1 - C_0 - F_0$	09.9 (4) 70.0 (4)		107.4
C_{2} C_{2} C_{2} C_{2} C_{3} C_{4}	/0.0 (4)	$U_{12} = U_{13} = H_{132}$	10/.4
U/U8H8	125.9	H1S1-C1S-H1S2	106.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H1 <i>S</i> ···O1 ⁱ	0.82 (1)	1.72 (2)	2.515 (4)	162 (4)
O3—H2S····O3 ⁱ	0.82 (1)	2.52 (6)	2.980 (6)	117 (5)

Symmetry code: (i) -x+1, -y+2, -z+1.