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Abstract

Detecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel noninvasive
cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise predictions with
low-depth cfDNA sequencing data. Here we propose a novel approach named DISMIR, which can provide ultrasensitive and
robust cancer detection by integrating DNA sequence and methylation information in plasma cfDNA whole-genome
bisulfite sequencing (WGBS) data. DISMIR introduces a new feature termed as ‘switching region’ to define cancer-specific
differentially methylated regions, which can enrich the cancer-related signal at read-resolution. DISMIR applies a deep
learning model to predict the source of every single read based on its DNA sequence and methylation state and then
predicts the risk that the plasma donor is suffering from cancer. DISMIR exhibited high accuracy and robustness on
hepatocellular carcinoma detection by plasma cfDNA WGBS data even at ultralow sequencing depths. Further analysis
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showed that DISMIR tends to be insensitive to alterations of single CpG sites’ methylation states, which suggests DISMIR
could resist to technical noise of WGBS. All these results showed DISMIR with the potential to be a precise and robust
method for low-cost early cancer detection.
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Introduction
Cell-free DNAs (cfDNA) are degraded DNA fragments released
to body fluids such as plasma and urine mainly brought by
apoptosis or necrosis cells [1]. It was reported that in the early
stage of cancer when there are no significant clinical symptoms
on patients, the state of DNA in cancer cells has already changed
[2] and can be detected in the plasma of cancer patients as cir-
culating tumor DNA (ctDNA) [3] . With the development of high-
throughput sequencing technologies, noninvasive approaches
by identifying cancer signals in cfDNA sequencing data are
emerging as novel liquid biopsy methods for cancer diagnosis [4].

The majority of cfDNA studies focus on the mutation of
oncogenes. The existence and fraction of ctDNA in the total
cfDNA is calculated by detecting certain mutations in a small
oncogene panel [5, 6]. However, the fraction of ctDNA in early-
stage cancer is too low to detect without an ultradeep sequenc-
ing method [7, 8]. Besides, mutations that drive carcinogenesis
are usually diverse, leading to heterogeneity across different
patients or across different loci in tumor tissues, which limits
the potent of detecting cancer by ctDNA mutation [9]. Some
other studies tried to detect the rearrangement of chromosomes
during carcinogenesis by cfDNA such as copy number alterations
[10, 11] and fragmentation patterns [12, 13] and found interesting
relationships between these signatures and cancer. However,
as cfDNA sequencing data are mixed data with low signal-
to-noise ratios, these low-resolution signatures can hardly be
distinguished from noise when detecting early-stage cancer,
therefore cannot be solely applied as accurate biomarkers for
early-stage cancer detection.

The methylation states of DNA are altered in the early stage
of cancer widespread across the whole genome [14, 15], which
warranties methylation as an informative feature for early-stage
cancer detection. Therefore, integrations of the methylation
states on different CpG sites [16] or in different subgenomic
regions [17] are promising approaches to enhance the precision
of cancer detection. Furthermore, as the fraction of ctDNA in
the total cfDNA was shown to be concordant with tumor burden
[18], deconvolution of cfDNA to infer its origin becomes a hopeful
approach to estimate the existence and severity of cancer [19].
Though, the performance of such methods is still limited by
the low signal-to-noise ratio. Recently, probabilistic methods
such as CancerLocator [20] were introduced to predict the
location of cancer and tumor burden, which realized promising
results on patient plasma samples. An upgraded probabilistic
approach-based method called CancerDetector [21] was then
proposed and outperformed CancerLocator. CancerDetector
predicted the source of cfDNA at the resolution of individual
sequencing reads using the local correlation of methylation
states between adjacent CpG sites, providing a novel read-based
sight to investigate cfDNA sequencing data. However, different
depths of sequencing data may introduce systematic deviation
to the prediction results of CancerDetector, which could further
reduce the accuracy of cancer diagnosis.

Previous work suggested that the methylation states are
partly cis-regulated by the surrounding DNA sequence [22, 23].

Therefore, the surrounding DNA sequence may provide valuable
information to analyze the methylation state and predict the
source of individual reads. Here, we adopted a deep learning
model named DISMIR to predict the source of individual reads.
DISMIR can integrate the DNA sequence and methylation infor-
mation of the selected differentially methylated regions (DMRs)
across the whole genome, and thus enables the prediction accu-
racy even at very low sequencing depths. Besides, we introduced
a new feature termed as ‘switching region’ to find specific DMRs
suitable for the source prediction of individual reads to further
improve the accuracy. DISMIR successfully achieved an area
under the receiver operating characteristic (ROC) curve (AUC)
of 0.9969 ± 0.0016 (mean ± SD) in the diagnosis of hepatocellu-
lar carcinoma (HCC) with low sequencing depth cfDNA whole-
genome bisulfite sequencing (WGBS) data (coverage from 1× to
10×). When subsampling the sequencing data to an ultralow
sequencing depth (from 0.01× to 0.1×), DISMIR still achieved
an AUC of 0.9112 ± 0.0307. Analysis of the deep learning model
showed that DISMIR successfully extracted DNA sequence and
methylation patterns related to HCC across the whole genome
and was more sensitive to global methylation alterations, which
made DISMIR able to resist to technical noise of WGBS. The
results suggested DISMIR can do better cancer diagnosis with
low sequencing depths at the early stage of cancer by success-
fully combining the information of DNA sequence and methy-
lation together, which could be of great help to further clinical
application.

Materials and methods
Overview

The ultimate goal of DISMIR is to diagnose cancer by integrating
DNA sequence and methylation information in plasma cfDNA
WGBS data. The diagnosis is performed by predicting the source
of each read and then estimating the proportion of tumor-
derived reads in the total cfDNA. The overall procedure of DISMIR
comprises four main steps: (1) identify the cancer-specific DMRs
of cancer tissues in comparison with healthy people’s plasma
across the whole genome as candidate biomarkers (Figure 1A).
(2) Screen out reads in plasma cfDNA WGBS data that are located
in the cancer-specific DMRs (Figure 1B). (3) Train a deep learning
model to integrate DNA sequence and methylation information
with these data to mark each read a value named d-score as the
potent that the read is derived from cancer tissues (Figure 1C). (4)
Estimate the fraction of tumor-derived reads of a plasma sample
by all d-scores to infer whether the plasma donor is suffering
from cancer (Figure 1D). Here we adopted HCC as an example to
validate the performance of DISMIR.

Data collection and processing

The data employed in this study contain single-end WGBS
data (coverage from 1× to 3×) of plasma cfDNA as well as
HCC cancer tissues from European Genome-Phenome Archive
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Figure 1. Overview of DISMIR. (A) Identifying cancer-specific DMRs across the whole genome with the definition of switching regions and switching reads. (B) Collecting

all reads with three or more CpG sites from switching regions for further analysis. (C) Training a deep learning model to calculate the d-score of each individual read.

(D) Predicting tumor fraction of a sample by maximizing the posterior probability.

database (EGA) with accession number EGAS00001000566 [17]
and EGAS00001001219 [24]. The cancer tissue data were from
13 HCC patients. The plasma cfDNA data were from 32 healthy
people, 8 hepatitis B virus (HBV) carriers without cancer and
16 HCC patients (to get rid of information leakage, plasma
cfDNA data, which have paired cancer tissues involved in this

study were excluded). Besides, paired-end WGBS data (coverage
around 10×) of plasma cfDNA from four healthy people and four
HCC patients with EGA accession number EGAS00001002728 [21]
were also used to test the performance of DISMIR.

The training cohort contains nine HCC patients’ cancer
tissues WGBS data and 18 randomly chosen healthy people’s
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plasma WGBS data, which were randomly chosen from the
dataset EGAS00001000566 for 10 times. WGBS data of the
remaining 18 healthy people’s plasma, 8 HBV carriers’ plasma
and 20 unpaired HCC patients’ plasma compose the test cohort.
The WGBS data of the remained four HCC tissues were used for
simulation experiments to evaluate the effect of our approach.
Details of the training and test cohort composition were shown
in Supplemental Table 1.

We used BS-Seeker2 [25] to align all these WGBS data to hg19,
removed PCR duplicates and then called the methylation states
of all CpG sites for subsequent analysis.

Identifying HCC-specific DMRs

Identifying HCC-specific DMRs across the whole genome could
provide valid cancer-related information refraining from the
unconcerned variation of methylation states among different
samples. As the sequencing data of plasma cfDNA could be
regarded as a mixed signal of tumor-derived cfDNA and basal
cfDNA, which is similar to cfDNA at the healthy state, we should
use the reads from regions where the methylation patterns are
different between cancer tissues and healthy plasma cfDNA.
Previous studies [26–30] have produced many methods to define
DMRs. These methods mainly focused on the statistics of total
reads from a certain genome region. However, fractions of tumor-
derived reads in plasma cfDNA are usually ultralow especially at
the early stage. The identification of tumor-derived reads would
be greatly dampened by outliers from healthy tissues in the
calculation of traditional statistics. Therefore, we defined DMRs
as regions where the methylation patterns of tumor-derived
reads are distinguishable from patterns of reads from healthy
plasma to enhance the cancer-related signal at read-resolution
in cfDNA sequencing data.

Based on such assumption, we introduced a new feature
named ‘switching regions’ and ‘switching reads’, which were
defined with the following steps (Figure 1A). Firstly, we divided
the whole genome into 500-bp regions without overlaps and fil-
tered out regions with <25 reads in all training-cohort samples.
Then we calculated the methylation ratios of all DNA fragments
from a certain region to get their distributions in cancer tissues
as well as cfDNA from healthy plasma. Here we only used reads
with three or more CpG sites. Next, we compared the maximum
and minimum values of two distributions. For instance, to iden-
tify hypomethylated switching regions, we denoted the healthy
plasma’s minimum methylation rate of all reads in a region as
Hmin and denoted the cancer tissues’ minimum methylation rate
of all reads in this region as Tmin. When Hmin − Tmin is larger
than a certain threshold, this region is defined as a switching
region. All reads from switching regions with methylation rates
lower than Hmin are defined as switching reads. The hypermethy-
lated switching regions were defined in a similar way. As HCC
shows a significant genome-wide hypomethylation pattern in
comparison with healthy tissues [17], here we focused on the
hypomethylated switching regions in HCC.

The value of the threshold determines how many switch-
ing regions are identified. When the threshold is higher, fewer
regions will be identified as switching regions, which may cause
the shrink of reads numbers and thus result in the reduction
of precision. On the contrary, lower thresholds lead to more
switching regions, which consumes more time for deep model
training. Here we observed the relationship between the thresh-
old and the amount of hypomethylated switching regions as
well as the relationship between the threshold and the accuracy
of the model (Supplemental Figure 1) and set the threshold

as 0.3 to ensure that the coverage of selected hypomethylated
switching regions (mean number of regions: 3130.5, mean cover-
age: 1.565 Mb) is similar to that of CancerDetector DMRs (mean
coverage: 1.515 Mb).

Predicting the source of each read with a deep learning
model

To gain a valid and comprehensive model to depict the DNA
sequence and methylation pattern in tumor-derived reads in
cfDNA WGBS data, we built a deep learning model to predict
the potent that a read is derived from cancer tissues, termed as
d-score. All reads with three or more CpG sites from switching
regions were used to train the deep learning model. By attaching
label to each read according to its source (from healthy plasma
as 0, from cancer tissues as 1), we converted this problem into
a binary classification problem of reads. For each read, the first
5 bp at the 5′ end was trimmed to avoid the influence of adapters.
Then all reads were trimmed at the 3′ end to a same length
(L = 66 in this study) to unify the input format. We randomly sub-
sampled the reads to ensure the balance between the amount
of two sample types and reserved 20% of these reads for kernel
visualization.

Here we referred to the structure of DanQ model [31], which
was built to quantify the function of DNA sequences, and made
some adjustments on it to serve as the core of the deep learning
model (Figure 1C). Each base of a unified read was encoded into
a one-hot matrix according to the nucleobase, and the methy-
lation state of the base was also encoded, where 1 presents
methylated and 0 presents unmethylated. Therefore, each input
read was encoded into a L × 5 matrix. After the input layer, we
sequentially added a one-dimensional (1D) convolution layer, a
maxpooling layer, a bi-directional LSTM layer, a 1D convolution
layer, a flatten layer and three dense layers. The output of the
model was a continuous value denoted as d-score between 0 and
1 corresponding to the label of each read. The closer the d-score
is to 1, the more likely the read is from a cancer tissue. Details
of the deep learning model were shown in Supplemental Figure
2.

Estimating the fraction of tumor-derived cfDNA

The d-score calculated by the deep learning model was treated as
the probability that the read is from a cancer tissue. For a tested
sample with n reads and their d-scores d1, d2, . . . dn (Figure 1D),
we inferred the proportion of reads from cancer tissue according
to these d-scores by calculating the maximum posterior proba-
bility inspired by CancerDetector [21]. When given the ratio of
tumor-derived reads as r for a sample and assuming that d-
scores of each read are independent, we could get the posterior
probability of this sample with these d-scores as P:

P =
n∏

i=1

[
r × di + (1 − r) × (

1 − di
)]

When maximizing P, we could get the estimated ratio of tumor-
derived reads by DISMIR denoted as r̂, which could be regarded
as the risk that the plasma donor is suffering from cancer for
cancer diagnosis:

r̂ = argmax
r∈[0,1]

n∏

i=1

[
r × di + (1 − r) × (

1 − di
)]

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
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To calculate the maximum posterior probability, we first
calculated P with every possible r from 0 to 1 with a step equal
to 0.001 and then found the r, which led to the maximum value
of P.

Visualizing kernels of the deep learning model by
position frequency matrices (PFM)

We visualized kernels of the deep learning model to figure out
the DNA sequence and methylation patterns that the model
focused on. After finishing the training of the deep learning
model, we took out the weight matrices of all kernels in the
first 1D convolution layer. We then used the reserved 20% reads
in the training set on every possible position as inputs and
calculated their activation values by the weight matrices. For
each weight matrix, we located the top 1% output values and
got the corresponding inputs. These inputs were superposed
together with their activation values as weights to calculate the
frequency of each base and the methylation state as PFMs.

Results
DISMIR achieved high precision in early-stage HCC
detection

We identified switching regions and trained DISMIR on a
randomly selected training cohort. Then, we tested DISMIR
on remained samples as the test cohort for 10 times (see
Materials and Methods for details). For every random selection,
we trained DISMIR for 10 times with the same data and then
applied the model on the test cohort. The average d-score of
each individual read was calculated as the final d-score for
downstream estimation of tumor fraction to get rid of the
randomness of the deep learning method.

We adopted the receiver operating characteristic (ROC) curve
to evaluate the ability of the tumor fraction predicted by DISMIR
for distinguishing HCC patients from healthy people. As shown
in Figure 2A, the AUC of DISMIR was 0.9969 ± 0.0016 (mean ± SD).
At the specificity of 100%, DISMIR achieved a sensitivity of
93.94 ± 3.15%; at the sensitivity of 100%, the specificity of DISMIR
was 93.46 ± 4.07%.

We further compared our approach with CancerDetector
[21]. Following the principle described in CancerDetector
(CancerDetector in short), we first detected DMRs from the CpG
clusters defined in the CancerDetector paper and then trained
the probabilistic model of CancerDetector with these DMRs.
The data used in DMR detection and model training contain
methylation data measured by the Infinium HumanMethyla-
tion450 microarray derived from The Cancer Genome Atlas [32],
which are the same as what the CancerDetector paper used, and
WGBS data of healthy people’s plasma in our training cohort.
Then, we employed the model to perform cancer detection
using reads from these CancerDetector-identified DMRs on
the test cohort. We found that CancerDetector achieved an
AUC of 0.9925 ± 0.0050 (Figure 2A). At the specificity of 100%,
the sensitivity was 86.50 ± 10.81%. At the sensitivity of 100%,
the specificity was 91.15% ± 2.60%. Though the performance
reported here is slightly different from the results reported by
the original paper of CancerDetector because the training/test
sets used in the two studies are not exactly the same, these
results suggested that the performance of DISMIR is comparable
with CancerDetector.

We then tested whether the predicted values of DISMIR could
be used to predict tumor burdens. As shown in Supplemental
Figure 3A, the estimated ratio of tumor-derived reads (r̂) showed
a significant correlation between the tumor size (Pearson’s
r = 0.882, P-value = 6.68 × 10−5), which is less than the result of
CancerDetector (Supplemental Figure 3B, Pearson’s r = 0.978,
P-value = 7.91 × 10−9). When removing samples with tumor
size >6 cm, the correlation was not significant (Pearson’s
r = 0.168, P-value = 0.642), but CancerDetector still showed a
significant correlation in this condition (Pearson’s r = 0.717, P-
value = 0.020). The results suggested that though DISMIR could
identify patients with small tumors accurately, the predicted
value of DISMIR is not effective as the CancerDetector score
for predicting small tumor burdens. Actually, as DISMIR was
developed to focus on the binary classification problem of
cancer patients and healthy people, the prediction values of
DISMIR may not be very suitable for the prediction of small
tumor size.

We also investigated the result of DISMIR trained with
the hypermethylated switching regions. Here we chose one
random separation of the training and test cohort and set
the threshold as 0.5 for selecting hypermethylated switching
regions (number of regions: 3395, coverage: 1.698 Mb). As shown
in Supplemental Figure 4A, the AUC of DISMIR employing
the reads of hypermethylated switching regions was 0.8885,
suggesting that the hypermethylated switching regions also
contain valuable information for cancer detection. However,
this AUC is much lower than the predicted results with
hypomethylated switching regions. We further investigated the
predicted values of DISMIR using hypo- and hypermethylated
switching regions (Supplemental Figure 4B and C) and found
that the hypomethylated switching regions were sufficient for
detecting HCC.

To assess the contribution of the deep learning model, we
adopted the fraction of switching reads (FSR in short) and trained
two traditional machine learning models, SVM and random
forests, based on the methylation ratios of each switching region
to diagnose HCC. As shown in Figure 2A, these methods showed
moderate classification accuracies but could hardly serve as
effective HCC diagnosis markers in comparison with DISMIR.
Besides, we used reads from the CancerDetector-identified
DMRs, which had a similar coverage on genome with DMRs
defined by switching regions (Supplemental Figure 1A), to
train the deep learning model of DISMIR (deepCDR in short)
and found a lower precision than DISMIR (Figure 2A), further
advocating the advantage of defining DMRs by switching regions.
As a result, both the deep learning model and the definition
of switching regions contributed to the great performance of
DISMIR.

Subsampling and simulation results showed DISMIR as
an ultrasensitive and robust HCC detection method

To evaluate the performance of DISMIR at low sequencing
depths, we randomly subsampled data in the test cohort
for 10 times and applied DISMIR and other abovementioned
methods on these data. As shown in Figure 2B, DISMIR kept
high precisions, whereas the accuracy of CancerDetector
decreased significantly with the reduction of sequencing
depths. When the data were subsampled with a ratio of 1%
(coverage from 0.01× to 0.1×), DISMIR still achieved an AUC
of 0.9112 ± 0.0307, which is significantly higher than the AUC

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data


6 Li et al.

Figure 2. Results of DISMIR and other methods on HCC diagnosis. (A) ROC curves of different HCC diagnosis methods in the test cohort. Blue lines show the average of

the ROC curve. Each method was performed for 10 times with random partition of training and test samples. (B) AUCs of different HCC diagnosis methods at different

subsampling rates. Each condition was performed for 10 times with randomly subsampling in the test cohort. (C) Simulation results at different depths with DISMIR

(top) and CancerDetector (bottom). Each condition was performed for 10 times with randomly sampling and mixing. For each graph, CancerDetector denotes the

method following the principle of the CancerDetector paper; deepCDR denotes the deep learning model with the same structure as DISMIR trained with reads from

the CancerDetector-identified DMRs.

of CancerDetector (0.7432 ± 0.0463, Mann–Whitney U test, P-
value = 1.083 × 10−5). Interestingly, FSR exhibited higher AUCs
at low sequencing depths than CancerDetector, suggesting
that defining DMRs by switching regions could resist to noise
better than traditional methods. What’s more, deepCDR also
showed better performance at low sequencing depths than
CancerDetector, which demonstrated the benefit of employing
the deep learning model. Meanwhile, accuracies of the two
traditional machine learning methods decreased rapidly with
the sequencing depth reduction and even lost the discrimination
ability when the subsampling ratio was <4% (Figure 2B). All
the results suggested that learning the joint patterns of DNA
sequence and methylation of reads from switching regions by
the deep learning model could predict the source of reads more
precisely and thus guarantees the sensitivity of HCC diagnosis
at ultralow sequencing depths.

We further conducted a simulated dataset to validate the
robustness of DISMIR. We randomly sampled reads from WGBS
data of HCC tissues and healthy plasma cfDNA, respectively,
and mixed them together with different proportions to imitate
certain tumor fractions. Besides, the total amount of reads also
varied to simulate different sequencing depths. The sampling
procedure was repeated for 10 times for each condition. We then
tested DISMIR and CancerDetector on the simulated dataset.
As shown in Figure 2C, the predicted tumor fractions of DIS-
MIR were consistent at different sequencing depths, but those
of CancerDetector increased significantly with the increase of
sequencing depth, which may introduce bias into the HCC diag-
nosis approach as the sequencing depths can hardly be exactly
the same without a loss-of-information subsampling procedure.
The results suggested that DISMIR is highly robust at different
sequencing depths and thus is more applicable.

Kernels of DISMIR paid attention to joint patterns of
DNA sequence and methylation

To investigate how DISMIR distinguished HCC-derived cfDNA
fragments from others by employing DNA sequence and methy-
lation information, we tried to interpret the deep learning model

of DISMIR by investigating the network details. We visualized
the kernels of the first 1D convolution layer by calculating their
PFMs (see Materials and Methods for details). We compared the
sequence patterns of these PFMs with known motifs by TOMTOM
[33] and merged the E-values assigned by TOMTOM from 10
times of training with Fisher’s combined probability test. A total
of 28 motifs were identified as significant motifs (P-value <0.05)
matching with the kernel PFMs (Supplemental Table 2). Interest-
ingly, many of these motifs were related to HCC (Supplemental
Table 2). For example, as shown in Figure 3A, two kernels were
matched to the EGR2 and ZFP64 (ZF64A) motif, respectively. EGR2
is an antitumor transcriptional factor, the induction of which
could suppress the malignancy of HCC [34, 35]. Meanwhile, the
expression of ZFP64 was shown to be positively correlated to the
overall survival of advanced HCC patients with the treatment of
a second-line therapy [36].

We further visualized the kernels with the methylation infor-
mation. We treated the methylated cytosine (noted as ‘M’) and
the unmethylated cytosine (noted as ‘C’) as two different base
and then visualized the kernels in five-base logos. The results
were similar with four-base logos except for significant differ-
ence at CpG sites. By such visualization, we successfully found
the evidence that the deep learning model combined sequence
with methylation information together. As shown in Figure 3A,
the cytosine at the CpG site of the ZFP64-like kernel was almost
fully methylated, suggesting the methylation state on this motif
was highly coordinated with its flanking DNA sequence pattern
during HCC detection. What’s more, we also found several ker-
nels concentrated to different methylation states of CpG sites
at different positions of reads (Figure 3B). For example, both
kernel #54 and #91 paid attention to the CpG site at the 8th
position, but they attached quite different importance to the
methylation state of the CpG site (Figure 3B). Therefore, with
other kernels that might pay more attention to the informa-
tion of joint patterns of DNA sequence and interior methyla-
tion, the deep network could thus combine the information
together as the preliminary pattern extraction of a whole read
for further analysis to predict the source of the read more
accurately.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab250#supplementary-data
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Figure 3. Visualized convolution kernels of the deep learning model. (A) Visualized kernels matched to known HCC-related motifs. (B) Visualized kernels focusing on

the methylation state of CpG sites. Cytosines at CpG sites are marked with blue rectangles.

DISMIR employed the joint pattern of DNA sequence
and methylation to distinguish HCC-derived reads

Though kernel visualization suggested both DNA sequence and
methylation information were processed in DISMIR, less was
known about whether DNA sequence and methylation decided
the results jointly. Therefore, we investigated the relationship
between the methylation ratios of all reads and their d-scores
derived by DISMIR (Figure 4A), which showed a significant nega-
tive correlation (Pearson’s r = −0.900). However, d-scores of reads
with similar methylation ratios varied enormously. If the score of
each read was assigned by its methylation ratio, the correlation
should be much higher. Besides, as the methylation states of
CpG dyads on both strands are correlated but could be different
in some conditions [37], we generated reverse complementary
(RC) reads of raw reads from cancer tissues that were not in
the training set with the same methylation state at every CpG
dyad; thus, the paired raw read and RC read shared the same
methylation ratio. We then used DISMIR to predict the d-scores
of raw reads and RC reads (Figure 4B). The results suggested
that DISMIR successfully found the correlated pattern of reads
derived from different strands (Pearson’s r = 0.869), while there
exhibited some difference between them. All the results showed
that DISMIR determined the d-score of a read by more beyond its
methylation ratio.

Thus, we investigated the collaboration of DNA sequence
and methylation within switching regions. Here we gave a sam-
ple from a certain switching region with a length of 500 bp
on chromosome 1. We generated all possible reads with the
same length as the input reads with three or more CpG sites
within the region. All CpG sites on these reads were set to be
methylated, and their d-scores were calculated by DISMIR. Then,
the methylation state of each single CpG site on all reads was
altered to be unmethylated. The d-scores changed correspond-

ingly with a magnitude denoted as �singled-score (Figure 4C).
Similarly, we examined reads with all CpG sites altered to the
unmethylated state and denoted the change of d-score as �alld-
score (Figure 4C). Interestingly, alterations of methylation states
on different CpG sites contributed differently to the change
of d-scores (Figure 4D), which couldn’t be fully explained by
the alteration of methylation ratios. Besides, when we altered
reads from a whole methylated to a whole unmethylated state,
though with the same alteration of methylation ratios, changes
of d-scores varied across the region (Figure 4E), which was not
entirely determined by the amount of CpG sites on reads. All the
results showed that DISMIR assigned different importance to dif-
ferent CpG sites according to their surrounding DNA sequences.
We further added all �singled-scores of a read together as �sumd-
score and found that almost all �sumd-scores were less than
the corresponding �alld-scores (Figure 4E). The results suggested
that DISMIR may focus more on the global methylation alteration
rather than just gather the impact of each single CpG site’s
methylation alteration together.

Motif-related kernels of DISMIR could resist to
methylation state alterations of single CpG sites

As shown in Figure 4F, the d-score change with the alteration
of all CpG sites on a read was much higher than the sum of
d-score changes with alterations of each single CpG site. This
result hinted that DISMIR might pay more attention to global
methylation state alterations, which are familiar in cancer tis-
sues. By contrast, alterations of single CpG sites are usually
confounded by technical noise during WGBS, thus should be
considered with smaller weights when discriminating the origin
of reads. To further investigate whether DISMIR could resist to
methylation state alterations of single CpG sites, we considered
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Figure 4. The joint pattern of DNA sequence and methylation decides the prediction of DISMIR. (A) The relationship between methylation rates and d-scores of all

reads. (B) The relationship of d-scores of raw reads and their RC reads. (C) The schematic diagram depicting how reads with altered methylation states were generated

for downstream analysis. (D) �singled-score (blue line) and the corresponding demethylation rate (gray line) at different positions in the selected switching region.

Colored shadows show the standard deviation of �singled-score. (E) �alld-score (red line), �sumd-score (green line) and the corresponding CpG count (gray line) at

different positions in the selected switching region.

all possible reads with more than three CpG sites in all switching
regions and calculated their �alld-scores and �sumd-scores. To
avoid the confounding of the counts of CpG sites, we grouped the
reads by the CpG count and analyzed each group, respectively.
Interestingly, DISMIR paid more attention to global alteration of
CpG states beyond the additive model of single alterations (the
left panel of Figure 5A showed results of all reads with three CpG
sites; reads with more CpG sites showed similar patterns). The
results suggested DISMIR worked as a filter against the influence
of the methylation alterations on single CpG sites, which have
low signal-to-noise ratios in comparison with global methylation
alterations.

We then analyzed the relationship between d-score changes
and DISMIR kernels. We calculated the activation values of each
kernel on every possible read with all CpG sites set as methylated

and reads with the top 0.1% highest activation values were
regarded as reads that could highly activate this kernel. Inter-
estingly, the distribution of d-score changes of kernel-activated
reads tended to be different from the distribution of all reads
(Figure 5A and B). We further compared the distribution of �alld-
scores and �sumd-scores of these kernel-activated reads and all
reads with the Mann–Whitney U test. As sample sizes of both
distributions were huge, the P-value of the test was overpowered
for subtle difference. Therefore, we adopted the AUC statistic
between two distributions, which could be directly derived from
the Mann–Whitney U test [38], as the effect size (ES) of the test
to quantify the difference between two distributions. As shown
in Figure 5C, some kernels tended to filter out the influence of
single-site demethylation but could focus on whole demethy-
lation (located in the 4th quadrant of Figure 5C). We further
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Figure 5. DISMIR and its kernels can resist to methylation state alterations of single CpG sites. (A) The distribution of �alld-scores and �sumd-scores of all reads (left)

and certain kernel-activated reads (middle and right). The black lines are diagonal lines where �alld-scores are equal to �sumd-scores. (B) The cumulative distribution

function of �alld-scores and �sumd-scores of reads shown in (A). ES of the Mann–Whitney U test are shown. (C) The distribution of ES of the Mann–Whitney U test

for �alld-scores and �sumd-scores of reads activated by certain kernels in comparison with them of all reads, which was performed the same as shown in (B). For (A)

and (B), results of reads with three CpG sites were shown. For (C), results of reads with three, four and five CpG sites were shown with performing model training for

10 times. Black lines show where ES equals to 0.5 and divide the plane into four quadrants.

investigated kernels matched to known motifs (blue points in
Figure 5C) and found that these kernels are more likely to be
located in the 4th quadrant (odds ratio = 4.158, Fisher’s exact test
P-value = 4.59 × 10−23). As the randomness of the training of the
deep learning model, kernels may differ across different training,
but functional kernels that are more likely to be assigned to
known motifs emerged repeatedly in different trainings. These
functional kernels, as shown in Figure 5C, could resist to the
demethylation of single CpG sites, ensuring the high robustness
of DISMIR.

Discussion
In this study, we developed a deep learning-based approach
called DISMIR to predict whether reads in plasma cfDNA WGBS
data are derived from tumor and further adopted the predicted
fraction of tumor-derived reads to diagnose cancer. DISMIR
achieved outperformed results in HCC detection, especially at
low sequencing depths, which makes it possible to be a low-
cost cancer-detection method. The predicted fractions of tumor-
derived reads are also stable at different sequencing depths, so
that we can assign a unified threshold to samples with various
sequencing depths for cancer diagnosis. These advantages make
DISMIR more likely to be applied in clinical practice.

The outperformance of DISMIR was mainly contributed by
the novel design of the deep learning model. We built a deep
network to combine the DNA sequence and methylation infor-
mation together for each read. Therefore, DISMIR could grasp
sequence motifs related to cancer and extract the joint pat-
terns of DNA sequence and methylation across different regions
from the whole genome to ensure the source prediction of
individual reads more accurate. As a contrast, methods with
only methylation information such as SVM, random forests and
FSR performed much worse than DISMIR (Figure 2), showing the
advantage of integrating the information of DNA sequence and
methylation. Besides, information derived from different regions
makes the model more robust and thus guarantees the precision
of prediction even at extremely low sequencing depths.

Deep learning approaches usually require a large number of
samples for training. However, the difficulty of obtaining clinical
samples and the expensive cost of WGBS experiments limit
the sample size of cfDNA WGBS data. Thus, in this study, we
regarded each individual read from the switching regions as a
sample instead of the statistics of all reads from a DMR. The deep
learning model didn’t learn the pattern of sequencing samples
as a whole but all sequencing reads as individuals. Therefore,
the amount of the individual reads is large enough to meet the
requirement of deep learning.
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Different to the definitions of DMRs in other approaches, here
we introduced a novel method to identify DMRs called switching
regions to enrich reads with more distinguishable methylation
patterns. As previous studies suggested, methylation patterns
at the resolution of read level could make the model more
sensitive [39]. In comparison with traditional definition of
DMRs, switching regions are more sensitive to evade outlier
reads, which might introduce significant noise to the read-
resolution deep learning model. DNA fragments from switching
regions contain more specific features and could thus enhance
the precision of signal detection resisting to noise at low
sequencing depths. Thus, defining DMRs by switching regions
is more suitable for models employing individual reads as
inputs. Furthermore, kernels of DISMIR that were related to
known motifs paid more attention to global alteration of
methylation states but less attention to methylation state
alterations of single CpG sites, which made DISMIR able to resist
to technical noise of WGBS and thus enhanced the robustness
of DISMIR.

We found that several motifs that kernels of the deep learning
model focused on were related to cancer, which showed the pow-
erful capacity of feature extraction as well as good interpretabil-
ity of the deep learning model. Furthermore, some kernels that
didn’t match with known cancer motifs may contain novel infor-
mation related to cancer, especially in the process of epigenomic
regulation. The deep learning method, which integrates DNA
sequence and methylation information together, also provides
a data-driven method for us to unveil the interaction between
genomes and epigenomes [40, 41]. In addition, the deep learning-
based method can also be applied in other multimodal data to
extract useful joint patterns to find out new rules in certain
biological processes.

DISMIR could be easily applied on the detection of other
cancer types. As model accuracy and training efficiency shows
a trade-off determined by the threshold of switching regions,
we suggest users to pretrain the model with training data or
simulated data to find a computation-acceptable threshold with
high accuracies. Besides, as the hyper- and hypomethylation
profiles differ among cancer types, we suggest users to train two
DISMIR models using the hyper- and hypomethylated switching
regions, respectively, and then select or integrate the outputs of
two models to determine the risk of cancer.

This study can be further improved in several ways. Firstly,
more cfDNA samples could be involved in the testing cohort
to further evaluate the precision of the method. Besides, as
the tumor samples used for model training may not be just
composed of cancer cells [42], we can develop correction meth-
ods based on the tumor purity before model training to get
more accurate predictions of tumor-derived cfDNA. Further-
more, though this study employed HCC to evaluate the perfor-
mance, the method could be used and should be validated on
more kinds of cancers. In addition, new approaches based on
this method could be further developed to transfer the features
learnt from one kind of cancer to the model of another cancer
and thus realize efficient pan-cancer detection.

Key points
• DISMIR exhibits high accuracy and robustness in the

detection of cancer with WGBS data even at ultralow
sequencing depths. The results demonstrated that
DISMIR achieved an AUC of 0.9112 ± 0.0307 at ultralow

depths from 0.01× to 0.1× in the diagnosis of early-
stage HCC.

• DISMIR is a deep learning-based method that inte-
grates the information of DNA sequence and methy-
lation of each read, which was proved to be able to
resist to technical noise. This framework could be
used to discover the interaction between genomes and
epigenomes.

• DISMIR predicts the source of each read and then
estimates the cancer risk according to the predic-
tion results of all reads, which is highly suitable for
samples that are mixtures of signals such as cfDNA.
DISMIR introduces ‘switching region’ to define cancer-
specific differentially methylated regions, which can
enrich the cancer-related signal at read-resolution.

• DISMIR can serve as a precise and robust noninvasive
detection method for various types of cancers at the
early stage. DISMIR requires lower sequencing depths
than other methods and thus is more likely to be
applied in clinical practice.

Availability of data and materials

The source code of DISMIR is available from GitHub
(https://github.com/XWangLabTHU/DISMIR). All WGBS
data utilized in this study are from European Genome-
Phenome Archive database (EGA) with the accession
number EGAS00001000566 [17], EGAS00001001219 [24] and
EGAS00001002728 [21].
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