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Regulatory T (Treg) cells are garnering increased attention in research related to

autoimmune diseases, including rheumatoid arthritis (RA). They play an

essential role in the maintenance of immune homeostasis by restricting

effector T cell activity. Reduced functions and frequencies of Treg cells

contribute to the pathogenesis of RA, a common autoimmune disease which

leads to systemic inflammation and erosive joint destruction. Treg cells from

patients with RA are characterized by impaired functions and by an altered

phenotype. They show increased plasticity towards Th17 cells and a reduced

suppressive capacity. Besides the suppressive function of Treg cells, their

effectiveness is determined by their ability to migrate into inflamed tissues. In

the past years, new mechanisms involved in Treg cell migration have been

identified. One example of such a mechanism is the phosphorylation of

vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg
cells requires the presence of VASP. IL-6, a cytokine which is abundantly

present in the peripheral blood and in the synovial tissue of RA patients,

induces posttranslational modifications of VASP. Recently, it has been shown

in mice with collagen-induced arthritis (CIA) that this IL-6 mediated

posttranslational modification leads to reduced Treg cell trafficking. Another

protein which facilitates Treg cell migration is G-protein-signaling modulator 2

(GPSM2). It modulates G-protein coupled receptor functioning, thereby

altering the cellular activity initiated by cell surface receptors in response to

extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA

patients contributes to their reduced ability to migrate towards inflammatory

sites. In this review article, we highlight the newly identified mechanisms of Treg
cell migration and review the current knowledge about impaired Treg cell

homeostasis in RA.
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Introduction

Rheumatoid Arthritis (RA) is a chronic systemic

inflammatory autoimmune disease characterized by a

symmetric polyarthritis with subsequent joint destruction and

deformity. While typically associated with cartilage destruction

and bone erosion of afflicted synovial joints, RA can also present

with a myriad of extra-articular manifestations (1). Symptom

constellations seen in RA patients can lead to severe disability,

with a significant reduction in quality of life as well as

employability (2, 3). Considering the overall lifetime risk of

developing RA in US-women is 3.6% and 1.7% in US-men (4) as

well as an estimated worldwide prevalence of 0.46% (5), the

aggregate reduction in quality of life and productivity, as well as

increased utilization of healthcare resources have significant

societal as well as economic impacts.

With continued research, our understanding of RA and its

underlying mechanisms has grown significantly. While the

pathogenesis of RA is complex and involves the interplay of

many factors, an increasing amount of attention has been given

to the role of regulatory T cells (Tregs), in disease development

and progression. As a specialized subset of helper T cells, Tregs

play an important role in maintaining homeostasis and self-

tolerance, thereby preventing the development of autoimmune

diseases such as RA. With this review we aim to synthesize the

growing body of knowledge available on Treg cell migration and

homeostasis as it pertains to RA. An understanding of this topic

is not only relevant to the pathogenesis but also potential

treatment modalities of RA.
Rheumatoid arthritis

The multifactorial pathogenesis of RA has been the subject

of numerous publications as the exact mechanisms continue to

be uncovered. It has been proposed that various environmental

factors play a role in the susceptibility to RA, with smoking being

identified as the most important environmental risk factor

associated with the development of RA others of which

include low vitamin D intake and levels as well as

occupational dust exposure (6–9). Interestingly, mice with

chronic exposure to cigarette smoke showed reduced levels of

Tregs in peripheral blood via flow cytometry (10). By means of

genome-wide association studies (GWAS) with subsequent

meta-analyses, RA susceptibility has also been linked to major

histocompatibility complex (MHC) genetic variants with

different serological phenotypes of RA being associated with

distinct human leukocyte antigen (HLA) gene variations. For

example, it has been found that the HLA-DRB1 genotype,

associated with increased CXCR4 expression on cluster of

differentiation 4 positive (CD4+) T cells, a protein which is

involved in cellular migration, leads to sustained autoimmunity
Frontiers in Immunology 02
and local inflammation thereby conferring an increased risk for

RA development (11, 12). MicroRNA (miRNA), which is small

non-coding RNA involved in the regulation of post-

transcriptional gene expression has been proposed as an

epigenetic process involved in RA pathogenesis by means of

modulating T- and B-cell subtype development and

differentiation. While certainly not the only miRNA domain

with relevance to RA, it has been shown that microRNAs and

their interplay with transcriptional factors can modulate the

peripheral blood Th17/Treg balance (13). This is of particular

note as RA is heavily associated with a disturbed Th17/Treg

balance skewed in favor of the pro-inflammatory Th17-cells.

It is presumed that the presence of the aforementioned risk

factors in combination with a triggering event such as infection

or injury is what ultimately causes the development of

autoreactive T- and B- cells and subsequent development of

RA. While the exact pathomechanisms underlying RA and its

associated manifestations are highly complex and multi-

factorial, a significant amount of attention has been given to

CD4+ T-helper cells (Th-cells), which represent the most

abundant lymphocyte population in the synovial infiltrate.

Naïve CD4+ T cells can develop into distinct subsets with

specific phenotypes and functions (Figure 1). Observations

have shown abnormalities in intracellular signaling as well as

aging of T helper cells in patients with RA, thereby contributing

to the chronic autoimmune response associated with RA (18).

RA presents clinically with the bilateral insidious onset of

polyarticular symmetric arthritis. Patients experience pain and

soft effusion-based swelling in affected joints, primarily the

metacarpophalangeal, metatarsophalangeal and proximal

interphalangeal joints as well as the wrist. RA, however, is not

limited to small joints and can also affect ankle, knee, elbow and

shoulder joints. While joint involvement is the classical

manifestation associated with RA, inadequate treatment can

lead to the development of numerous extra-articular

manifestations including, but certainly not limited to

cardiovascular disease, interstitial lung disease and liver

dysfunction (1). In addition, when considering the mean loss

of life expectancy in patients diagnosed with RA is 4.97 years

(19) the gravity of the disease becomes clear.
Regulatory T cells

CD4+ regulatory T cells are a distinct T cell subpopulation

involved in the maintenance and regulation of self-tolerance and

homeostasis. First discovered in 1995, Tregs specifically express

the transcription factor forkhead Box P3 (FoxP3) in the nucleus

as well as CD25 and CTLA-4 on their cell surface (20). Although

FoxP3 expression is significant for the differentiation of CD4+ T

cells to the regulatory T cell phenotype, numerous epigenetic

changes have also proven to be crucial for effective Treg
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functioning. However, FoxP3 holds a pivotal role to regulatory T

cell function, as evidenced by the X-Linked syndrome of

immune dysregulation, polyendocrinopathy, and enteropathy

(IPEX) caused by a mutation in the FoxP3 gene leading to large

amounts of polyclonal T-cell activation and tissue infiltration

(21, 22). While numerous studies have been able to implicate

dysfunctional Tregs in autoimmune disease and inflammatory

conditions, increasing evidence suggests the role of Tregs goes far

beyond simply acting as a checkpoint on overarching

inflammatory processes. As our understanding of regulatory T

cells and their role in disease progresses, increased attention is

being given to this cell-type as a potential therapeutic target

benefitting disease control. As a key regulator of immune

function, both down- and up-regulation of immune responses

by means of regulatory T cell modulation could be feasible

therapeutic angles for treating numerous diseases.

Although FoxP3 has been shown to be key to Treg

differentiation and functioning, further genes play a pivotal

role in Treg development and functioning. Treg genome

regulators such as SATB1 (Special AT-rich sequence binding

protein 1) bind to genomic sites to unwind chromatin and

activate super-enhancers. The importance of this genomic

organizer to regulatory T cells has been illustrated by

experiments showing SATB1-deficient mice not being able to

generate Tregs in the thymus, as well as the failure of CD25+

FoxP3- CD4+ T cells deficient in SATB1 to differentiate into

FoxP3+ Tregs under appropriate conditions for differentiation

(23). These activated super-enhancers subsequently demethylate

and thereby activate the hallmark Treg genes among which are
Frontiers in Immunology 03
FOXP3, IL2RA (encoding CD25), CTLA4, IKZF2 (encoding

Helios) and IKZF4 (encoding Eos), collectively known as Treg

-specific demethylated regions (Treg-DRs). While super-

enhancer dependent demethylation is able to upregulate gene

expression, FoxP3 expression has been associated with the

downregulation of IL2, IFN-g and Zap70 genes, which

interestingly do not possess any of these Treg-DRs, thereby

suggesting a FoxP3-independent mechanism of Treg-DR

regulation (24). Both epigenetic changes and FoxP3 expression

are regulated in an independent manner by means of TCR

activation; however, both are required for a definite

differentiation to the Treg lineage.

Although mainly produced in the thymus, Tregs also develop

in the periphery, such as in the intestinal mucosa. Interestingly,

in comparison to other T cell subtypes, Tregs leave the thymus in

an antigen-primed state, characterized by the expression of

CD25, CTLA4 and CD5 (25). In addition to their activated

state, upon leaving the thymus, Tregs have also been shown to

have a high T cell receptor (TCR) affinity for self-antigens (26).

By means of their primed state and high TCR affinity for self-

antigens, Tregs are activated to exert suppressive effects at up to

~100-fold lower peptide/MHC concentrations when compared

to other T cell subsets that recognize the same antigen (27).

These two characteristics ensure a rapid Treg response towards

self-antigens, subsequently preventing other immune cells from

being activated and causing an aberrant immunologic response.

Once in the periphery, FoxP3+ Tregs find themselves in a

continuous state of high proliferation under physiologic

conditions, most likely due to continued recognition of self-
FIGURE 1

Overview of CD4+ T cell subsets. Regulatory T cells, along with the Th2 phenotype are classically associated with anti-inflammatory
functioning, whereas Th1 and Th17 cells are typically associated with pro-inflammatory functions. Th9 cells are implicated in host defense
against helminth infections, Th22 cells in host defense against bacterial pathogens and Tfh cells play an important role for the development of
lasting immune memory. The individual characteristics and functions of CD4+ T cell subsets are made possible through distinct gene profiles
resulting in a subtype-specific expression of receptors and cytokine production. Different environmental stimuli, such as TGF-b in the case of
regulatory T cells induce the differentiation of naive CD4+ T cells into their respective subtypes (14–17).
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antigens as well as antigens derived from ubiquitously present

microbes (28, 29). Peripherally located naïve CD4+ T cells can

differentiate to FoxP3+ Tregs under both inflammatory and non-

inflammatory conditions following specific antigen exposure

(30, 31). While thymic Tregs (tTregs) are classically associated

with the recognition of self-antigens, peripherally induced Tregs

(pTregs) are involved in the recognition of foreign antigens such

as bacterial, allergy and food antigens (32). This differentiation is

further reflected in the differential expression of Nrp-1, being

high in tTregs and low in pTregs as well as in the TCR repertoire,

which shows limited overlap among the two subsets (33).

Interestingly, it has been shown tTregs, in the absence of pTregs,

are incapable of suppressing chronic inflammation and

autoimmunity (34).

Although classically associated with the suppression of

overarching immune-responses, Tregs have garnered attention

for numerous other functions. While Treg cells play an important

role in various autoimmune diseases and contribute to

dysregulated immune response in malignant diseases (35–40),

they have also been implicated in controlling fetal-maternal

tolerance (41–43), immunometabolic disease including obesity

and atherosclerosis (44–46), degenerative diseases with

inflammatory components as well as tissue regeneration (47).

Currently, FoxP3, CD25, and CD45RA are used to identify and

divide human circulating FoxP3+ CD4+ T cells into distinct

subsets. Resting or naïve Tregs are characterized by CD45RA, as

well as low levels of CD25 and FoxP3 expression. Effector Tregs

are characterized by no expression of CD45RA but high levels of

both FoxP3 and CD25 expression. Lastly, CD45RA negative cells

with low CD25 and FoxP3 expression are not considered to be

Tregs (28). As we continue to uncover new functions and

mechanisms of Tregs, it is becoming clear just how vital this

cell type is to maintain physiologic homeostasis in numerous

organ systems. With their wide range of functions, Tregs continue

to be an interesting target for further research both in the

understanding, and treatment of RA as well as numerous

other conditions.

Multiple mechanisms have been hypothesized by which Tregs
exert their effector functions, all of which are dependent on FoxP3

expression. It is of note that Tregs have been shown to possess a large

degree of lineage stability, maintaining their FoxP3 expression and

subsequent inhibitory effects under the influence of many different

immune stimuli (48). Of note is the ability of Tregs to express

transcription factors and chemokine receptors typically associated

with other T cell lineages, with the subsequent production of IFN-g
(Th-1 like T-regs), IL-17 (Th-17 like Tregs) and IL-13 (Th-2 like T-

regs) (49–52). Interestingly, male scurfy strain mice that are

hemizygous for the X-linked FoxP3sf mutation, essentially

depriving them of Treg functioning, develop a CD4+ T cell

mediated lymphoproliferative disease characterized by wasting

and multi-organ infiltration by lymphocytes (53). This has been
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highlighted by the work of Fontenot et al. who were able to show

that retroviral-driven Foxp3 expression in CD4+ CD25- T-cells

resulted in protection from disease onset and progression classically

associated with the scurfy strain (54). The suppressive effects are

postulated to be exerted via cell-contact dependent as well as

humoral factors including cytokines (IL-2, IL-10, TGF-b), cell
surface molecules (CTLA-4, CD25, TIGIT) and intracellular

molecules (granzymes, cAMP). Just as numerous as the

mechanisms by which they potentially exert their functions are

the cells that Tregs take effect on, including CD4
+ and CD8+ T cells,

NK cells, B-cells, monocytes and dendritic cells (DCs) (55). Much

interest has been given to Tregs and their relation to interleukin 2

(IL-2), which has also been referred to as T cell Growth Factor

(TCGF). IL-2 together with its receptor (IL-2R) is involved in the

maintenance of self-tolerance as well as immunity and has become

the target of biologic immune-modulators used in the treatment of

autoimmune and rheumatic disease (56). As FoxP3+ Tregs barely

produce any IL-2 due to downregulation of the IL-2 gene by FoxP3

expression, they are dependent on exogenous IL-2 for survival (57).

While studies have come to differing conclusions on the matter, a

role of Tregs as IL-2 “reservoir” has been postulated. Due to Tregs

having the highest expression level of the IL-2 receptor a-chain
among T cells, which is responsible for maintaining the receptor in

a high-affinity state Tregs can effectively starve other immune cells

and APCs of IL-2, thereby inhibiting their activation and preventing

an active immune response (58–60). Interestingly, effector T cells

produce IL-2 when in the activated state to sustain the immunologic

response, which in turn activates regulatory T-cells in order to

prevent an overarching immune reaction. In addition to IL-2, other

“pro-inflammatory” cytokines such as IL-6 and TNF-a have been

shown to induce Treg expansion, indicating the natural role of Tregs

in controlling immune reactions at sites of inflammation (61).

CTLA-4 expression is a further means of Treg functioning, causing

the downregulation of both CD80 and CD86 expression in APCs,

thereby preventing co-stimulatory signaling of CD28 to activate

effector T cells (62). The importance of CTLA-4 mediated effector

functioning has been shown by the conditional deletion of CTLA-4

in adult mice, causing spontaneous lymphoproliferation,

hypergammaglobulinemia, as well as various autoimmune

inflammatory manifestations with accompanying organ-specific

antibodies (63).

Although only a selection of Treg functionalities and

mechanisms of action have been touched upon in this section,

it is evident that Tregs can provide an attractive target in the

prevention or management of numerous diseases. Due to their

ability to significantly alter immune functioning through down-

regulation of effector cells, Tregs provide us with a powerful

means to potentially modulate immune function. For example,

the induction of Tregs in humans with IL-2 administration to

treat disease caused by overreaching immune reactions has

shown promising results (64, 65).
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Tregs in rheumatoid arthritis

As we continue to expand on our knowledge in regard to

regulatory T cells, they are becoming of ever more interest to the

understanding of rheumatoid arthrit is . With their

immunosuppressive role, regulatory T-cells not only play a key

role in the pathogenesis of RA but can also provide valuable insights

into possible treatment modalities. Although controversial results

have been published, the general consensus is that regulatory T-cell

levels are reduced in patients with Rheumatoid Arthritis, which is in

line with the general anti-inflammatory effect attributed to Tregs (66,

67). While difficult to pinpoint, the difference in experimental

results has been attributed primarily to the absence of universal

characteristics that define Tregs. While the most commonmethod of

identification for Tregs in flow cytometry is CD3+ CD4+ CD25high/

CD127low, attempts are being made to identify better mechanisms

to reliably and reproducibly identify Tregs. Helios has been proposed

as one of these mechanisms, as its expression in CD4+ FoxP3+ T

cells is negatively correlated to RA disease activity, significantly

more so than other cell-surface markers such as CTLA-4. Further

work has shown that diverging results may not only result from a

lack of homogenous Treg identification, but also on the different

expression of specific Treg subpopulations that require individual

antibody-staining for flow cytometry. Moreover, some Treg

subpopulations show specific features which are characteristics of

other CD4+ T-cell subsets. Under certain inflammatory settings,
Frontiers in Immunology 05
Treg cells can develop into Th1-like, Th2-like, Th17-like, or Tfh-like

Treg cells (68–72) (Figure 2). Th1-like Treg cells acquire a Th1-like

phenotype and express the pro-inflammatory cytokine IFN-g while
they lose their suppressive capacity (49, 75). Similar, Th2-like and

Th17-like Treg cells express the transcription factors GATA-3 or

RORgt and secrete IL-13 or IL-17 (71, 76). Th2- and Th17-like Treg

cells have been reported tomaintain their suppressive functions (71,

76). Interestingly, Th17-like Treg cells have been observed in

humans under physiological conditions (71). In RA, the

frequency of Th1-like Treg cells is increased but deficient in

function (75).

The aforementioned Helios as a member of the Ikaros

transcription factor family, is a nuclear factor associated with

the early development of regulatory T-cells. Studies have shown

a significant importance of Helios in controlling the stability and

function of Tregs (77). Interestingly, most of the FoxP3+ CD4+ T-

cells in the synovium of inflammatory arthritis patients are

Helios+. In addition, these Helios+ Tregs prove to be poor

producers of effector cytokines including IL-10, IFN-g and

TNF-a. Helios expression seemed to not only affect cytokine

production but was also associated with a higher Ki67 index

indicating higher levels of cellular proliferation when compared

to Helios- Tregs. The overall expression of FoxP3 gene expression

as well as TSDR (regulatory T cell-specific demethylated region)

demethylation is decreased in RA individuals when compared to

healthy individuals, in contrast to Helios, which shows an overall
FIGURE 2

Treg cells can be divided in distinct subgroups. Treg cells can further be subdivided into memory activated, Th1-like, Th2-like, Th17-like and
Tfh-like regulatory T cells. Both naïve CD4+ T cells as well as naïve resting regulatory T cells can differentiate into memory activated Tregs,
which then further delineate into their specific regulatory T cell phenotypes. These phenotypes can be differentiated through different
expression profiles for genes, transcription factors and cytokine production. In addition, the individual regulatory T cell phenotypes have unique
immune capabilities and functions. Th17-like Tregs for example are capable of producing IL-17A and have been shown to be over-represented
in patients suffering from RA (73, 74).
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higher expression in RA patients as compared to healthy

individuals. These results suggest that the nuclear transcription

factor Helios may act to suppress the inhibitory functions

normally carried out by Tregs in patients with RA (78). While

these results certainly demonstrate the importance of Helios in

regards to RA, it is not the only Ikaros zinc finger transcription

factor (IkZF) with implications for RA.

Eos, another of the IkZF factors, has garnered attention due

to its high expression in Treg populations and function as a vital

component of the FoxP3-mediated gene expression complex.

Specifically, Eos forms a protein complex with C-terminal

Binding Protein and FoxP3 to promote gene silencing, thereby

acting as a co-repressor of vital importance to the maintenance

of the Treg phenotype as well as its suppressive capabilities. This

was further established by means of Eos expression knockdown

in mice which resulted in a worsening of inflammation in colitis

(79). In addition, the Eos/FoxP3 repression complex has been

shown to target and subsequently repress the IL-2 gene locus.

Interestingly, Helios has also been attributed with the ability to

repress the IL-2 gene locus, signifying redundance in the IkZF

Factor family functioning. Just as with Helios, Eos has also been

shown to be downregulated as a consequence of increased DNA

methylation in Tregs of RA patients. This suggests both Helios

and Eos play a possible role in the aberrancy of Treg functioning,

contributing to the development and progression of RA.

Aiolos, another member of the Ikaros family of transcription

factors, is induced in CD4+ T cells by Ahr in the presence of

TGF-b1 and has been shown to be upregulated in RA (37, 80).

Not only has Aiolos been shown to be upregulated in RA

patients, it is also correlated to a higher prevalence of a

lymphoid pathotype, as well as higher ACPA and RF

prevalence indicating more severe disease. Interestingly, Ikaros

and Aiolos synovial expression was directly correlated with

synovial cell infiltration as well as systemic inflammation (81).

Aiolos levels increase during the b- and positive selection of

thymocytes along with Helios and Ikaros. In contrast to Helios

and Ikaros, Aiolos levels remained elevated after b- and positive

selection throughout the continued thymocyte development

(82). Interestingly, it has been reported that treatment with

TNF-a inhibitors induces Aiolos in CD4+ T cells (83). With

Aiolos being able to transactivate the Bcl-2 promoter, it has the

potential to prolong cellular viability by preventing apoptosis. In

contrast, IL-2 starvation induces Ras-Aiolos association, thereby

inhibiting Aiolos functioning with the subsequent inhibition of

BCL-2 expression leading to cellular apoptosis (84). In contrast

to Helios and Ikaros which show transient expression in T cells,

Aiolos levels remain elevated even as cells continue to mature,

which is congruent with its function in preventing apoptosis

(80). Interestingly, the expression of Aiolos in Tregs that lack

Helios expression has been associated with a “pro-inflammatory

Treg subtype” that is capable of producing and secreting IFN-g,
IL-2, and IL-17. Tregs not expressing Aiolos on the other hand,

are better suited for suppression of effector T-cells. Whereas
Frontiers in Immunology 06
Helios and Eos are co-expressed in Treg cells, Aiolos is expressed

in Helios- Treg cells (85).

It has been shown that there is a significant reduction in the

proportion of Tregs in the peripheral blood of patients with active

RA when compared to RA patients in remission, which is an

interesting contrast to a higher proportion of Tregs in the

synovial fluid of RA patients when compared to healthy

controls. This might be in part due to the anoxic environment

created through synovial inflammatory processes in active RA

(86). Interestingly, it has been demonstrated that hypoxia and

the subsequent induction of hypoxia-inducible factor 1 alpha

(HIF-1a) expression promotes the induction of FoxP3

transcription, which in turn promotes the generation of Tregs.

In addition, CD4+ CD25+ T cells from inflamed joints express

high levels of CTLA-4, GITR, CD69 and MHC class 2 molecules,

indicating an activated state. This at first may seem in stark

contrast to the observed overarching inflammatory reaction seen

in the joints of RA patients. However, it has been shown that RA

patients have defective synovial Treg functioning with an

inability to suppress not only the production of pro-

inflammatory cytokines such as TNF-a and IFN-g by other

CD4+ T-cells as well as monocytes, but also a reduced

suppression of T effector cell proliferation (87). While only

part of a much larger picture, this data can suggest that the

dysfunction more so than the absence of Tregs plays a role in the

pathophysiologic processes dictating RA. We have directly been

able to study the effects of regulatory T-cells in RA by proxy of

collagen-induced arthritis (CIA) in mice. CD25-depleted mice

induced with collagen to promote the development of RA

showed significantly more severe disease when compared to

control mice. This increased disease severity was underpinned

by increased antibody titers against collagen as well as an

increased proliferation of collagen-specific T cells .

Furthermore, the adoptive transfer of CD4+ CD25+ T cells

into CD25-depleted mice showed an attenuation of disease

severity, highlighting the importance that Tregs have in

controlling aberrant inflammatory responses in joints (88). In

addition, the severity of RA symptoms as well as high levels of

RF and anti-CCP antibodies has been associated with a lower

number of activated Tregs in humans (89).

The production of these RF and anti-CCP antibodies occurs

through B-cells, which require CXCR5+ T follicular helper cells

(Tfh) for activation. Interestingly, Tfh cells require activation of

the transcription factor Bcl-6, which is upregulated in CD4+ T-

cells of RA patients, as well as IL-6 and IL-21 for their

differentiation (90). The subsequent unregulated activation of

antibody producing B cells and associated humoral responses are

linked to the development of RA, as well as B cell lymphomas in

RA patients (91, 92). In addition, Tfh cells, which are usually

located in B cell follicles to regulate B cell survival, are overly

abundant in the synovium of RA patients as compared to

healthy individuals (93). Expansion of the Tfh population in

RA is driven by enhanced IL-6/pSTAT3 signaling and leads to a
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kotschenreuther et al. 10.3389/fimmu.2022.947636
shift in the ratio between Tfh cells and Tfh-like Treg cells, which

share many phenotypic characteristics with Tfh cells, but lack

CD40L and IL-21 expression (94). A subset of Tfh cells is derived

from natural Treg cells and is characterized by the expression of

FoxP3 (95). These cells are referred to as T follicular regulatory

cells (Tfr) (95). Blimp-1 dependent (96) ability to suppress the

formation of germinal centers as well as limit humoral responses

makes Tfr cells an important counter-force to the Tfh-associated

RA-promoting actions. Both activated Tfh and Tfr cells migrate

to germinal centers, where Tfh cells secrete IL-21 and promote a

B cell response through CD40L/CD40 interactions, whereas Tfr

cells secrete IL-10 and suppress B cell responses via CTLA4 and

GITR (97). A deficiency in CXCR5+ Treg cells, for example, has

been associated with an increase in germinal center B-cells and

the associated pro-inflammatory characteristics (95, 98).
Th17/Treg balance

Although regulatory T cells exert their effect on a multitude

of different cell types, the pro-inflammatory CD4+ Th17

phenotype, which is characterized by expression of the retinoic

acid-related orphan receptor (ROR-gt) and the production of the

IL-17 cytokine family is of particular interest when trying to

understand the implications of regulatory T cells in RA. The pro-

inflammatory Th17 cells, along with pro-inflammatory Th1 cells

have been shown to be resistant to CD6 down-regulation in RA,

which is associated with an aggravation of autoimmune

inflammation as well as increased cell proliferation and

survival (99, 100). While long presumed to be a pro-

inflammatory Th1-mediated disease, increasing attention is

being given to Th17 cells as they pertain to the development

and progression of RA. When considering that the inflammatory

activity in arthritis has been attributed to Th17 cells in the

synovial fluid (101), as well as the number of Th17 cells in the

serum of RA patients being positively correlated with the disease

activity score in 28 joints (DAS28), anti-CCP antibody and C-

reactive protein levels (102), the importance of interaction

between Tregs and Th17 cells in RA becomes very apparent.

Through the production and secretion of numerous cytokines

such as IL-17A, IL-17F and IL-22, Th17 cells have been shown to

stimulate synovial fibroblasts as well as macrophages to the

large-scale production of pro-inflammatory mediators such as

IL-1, IL-6, TNF-a and PGE2, thereby worsening synovial

inflammation (103). In addition, Th17 cells stimulate synovial

stromal and innate lymphoid cells to secrete GM-CSF thereby

initiating and elevating joint inflammation (104, 105).

While Th17 and Treg cells significantly differ in their

functionality, they do share similarities such as the ability of

TGF-b to induce their development and differentiation, which is

interesting when considering their opposing functionality. While

this at first may seem counterintuitive, it can be proposed that

this is an innate attempt to prevent overarching inflammatory
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reactions that could be caused by aberrant-isolated Th17

differentiation (106, 107). The balance between Treg cells and

Th17 cells is modified by various factors, including vitamin A,

glycolysis, salt concentrations, and cytokines (Figure 3). While

TGF-b is required for initial differentiation, many other factors

play a role in determining the ultimate fate of Th17 and Treg

cells. Furthermore, the Insulin-Like Growth Factor 1 Receptor

(IGF1R) has been shown to be an important regulator of Th17

vs. Treg cell differentiation. IGF1R signaling possess the ability to

enhance activation of the AKT-mTOR pathway in order to

potentiate Th17 development in addition to suppressing Th17

apoptosis, while simultaneously hindering Treg development.

IGF ligands possess the ability to skew Th17 programming

towards the expression of pro-inflammatory genes with

concurrent inhibition of anti-inflammatory genes; one

proposed mechanism by which this is accomplished is an

increase in HIF-1a dependent gene expression (108).

Interestingly, continued research has been able to show that

lifestyle choices, such as a high-salt diet or cannabinoid

consumption might be able to skew this ratio in favor of Th17

cells (109, 110). Numerous studies have been able to show that

the Th17/Treg ratio is skewed in favor of Th17 cells in RA when

compared to healthy controls. Szodoray et al. tracked the Th17/

Treg ratio in patients as they progressed from undifferentiated

connective tissue disease (UCTD) to a definitive systemic

autoimmune disease (SIAD). From healthy controls to UCTD

to definitive SIAD the Th17/Treg ratio continually increased,

showing a significant increase of the Th17/Treg ratio in the

progression from a healthy state to autoimmune disease (111).

These findings were in line with results demonstrating a positive

correlation between the percentage of Th17 cells and several

clinical markers of RA activity such as DAS28, ESR, CRP, anti-

CCP RF and ANA. In contrast, a negative correlation between

Treg percentages and DAS28, ESR, CRP, anti-CCP, and ANA

was observed (112). These observations are congruent with the

functions attributed to Th17 and Treg cells respectively, and

further demonstrate the importance the Th17/Treg ratio plays in

RA patients. However, clinical trials with the monoclonal

antibody secukinumab have revealed a limited efficiency of IL-

17A inhibition in patients with RA (113). The limitations of

secukinumab in RA may be explained by the fact that the

expression of IL-17A and its receptors in the synovium of RA

patients is very heterogeneous (114). Moreover, secukinumab

does not neutralize IL-17F, which is less active than IL-17A

when used alone but is as efficient as IL-17A in the presence of

TNF-a (115). A combined inhibition of IL-17A and IL-17F

might therefore be more effective in RA as compared to IL-17A

inhibition alone.

While the Th17/Treg ratio is of interest when considering

how regulatory T-cells could inhibit Th17 functioning, thereby

reducing inflammatory signaling, there are further points of

interest that need to be taken into consideration when it comes

to RA. Komatsu et al. were able to demonstrate that FoxP3+ T-
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cells possess the ability to lose their Foxp3 expression (after

which they are cal led exFoxp3 cells) and undergo

transdifferentiation into Th17 cells under the influence of IL-6

derived from synovial fibroblasts. These exFoxp3 Th17 cells play

a key role in the pathogenesis of autoimmune arthritis and are

present in the synovium of patients with active RA. Interestingly,

when compared to Th17 cells derived from naïve T cells,

exFoxp3 Th17 cells specifically and highly express the

transcription factor SOX4, which in turn positively regulates

ROR-gt, thereby enhancing lymphoid cell survival (116, 117). In

addition to enhanced survival, the high expression of molecules

involved in cellular proliferation as well as a high frequency of

Ki-67+ cells among the exFoxp3 Th17 population indicate a high

proliferative index under arthritic conditions (118). Not only are

exFoxP3 Th17 cells longer lived and more active in regards to

proliferation, their osteoclastogenic activity is more pronounced

when compared to non-exFoxP3 Th17 cells. It has been

proposed that the promotion of osteoclastogenesis by exFoxP3

cells is based on an increased expression of RANKL as compared

to regular Th17 cells, with exFoxP3 Th17 cells being able to

directly induce osteoclastogenesis, independent of fibroblast

presence. The ability of exFoxP3 Th17 cells to accumulate and

proliferate in inflamed tissue where they stimulate

osteoclastogenesis is significant for the progression of RA and

an important aspect to understanding the dynamic between

Th17 and Treg cells and how they contribute to RA.

The Th17/Treg ratio has become an area of interest when it

comes to developing possible therapeutics to treat not only RA,

but a wide array of autoimmune diseases that involve a Th17/
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Treg dysregulation. Certain medications already exist that take

influence the Th17/Treg balance such as the IL-6 Receptor

Inhibitor Tocilizumab (119), however, there is much

therapeutic potential left to be unlocked by attempting to

directly target Th17- and Treg-related cytokines, cytokine

receptors, intracellular signaling pathways, as well as the

modulation of Treg and Th17 specific transcription factors.

With the exploration of this therapeutic potential, the far-

reaching roles of both Treg and Th17 cells beyond RA

pathogenesis have to be kept in mind. For example, Th17 cells

and their cytokines IL-17 and IL-22 play a crucial role in the

maintenance of immune homeostasis at mucosal surfaces, with

IL-17 neutralization being accompanied by high rates of serious

adverse events and fungal infections (120). Although the latter

effect was observed in patients with Crohn’s Disease, it can be

hypothesized that these effects would also be seen in other

conditions as this effect is not based on the disease in and of

itself, but rather therapy mediated dysregulation of

Th17 functioning.
Mechanisms of T cell migration

Much regard is given to T cells and their effector functions in

the synovium that ultimately result in the development of active

RA. In order to exert their functions however, T cells must

migrate to their respective sites of action. While originating

primarily in the thymus in younger years, naïve T cell

maintenance throughout life is primarily sustained through
FIGURE 3

Reciprocal functions of Treg cells and Th17 cells. The balance between Treg cells and Th17 cells is of great importance for proper immune
functioning. A dysregulation of this balance in favor of the pro-inflammatory Th17 phenotype has been observed in RA patients. Although
various factors influence this balance through isolated effects on either Treg or Th17 cells, numerous factors have been identified that
simultaneously take effect on both Tregs and Th17 cells. Furthermore, Tregs and Th17 cells also directly take effect on one another. Th17
functioning physiologically causes an increase in the Treg population, which in turn prevents overarching immune reactions through inhibition
of Th17-specific as well as other immune pro-inflammatory functions (15, 16, 74).
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peripheral T cell division (121). Interestingly, with active thymic

output in childhood 10-30% of all CD4+ T cells in blood,

lymphoid tissue, and mucosal sites are Tregs as compared to

only about 5% in adults (122). Even decades after thymic output

ceases, naïve T cells comprise a significant proportion (20-50%)

of total T cells in multiple lymph nodes. Interestingly, post

neonatal thymectomy adults do not have increased incidences of

autoimmunity or allergy when compared to age matched

controls and are able to maintain Treg frequencies, indicating

that while it does hold an important role in T cell development,

the thymus is only part of the bigger T cell picture (123, 124).

Regardless of age, Tregs in blood as well as lymphoid tissues are

CD45RA+CCR7+, indicating a naïve phenotype as compared to

mucosal Tregs, which are CD45RA- and more closely resemble

conventional memory T cells (125).

The infiltration of the synovium by CD4+ T cells, but not

CD8+ T cells or B-cells is necessary for the development of

clinically active RA (126). This is of note as a profound

understanding of the mechanisms leading to synovial

infiltration can be of value in researching potential therapeutic

modalities aiming to prevent the onset of RA, rather than

combating symptoms of inflammation in manifest disease.

Increasing evidence suggests that while not the priming site

for naïve T cells, CD4+ T cell commitment occurs at the inflamed

joints under the influence of cytokines produced by an

uncharacteristically large number of activated macrophages

and dendritic cells (127). Dendritic cells from RA patients

secrete higher levels of inflammatory chemokines such as

CCL17, which is involved in the recruitment of CCR4+ cells to

the inflamed joint (128). Furthermore, monocyte derived

dendritic cells from RA patients have been shown to possess

an increased capability of Th17 differentiation induction as

compared to healthy controls while simultaneously lacking the

ability to efficiently induce FoxP3+ Treg cells (129). Interestingly,

the inability to form succinate from succinyl-CoA due to

SUCLG2 repression characteristic of RA in the tricarboxylic

acid (TCA-) Cycle with subsequent accumulation of Acetyl-CoA

has been shown to skew naïve CD4+ T cells to the short-lived

effector subtype (SLECs). These SLECs are characterized not

only by their hypermobility and ability to rapidly enter synovial

tissue with induction of aggressive synovitis, but also by their

propensity to proliferate (130).

For T cells to exert their effector functions at sites of

inflammation, T cell trafficking consisting of rolling, adhesion

and transmigration must occur. For this to take place, cells must

express adhesion molecules and chemo-attractans such as

selectins (L-selectin for leukocyte populations) as well as the

P-selectin glycoprotein ligand-1 (PSGL-1) (131). L-selectin and

PSGL-1 interaction allows for leukocyte-leukocyte interactions

permitting the tethering and adhesion of leukocyte clusters to

the endothelium via endothelial specific selectins (P- and E-

selectins) of blood vessels prior to extravasation. In addition,

lymphocyte function-associated antigen 1 (LFA-1) is of
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importance for Treg migration, being expressed in a high

affinity state in inflammation seeking Tregs when compared to

recirculating Tregs (132). Of note is not only the increased

expression of E-selectins at inflamed synovial sites, but also

the increased serum levels of P- and L-selectins in RA patients

(Figure 4) (134, 135). This suggests an increased ability of

leukocytes to migrate to the synovium in patients with RA as

compared to healthy individuals. After initial leukocyte-

endothelial interaction via selectins, integrins are responsible

for the firm adhesion to, and arrest of leukocytes at the

endothelium. Leukocyte integrins are able to interact with

endothelial surface ICAM-1 or VCAM-1, which is a

prerequisite for subsequent cellular extravasation. Different

immune cell subtypes express individual repertoires of

integrins, which are further upregulated in the presence of

proinflammatory cytokines such as IL-1 or TNF-a (136). This

individualized expression permits the specific localization of T

cell subtypes in the inflamed joint. While essential to the

extravasation and subsequent navigation to inflamed synovial

sites, interactions between leukocyte integrins and their ligands

also induce cellular proliferation, cytokine production, and

angiogenesis, thereby significantly contributing to disease

development (137). The use of specific antagonists to integrins

as well as their ligands, has been able to prevent inflammation

and angiogenesis in the CIA mouse model; furthermore high

levels of soluble and endothelium-bound ICAM-1 have been

identified in RA patients, as well as being linked to disease

activity in CIA model mice (138–140). Finally, transendothelial

chemotactic concentration gradients of molecules such as

PECAM-1, ICAM-2, JAMA and ESAM to name a few, allow

trans- and paracellular leukocyte migration beyond the

endothelium into inflamed tissues (141). This process is

regulated by the differential and specific expression of cell

trafficking molecules unique to individual cellular subsets, for

example, LFA-1 expression, which plays a key role in the

emigration of T cells from the vasculature, is upregulated in

effector T cells when compared to naïve T cells.

While the migration of T cells in general is of continued

interest in research pertaining to RA considering the potential

therapeutic value, increased attention is also being given

specifically to Treg migration mechanisms, which are diverse

and dependent on the cells developmental stage, role, and target

tissue. Tregs express numerous receptors for inflammatory

chemokines as well as adhesion molecules which are not only

vital for access to sites of inflammation, but also under heavy

regulation. As migration is an energy-intensive process, Tregs are

reliant on glucokinase-mediated glycolysis, which is supported

by the inhibition of motility by means of glucose starvation, and

the upregulation of the insulin receptor in supporting their

increased energy consumption (142). Glycolytic feedback

control through PI3K-Akt pathways has also been

demonstrated with the activation of Akt causing a

downregulation of L-selectin, CCR7 and sphingosine-1-
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phosphate receptor 1, implying that the activation of Akt could

cause the failure of leukocyte homing to secondary lymphatic

organs, instead promoting migration to peripheral tissue such as

the synovium (143). Glycolysis interference through

extracellular sodium-lactate and lactic acid has also been

shown to trap CD4+ and CD8+ T cells at sites of infection

through repression of their mobility (144). In contrast,

inhibition of fatty acid oxidation had no impact on Treg

migration (133). The PDK-1 signaling-dependent loss of

phosphatase and tensin homolog (PTEN) can also take effect

on Treg migration through decreasing the expression of CD62L

as well as CCR7 (145). The Tumor Necrosis Factor Receptor 2

(TNFR2) has been shown to promote a remarkable degree of

cellular migration, activation and proliferation through

downstream initiation of the reciprocal PI3K/Akt pathway as

well as canonical and non-canonical NF-kB activation (146).

The serine threonine kinase mTOR has been identified as a

critical component for regulatory T cell migration as well as

stability. A specific deletion of mTOR in mouse Tregs led to the

spontaneous development of severe and systemic inflammation,

impaired Treg migration, as well as a loss of FoxP3 expression.

Compared with controls, mTOR-deficient Tregs expressed

increased levels of CD62L, CCR7 and S1P1, as well as

decreased levels of CD69, which inhibits the migration from
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lymphoid tissue to the blood. Furthermore, mTor-deficient Tregs

expressed lower levels of CD44 and CCR4 as well as slightly

lower levels of CCR6 and CXCR3, possibly impairing access to

non-lymphoid tissues. This suggests that a deficiency or

downregulation of mTOR can cause a defect in entry to

nonlymphoid tissues and promotes the recirculation to and

within lymphoid organs (147).
Altered chemokine and cytokine
milieu in the synovium

Given their central role in the specific recruitment and

activation of T cells as well as other immune cells, chemokines

have gained attention as potential treatment targets in RA. As a

subgroup of the cytokine family, chemokines are chemotactic

and immune modulatory molecules secreted in order to control

not only the positioning of, but also the development,

homeostasis and activity of numerous immune-competent

cells. Interestingly, varying chemokine production profiles

have been identified throughout different RA disease stages.

CCL4, CXCL4, CXCL7 and CXCL13 expression are

characteristic of early RA, whereas CCL3 and CCL9 were

indicative of later disease stages (148, 149). Chemokines
FIGURE 4

Treg cell migration into inflammatory sites. A dysregulation of Treg migration has been implicated in the pathogenesis of RA. Depending on the
expression of cell-surface molecules, Tregs can be divided into recirculating Tregs and inflammation seeking Tregs. In contrast to the
expression of CCR7, CCR4, L-Selectin and LFA-1 in a low-affinity state allows recirculating Tregs to remain in the bloodstream, activated
inflammation seeking Tregs are able to migrate to their sites of action through the expression of E- and P- selectin Ligands, CCR2, CCR4, CCR5,
CCR6, b1 Integrin as well as LFA-1 in a high affinity state. The Interaction with P- and E- selectin, ICAM1 and N-Cadherin among other
molecules on the activated endothelium allows for the classical steps of cellular migration: Initial attachment and rolling, followed by arrest and
adhesion which eventually leads to cellular diapedesis (14, 133).
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present in the synovial fluid of RA patients are characterized by

high levels of citrullination, especially CXCL5 and CCL2, which

causes an altered activity profile with subsequent increased

recruitment of monocytes. In addition, the citrullination of

CXCL5 has been shown to have a high correlation with RA

disease activity (150).

Chemokines have been shown to play a central role in Th1

cell migration to the synovium, which is of note when

considering the importance of Th1 cells to the inflammatory

processes in RA (151). In addition to Th1 cells, chemokines such

as CCL20, which are strongly expressed in the inflamed joint,

allow Th17 migration to the synovium with subsequent

activation. Tregs enjoy a widespread distribution throughout

lymphoid and non-lymphoid tissues which is vital to their

immunosuppressive function. This propensity to be distributed

throughout the body can be altered by means of CCR4

chemokine receptor disruption with the subsequent

development of pathogenic inflammatory responses (152).

Interestingly, the relational expression of certain chemokines,

such as CCR6 with other chemokines has been observed to

correlate with the specific production of cytokines. CCR4+/

CCR6+ Th cells express high IL-17A levels whereas CXCR3+/

CCR6+ cells show low IL-17A expression, but elevated IFN-g
levels. CCR6+/CCR10+ Th cells express high levels of IL-22, thus

indicating a connection to the Th22 phenotype, which is

characterized by its IL-22 expression. This, however, does not

seem to be a uni-directional relationship with IL-17 as well as

IFN-g having been shown to upregulate the expression of

numerous chemokines. Interestingly, it has been shown that

the presence of a dinucleotide polymorphism in the CCR6 gene

is linked to RA susceptibility (153). However, further cytokines

such as IL-1b and TNF-a have also been shown to induce

chemokine expression, especially CXCL8 and CCL13, both of

which act as chemoattractants for various immune cells

including T cells and neutrophils (154).

CCL2, also known as monocyte chemotactic protein 1

(MCP1) is produced by synovial chondrocytes and fibroblasts

and possesses the ability to recruit CCR2+ T cells, NK cells,

basophils and macrophages to the synovium. While shown to be

upregulated in the synovium of RA patients, the mechanisms

underlying CCL2 functioning in RA are complex. This is

supported by varying outcomes of CCL2 targeting studies

where monoclonal antibodies specific to CCL2 were able to

reduce ankle swelling in CIA as well as MRL-lpr mice. In

contrast, CCL2 monoclonal antibody treatment aggravated RA

during the progression phase in a murine CIA mouse model

(155–157). CCL3 and CCL5 are two of the chemokines whose

expression is induced by the activation of T cells via IL-1b and

TNF-a (158). While the receptor for CCL3 and CCL5, CCR5, is

not commonly expressed in PBMCs of RA patients, it has been

found to be highly expressed in the RA synovium, either due to

an upregulation of expression, increase in CCR5+ cells in the

synovium, or an interplay of both (159). The importance of
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CCR5 becomes apparent when considering a CCR5 antagonist

initiated days before the clinical arthritis manifestation was able

to attenuate leukocyte migration to joints thereby reducing

disease severity (160). Furthermore, increased levels of CCL3,

CCL4 and CXCL10 can be identified in the synovial fluid and

plasma of RA patients, whereas CCL5 only seems to be elevated

in the plasma but reduced in contrast in the synovium of RA

patients (67, 161–164). CXCR3, which is involved in the

migration of Th1 cells through interaction with its ligands

CXCL9, CXCL10 and CXCL11, has also been shown to

correlate with IFN-g production in its expression, and can

reduce susceptibility to inflammatory autoimmune disease

when knocked out in mice (165, 166). Furthermore, M1

macrophages have been shown to secrete CXCL5, CXCL8,

CXCL9, CXCL10 and CXCL13 which further promotes

leukocyte recruitment thereby aggravating joint destruction in

RA (167, 168). CCR7 and its ligand CCL21 have also been

implicated in the migration of not only T cells but also APCs to

the synovium, thereby contributing to RA pathogenesis. CCL21

is of further interest in the regard that it is able to drive

osteoclastogenesis in RA through M1 macrophage polarization

of Th17 cells as well as the induction of neovascularization (169).

CCL20, on the other hand, is secreted by chondrocytes,

synoviocytes and Th17 cells in the joints, working in synergy

with RANKL to promote the resorption and destruction of bone,

as well as contributing to the chemotaxis towards joints of T

cells, monocytes, and CD1a+ dendritic cells (170–173). CXCL12

was also shown to induce osteoclastogenesis by means of TNF-

a-dependent RANKL upregulation in CD4+ T cells and synovial

fibroblasts. CXCL12 and its receptor CXCR4, are correlated with

the presence of CD4+ T cells in the synovium, indicating an

additional role in T cell migration and joint destruction.

RA is characterized by dysregulated cytokine production and

the serum concentration of several cytokines is altered in RA

(Table 1). As one of the main pro-inflammatory cytokines, TNF-

a plays a central role in RA. While the production of TNF-a is

classically attributed to macrophages, numerous cells are capable

of producing TNF-a. The TNF-a receptor is also widely

expressed, including on immune cells. RA is characterized by

increased levels of TNF-a in the serum of patients, which carries

a central role in the development of the observed inflammation.

TNF-a is of great importance due to its ability to stimulate the

proliferation and differentiation of T cells, B-cells and NK-cells

as well as inducing the production of other pro-inflammatory

cytokines such as IL-1, IL-6, IL-8 and matrix metaloproteinases

(MMPs). Furthermore, it upregulates the production of GM-

CSF, prostaglandins, and collagenases as well as ICAM-1 by

synovial fibroblasts (199–202) The importance of TNF-a for

regulatory T cells in RA is highlighted by studies showing an

increased Treg suppressive activity as well as an increase in Treg/

Teff balance under treatment with the TNF-a antagonist

Infliximab as well as a reduction in Treg numbers in TTG mice

overexpressing hTNF-a. TNFR2+ Tregs isolated from human
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peripheral blood have been found to exhibit a more potent

suppressive effect than TNFR2- Tregs, further suggesting an

interplay between TNF-a and Tregs with relevance to RA

pathogenesis. The expression of TNFR2 on Tregs increased

with the progression of disease, suggesting a possible shedding

function by Tregs to neutralize unbound TNF-a (203, 204).

Transforming growth factor-Beta (TGF-b) which is

expressed by regulatory T cells, is critical in maintaining self-

tolerance and immune homeostasis through its involvement in

the regulation of cellular proliferation, differentiation, migration

and survival (205). TGF-b is able to induce the expression of

FoxP3, thereby promoting the differentiation of CD4+ T cells to

the Treg phenotype (206). In addition, Tregs are the primary

producers of TGF-b1, as well as being the only cell capable of

activating this cytokine via expression of cell surface docking

receptor glycoprotein A repetitions predominant (GARP) and

a-V integrins (207). TGF-b is produced in an inactivated pre-

pro-TGF-b precursor form which requires additional stimuli for

the liberation and activation of TGF-b prior to exertion of its

functions either through cell-surface binding to a heterodimeric

receptor complex consisting of type 1 and type 2 trans-

membrane serine/threonine kinase subunits, or acting in a

soluble form (208). Intracellular signal transduction is

subsequently accomplished by SMAD proteins, however

SMAD-independent mechanisms of signal transduction have

also been identified (209). Subsequently, TGF-b possesses the

ability to suppress T cell proliferation via inhibition of IL-2

production. In addition, TGF-b modulates the T cell

proliferation by alteration of cell cycle regulator expression,

specifically causing an upregulation of the cyclin-dependent
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kinase inhibitors p15, p21 and p27, as well as downregulation

of cell cycle-promoting factors such as CDK2, cyclin E and D2,

as well as c-myc (210–215). TGF-b is further able to inhibit

effector cytokine production by pro-inflammatory Th1 cells

through various mechanisms, without affecting the anti-

inflammatory effector cytokine production characteristic of the

Th2 T cell phenotype (216). TGF-b also affects the

differentiation of naïve T cells to different T-helper subsets,

further potentiating its immune-modulatory effect (217). In

addition to its effects on CD4+ T cells, TGF-b also controls

CD8+ T cell effector functioning and proliferation by means of

inhibiting the production of effector molecules such as IFN-g
and granzyme (218–221).

Interleukin-4 (IL-4) is an interleukin classically associated

with anti-inflammatory effects which promotes the

differentiation of naïve T cells to the Th2 phenotype, a

phenotype which in turn further produces IL-4. With studies

having come to different conclusions on IL-4 in RA, some

suggesting no-to-minute expression in synovial fluid and other

studies suggesting a relevant expression, it remains to be seen

what role IL-4 plays in joint inflammation (222, 223). The need

for additional studies is highlighted by the differential effects of

IL-4 administration in RA models, with IL-4 administration

being able to attenuate proteoglycan induced arthritis by means

of inhibiting pro-inflammatory cytokine production, although

having no disease modulating effect in collagen induced arthritis

mice. While the aforementioned results paint a varied picture,

IL-4 gene polymorphisms have been found to increase the risk of

developing RA in European as well as Chinese individuals

making them suitable for the use as a genetic marker to assess
TABLE 1 Abnormal cytokine expression in RA.

CYTOKINE FUNCTION(S) DYSREGULATION IN RA

TGF-b • Induction of Tregs (174, 175)
• Induction of SMAD7 (176)

• Elevated in RA (177)

CCL3 • Ligand for CCR5 (178)
• Involved in regulatory T cell recruitment (179)

• Elevated in RA (180)

CCL4 • Ligand for CCR5 (181)
• Chemoattractant for Tregs (182)

• risk allele for RA (183)
• Upregulated in RA (184)

IL-2 • Promotes expansion of Tregs (185)
• involved in Treg suppressive function (59)

• Increased serum levels in RA (186)

IL-9 • Enhances Treg cell function (187)
• Recruits mast cells (188)

• Serum and synovial IL-9 levels are increased in RA (189)
• IL-9 facilitates osteoclastogenesis in RA (190)

IL-10 • Induces STAT3 activation in Tregs (191)
• Involved in protecting tissues from T cell mediated

autoimmune disease
• Promotes Treg differentiation (192)

• IL-10 is elevated in RA patients
• High serum IL-10 levels are associated with RF and anti-CCP positive RA

(193)

IL-35 • Involved in the induction of a potent Treg cell population
(194)

• directly suppresses effector T cells (195)

• High serum and synovial fluid levels correlate with low disease activity in
RA (196, 197)

• reduced in RA (198)
Numerous cytokines and chemokines have been implicated in the development and progression of RA, including cytokines and chemokines that take specific effect on regulatory T cells.
Through dysregulation of TGF-b, CCL3, CCL4 IL-2, IL-9, IL-10 and IL-35, connections can be drawn to the functioning, or rather dysfunctioning of Tregs, with the associated negative
consequences for patients and their outcomes. As our understanding of cytokine dysregulation, specifically with a focus on Tregs, in RA continues to increase, so does our capability of
identifying potential treatment targets. Although only one axis of a multi-faceted disease, influencing Treg functioning capability can yield anti-inflammatory effects to combat the
inflammation associated with RA.
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the susceptibility to, as well as the subsequent severity of RA

(224–226). The role of IL-4 in the homeostasis of Tregs is clearer,

with IL-4 playing an important role for the suppressive function

of Tregs. IL-4 knockout mice showed a lower expression of

granzyme B, which is important for Treg-mediated immune

regulation, as well as promoting Treg survival, which has been

shown through increased cell death percentages in Tregs treated

with anti-IL-4 antibodies during activation (227).

High levels of IL-7 have been found in the synovial fluid of

RA patients when compared to osteoarthritis patients. IL-7, after

binding the IL-7R, causes phosphorylation events that cause

downstream effects by means of altering Janus kinases (JAK1,

JAK3) and STATs (STAT-5a, STAT-5b). JAKs are a group of

intracellular non-receptor tyrosine kinases involved in cytokine-

mediated signaling via the JAK-STAT pathway. While inducing

the expression of numerous cytokines, including Il-1a, IL-1b, IL-

6, IL-8, TNF-a and macrophage inflammatory protein in

monocytes, IL-7 has also been shown to increase the

responsiveness of CD4+ T cells, thereby lowering the ability of

regulatory T cells to suppress them (228).

Although classically associated with Th9 cells, IL-9 is also

produced in high quantities by activated Tregs. The produced IL-

9 is essential for mast cell recruitment to tolerant tissue and

subsequent mast cell functioning, making IL-9 the functional

link between Tregs and mast cells (229, 230). In addition, IL-9 is

able to prolong neutrophil survival, increase MMP-9

production, and promote the differentiation of Th17 cells, thus

cementing its role in the pathogenesis of RA (231). These

findings are consistent with the work of Ciccia et al. showing

that an increased expression of IL-9 and IL-9R is found in

synovial tissue of RA patients as well as correlating with the

severity of tissue inflammation (232). Interestingly IL-9 has also

been credited with playing a role in the resolution of chronic

inflammation in an RA mouse model (233). It has been

hypothesized that IL-9 may play different roles in the setting

of inflammation depending on its localization and origin. With

the expression of CCR3 and CCR6 responsible for trafficking to

inflammatory sites, Th9 cells are considered inflammation

promoting in autoimmune settings, which lies in stark contrast

to Tregs, which are classically associated with the attenuation of

an inflammatory state (234).

Human cytokine synthesis inhibitory factor (CSIF), more

commonly known as IL-10 functions to inhibit the formation of

pro-inflammatory cytokines such as TNF-a, IL-1a, IL-1b, IL-6,
IL-8, IL-12 and GM-CSF, as well as reducing the expression of

HLA-DR and B7 molecules subsequently inhibiting macrophage

antigen presentation in the synovial fluid and peripheral blood

of RA patients, which in turn attenuates inflammation (235).

Furthermore, IL-10 is able to suppress the production of IL-2,

thereby causing a broad inhibition of the T cell immune axis

which has been reflected in studies showing an attenuation of

disease in CIA mice after IL-10 injections (236). In accordance

with this, SNPs associated with lower IL-10 mRNA expression
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are overrepresented in patients with RA (237). IL-10 also holds

importance for the differentiation of Tregs, with studies showing

that IL-10-producing B-cells possess the ability to induce Treg

differentiation from naïve CD4+ T cells (238). In addition to

being induced by IL-10, regulatory T cells also possess the ability

to produce and secrete IL-10.

The IL-17 cytokine family, most prominently represented by

IL-17A, which is produced by Th17 cells, promotes the

production of pro-inflammatory cytokines such as GM-CSF,

IL-6 and IL-8 from fibroblasts as well as epithelial and

endothelial cells. Furthermore, IL-17 is able to promote

neutrophil recruitment leading to the aggravation of

inflammatory responses (239). First discovered in synovial

fluid in 1999, various in vivo studies of RA models as well as

human in vitro studies were able to support IL-17s critical role in

promoting inflammation in RA, with newer studies linking IL-

17 gene polymorphisms to early RA onset (240). Furthermore,

IL-17 was able to increase IL-6, IL-8, CCL2, CXCL1, VEGF and

MMP-1 production by RA synoviocytes. It has been found that

upon activation, regulatory T cells are able to induce

differentiation of CD4+CD25- naïve T cells as well as other

Treg cells to the Th17 phenotype in the presence of IL-6, thereby

promoting the production of IL-17 and subsequently promoting

inflammation. This effect was observed independently of TGF-b
presence, suggesting that the environment can determine Treg

fate and plays a significant role in determining a regulatory T

cells role in either attenuating inflammation, or promoting it via

increased IL-17 production (241). Although numerous studies

have been able to establish the importance of Th17 cells and

their associated IL-17 in RA thereby making it a potential

therapeutic target of interest, IL-17 inhibition has not

delivered the hoped-for results. While IL-17A blockade has

been shown to be an effective RA treatment when compared

to a placebo with ACR20 responses as indicators of efficacy, the

effects were only modest (242). Furthermore, when combining

TNF with IL-17 inhibition, no significant change in treatment

outcome was observed as compared to anti-TNF (adalimumab)

treatment alone (243). These results need to be considered when

deciding on how much importance should be attributed to IL-17

as a potential therapeutic target in RA.

Interleukin-35, considered to be part of the IL-12 family, is

an inhibitory cytokine produced by regulatory T cells (244).

Serum IL-35 levels as well as mRNA expression have been

shown to be lower in RA patients as compared to healthy

controls, with serum levels being negatively correlated to the

erythrocyte sedimentation rate and DAS28 of RA patients. In

contrast, a positive correlation was found between serum IL-35

levels and Treg frequencies, which seems logical considering Tregs

themselves are capable of producing IL-35. Osteoclast formation

and bone loss induced by TNF-a, as well as the production of the
pro-inflammatory cytokines IL-17A and IFN-g have been shown

to be inhibited by IL-35 (245). This suggests that IL-35 enjoys a

protective role in regards to RA development, and that its
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kotschenreuther et al. 10.3389/fimmu.2022.947636
dysregulation is involved in the pathogenesis and clinical

manifestation of RA (246).
IL-6 induced post-translational
modification of VASP

Interleukin-6, which has both pro- and anti-inflammatory

properties, is produced by numerous cells including T- and B-

cells. Associated with the IL-6 specific receptor (IL-6Ra) as well

as gp130, a signal transducer, downstream signaling of IL-6

interaction in target cells occurs via JAKs. While classical

transmembrane receptor associated signaling is considered to

carry anti-inflammatory effects, IL-6 trans signaling associated

with the soluble form of the IL-6R is given pro-inflammatory

characteristics (247). This in turn has given rise to therapeutics

that target JAKs in order to attenuate pro-inflammatory effects

conveyed by an overabundance of this cytokine. While certainly

effective in the treatment of RA, we were able to show that in

comparison to conventional biological DMARDs and MTX,

which showed the ability to restore Treg numbers in the

peripheral blood of RA patients, JAK inhibitors had no effect

on Treg levels. This suggests that the Treg number is only one of

many factors contributing to RA as a disease (119). High levels

of IL-6 have been identified in both blood and synovial fluid of

RA patients contributing to inflammation through inducing

neutrophils to secrete reactive oxygen intermediates and

proteolytic enzymes, as well as inducing osteoclast

differentiation via a RANKL-independent mechanism. As with

IL-4, multiple IL-6 gene polymorphisms have been linked to

increased susceptibility as well as clinically more aggressive RA

(248). Interestingly, IL-6 has been shown to repress Treg

differentiation while simultaneously inducing the development

of Th17 cells, thereby skewing the Treg/Th17 ratio towards a

more pro-inflammatory state (249). Furthermore, the IL-6R is

upregulated on Th17 cells in contrast to other CD4+ T cells from

RA patients, especially so in untreated RA patients, suggesting a

role of IL-6 in the retention of transcriptional as well as

functional identity of Th17 cells.

Through its ability to reduce the phosphorylation levels of

vasodilator-stimulated phosphoprotein (VASP), an important

regulator of T cell migration, IL-6 is able to interfere with Treg

migration to sites of inflammation, thereby preventing the

exertion of Treg suppressive effects at target sites. mIL-6R

mediated IL-6 signaling regulates the expression level of VASP

that is phosphorylated at Ser157. Recently, Yan et al. were able to

show in a mouse model a negative correlation between relative

p-VASP expression and IL-6R expression in a CIA transgenic

human IL-6 mouse model. It has been shown in HMEC-1 cells,

that VASP levels were reduced following in-vitro cultivation in

the presence of IL-6, thereby establishing a link between T cell

migration and IL-6 influence (250). Interestingly, this
Frontiers in Immunology 14
interference was unique to regulatory T cells, with CD4+

effector T cell migration not being affected. This effect was

only observed in RA patients, not in healthy controls (251).

VASP, as part of the Ena/VASP family, is a cytoskeletal effector

protein involved in the coordination of monomeric actin

recruitment to the barbed end of the actin filament, thereby

preventing actin filament capping as well as playing a role in

linear actin polymerization and filament bundling, giving it a

vital role to cellular migration (252, 253). Several

phosphorylation sites have been identified in the three

proteins that comprise the Ena/VASP family, which are

regulated by kinases such as PKA, PKG, and PKD1 (254–256).

The N-terminal EVH1 domain of VASP regulates cellular

localization, whereas the C-terminal EVH2 is involved in

tetramerization by binding F-actin thereby facilitating actin

polymerization, which in turn is dependent on differential

phosphorylation states (257, 258). Phosphorylation levels of

VASP were significantly reduced in CIA mice as compared to

healthy controls, and subsequently restored through IL-6

receptor blockade (251). These observations were also made in

PBMCs of RA patients, presenting with an upregulation of IL-6

as well as a decreased phosphorylation of VASP in untreated RA

patients as compared to RA patients treated with IL-6 receptor

blockers (251). IL-6 receptor blocker treatment, in addition, was

able to increase the frequency of Tregs in the peripheral blood of

RA patients (251).

Proteomic analysis was able to demonstrate the effects of

altered VASP phosphorylation levels with enrichment of proteins

involved in integrin signaling, L1 signal transduction,MAP2K and

MAPK activation, mitochondrial protein import, protein

localization as well as integrin cell surface interactions. Of

specific note is the differential protein expression with regard to

integrin signaling, whereby patients with low p-VASP expression

showed an upregulation in these proteins when compared to IL-6

receptor blocker-treated RA patients with high p-VASP

expression. This suggests not only the importance of integrin

signaling in the pathogenesis of RA, but also possible therapeutic

approaches in regard to altering cellular migration via means of

IL-6 receptor blockade (251). VASP phosphorylation also has

effects on the genomic level, with low p-VASP expression being

implicated in the alteration of pathways involved in integrin

mediated signaling, integrin binding, leukocyte migration, cell-

substrate adhesion, cell matrix adhesion, positive regulation of

epithelial cell migration, regulation of substrate adhesion-

dependent cell spreading, as well as the regulation of tissue

remodeling. These results go to show that the phosphorylation

levels of VASP, which are modulated by different IL-6/IL-6R

levels, carry importance for both the proteomic as well as genomic

homeostasis in RA patients.

While required for T cell diapedesis and trafficking, normal

T cell development and the trafficking of naïve T cell populations

to the lymph node and spleen occurs independent of VASP.
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Deletion of VASP in T cells results in an impairment of the alpha

4 integrin (CD49d) with subsequent impairment of activated T

cell diapedesis , suggesting the effects of VASP on

transendothelial migration being CD49d-dependent. Although

diapedesis is inhibited through impaired VASP functioning, T

cell adhesion to, as well as crawling on endothelium is not

affected (259). First strides are being made in investigating the

therapeutic potential of VASP inhibition in the prevention of

cancer metastasis development. VASP might also prove to be an

interesting target in the treatment of RA by means of promoting

regulatory t cell migration to sites of inflammation, as well as

potentially inhibiting the migration of pro-inflammatory acting

effector T cells (260).
Lack of GPSM2

G-protein-signaling modulator 2 (GPSM2) also known as

LGN, is involved in the modulation of G-protein-coupled

receptor functioning, thereby altering the cellular response

initiated by cell-surface receptors in response to extracellular

signals. The N-terminal half contains 10 copies of leu-gly-asn

amino acid repeats, hence the alternative LGN naming, as well as

four GoLoco motifs on the C-terminal end which are involved in

guanine nucleotide exchange (260). GPSM2 is classically

associated with the regulation of cell division and the cell cycle

as well as the development of normal hearing (261). GPSM2

mutations have been shown to cause non-syndromic hearing

loss and deafness as well as contributing to mechanisms

underlying common brain malformations, as well as finding

implications in the cellular migration of malignant cells, the

latter of which indicates a role of GPSM2 in aberrant cellular

migration (262, 263).

Recently, the understanding of GPSM2 functioning was

expanded by observations implicating GPSM2 in the

pathogenesis of RA via means of altered Treg migration. Meyer

et al. were able to show that phosphorylation of serine/threonine

kinases in CD4+ T cells is significantly altered as compared to

healthy controls. The phosphorylation level of GPSM2 is

reduced in CD4+ T cells from RA patients and is significantly

downregulated in experimental autoimmune arthritis following

immunization of mice with collagen type II (264). Interestingly,

treatment with anti-IL-6 receptor antibodies restores the

phosphorylation level of GPSM2 in CD4+ T cells from RA

patients (264). The changed phosphorylation level after

treatment with anti-IL-6 receptor antibodies could be related

to reduced IL-6 signaling or could be caused by a general

reduction of inflammation (264). Phosphorylation of GPSM2

was shown to be significantly downregulated in untreated RA

patients as compared to healthy controls and RA patients treated

with IL-6 receptor inhibitors, making it a potential therapeutic

target in the treatment of RA. This notion is further supported

by the finding that GPSM2 expression is not only
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downregulated, but completely lost in CD4+ T cells four weeks

following the immunization of mice with collagen type 2 in the

induction of experimental autoimmune arthritis. While it was

shown that loss of GPSM2 expression correlated with increased

paw size in CIA mice, there was no correlation to radiographic

signs of bone erosion (264).

The vital role of GPSM2 in cellular migration, and

specifically Treg migration was established through the ability

to significantly inhibit Treg migration through GPSM2-specific

antibodies in healthy individuals. Interestingly, blockade of

GPSM2 in patients with active untreated RA had no effect on

Treg migration. This lack of effect in untreated RA patients can

possibly be attributed to the lack of GPSM2 expression in the

setting of untreated RA as established in the CIA mouse models.

In contrast, Tregs from RA patients treated with IL-6 receptor

inhibitors showed increased Treg migration when compared with

untreated RA patients and healthy controls, as well as the ability

to alter Treg migration via antibody-mediated GPSM2 inhibition.

While implicated in regulatory T cell migration, specific

blockade of GPSM2 showed no significant influence on overall

CD4+ T cell migration. This data suggests an interplay between

IL-6 receptor signaling, GPSM2 expression and subsequent

inhibition of cellular migration, which can be attenuated by

means of long-term IL-6 receptor inhibition. These findings

have been able to implicate GPSM2 as a promoter of cellular

migration specifically in Tregs, without taking effect on other

CD4+ T cell subsets. While Treg migration is significantly

reduced through a blockade of GPSM2, it is not completely

eliminated, suggesting a certain amount of redundancy within

the regulation of Treg migration that can compensate for a loss of

GPSM2. GPSM2 thereby is another axis of the IL-6 receptor

effects implicated in regulatory T cell homeostasis and

migration, along with, among others, modulation of the NF-

kB signaling pathway (264).
Discussion

Regulatory T cells have been able to attract increased

attention in research related to autoimmune diseases, to which

rheumatoid arthritis is no exception. Tregs, through their

immune inhibitory properties, prove to be of great importance

when it comes to understanding the pathogenesis

and discovering possible treatment targets for RA. As our

population continues to age and the prevalence of

RA continues to increase in the western world, the significance

of advancing our understanding of and treatment strategies for

RA becomes more apparent. With this systematic literature

review, we provide an overview of the latest understanding of

the homeostasis and migration of Treg cells in RA.

As a CD4+ T cell subset with anti-inflammatory properties

and immune inhibitory effects, Treg cells provide an important

counterpart to overarching inflammatory processes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kotschenreuther et al. 10.3389/fimmu.2022.947636
Dysregulation or inability to carry out the innate functions of

Tregs, therefore, can lay the foundation for the development of

diseases in the autoimmune spectrum such as RA. Regulatory T

cells have been shown to play a vital role as an anti-inflammatory

axis in the physiologic as well as diseased state, the modulation

of which could prove effective in both prevention and treatment

of RA. By means of affecting both environmental cytokine

profiles and the functioning of numerous immune-competent

cell types, Tregs can be considered a central player in the aberrant

processes leading to the development and progression of not

only RA, but various other diseases.

Numerous chemokines and cytokines, both affecting regulatory

T cells, have been implicated in the development and progression of

RA. These include both pro-inflammatory cytokines such as IL-6,

IL-17, IL-1 and TNF-a, as well as anti-inflammatory cytokines such

as IL-4 and TGF-b, to name a few. Chemokines such as CXCL5 and

CCL2, among others, with relevance to regulatory T cells, have also

been implicated in RA through their increased citrullination in the

synovium, with CXCL5 citrullination levels enjoying a close

correlation to disease activity. While taking direct effect on pro-

and anti-inflammatory effector functions, altered chemokine and

cytokine levels also affect regulatory T cell migration to sites of

inflammation. RA is characterized by an altered ability of regulatory

T cells to migrate to sites of inflammation, which in part can be

explained by a lack of GPSM2 and VASP activity due to post-

translational modifications and altered phosphorylation states.

Many of these already serve as therapeutic targets through

monoclonal antibodies targeting TNF-a (Infliximab,

Adalimumab, Golimumab), the IL-6 receptor (Tocilizumab)

and the IL-1 receptor (Anakinra). As our understanding of RA
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and regulatory T cells continues to grow, so too does the list of

potential targets for the therapeutics of tomorrow. Furthermore,

this growing understanding might one day be able to help us

prevent RA onset before a need for therapeutics arises.
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