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Abstract

The mismatch negativity (MMN) is a key biomarker of automatic deviance detection thought

to emerge from 2 cortical sources. First, the auditory cortex (AC) encodes spectral regulari-

ties and reports frequency-specific deviances. Then, more abstract representations in the

prefrontal cortex (PFC) allow to detect contextual changes of potential behavioral relevance.

However, the precise location and time asynchronies between neuronal correlates underly-

ing this frontotemporal network remain unclear and elusive. Our study presented auditory

oddball paradigms along with “no-repetition” controls to record mismatch responses in neu-

ronal spiking activity and local field potentials at the rat medial PFC. Whereas mismatch

responses in the auditory system are mainly induced by stimulus-dependent effects, we

found that auditory responsiveness in the PFC was driven by unpredictability, yielding con-

text-dependent, comparatively delayed, more robust and longer-lasting mismatch

responses mostly comprised of prediction error signaling activity. This characteristically dif-

ferent composition discarded that mismatch responses in the PFC could be simply inherited

or amplified downstream from the auditory system. Conversely, it is more plausible for the

PFC to exert top-down influences on the AC, since the PFC exhibited flexible and potent

predictive processing, capable of suppressing redundant input more efficiently than the AC.

Remarkably, the time course of the mismatch responses we observed in the spiking activity

and local field potentials of the AC and the PFC combined coincided with the time course of

the large-scale MMN-like signals reported in the rat brain, thereby linking the microscopic,

mesoscopic, and macroscopic levels of automatic deviance detection.

Introduction

Since the discovery of the mismatch negativity (MMN) 4 decades ago [1,2], this biomarker has

become a pivotal tool for cognitive and clinical research in the human brain [3,4], even show-

ing potential diagnostic capabilities [5]. The MMN reflects how the nervous system
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automatically encodes regular patterns in the sensorium, generates internal models to explain

away those regularities, and detects deviations from those internal representations in upcom-

ing sensory input, a processing mechanism that is key for survival [6]. This automatic process

of deviance detection is commonly studied using an oddball paradigm, where a sequence of

repetitive “standard” tones is randomly interrupted by another rare “deviant” tone. When the

scalp-recorded auditory event-related potential (ERP) elicited by a tone presented in the stan-

dard condition (STD) is subtracted from the ERP prompted by that same tone presented in

the deviant condition (DEV), a “mismatch” response (DEV–STD) becomes visible at temporal

and frontal electrodes in the form of a slow negative deflection; hence the name mismatch neg-

ativity [1,2,6].

The topographic distribution of the MMN reveals a frontotemporal network in charge of

automatic deviance detection [7–9]. According to the classic cognitive interpretation of the

MMN [4,10], temporal sources from the auditory cortex (AC) would first encode acoustic reg-

ularities in a sensory memory, detecting specific sensory deviances between that memory trace

and incoming input [11]. Then, additional sources from the prefrontal cortex (PFC) assess the

behavioral relevance of that sensory deviance, potentially triggering an attention switch toward

the change [12–14]. A more neurophysiologically grounded interpretation of the MMN,

known as the adaptation hypothesis, denies the existence of a genuine process of deviance

detection, arguing that the STD induces stimulus-specific adaptation (SSA) on AC neurons

[15,16], whose frequency channels simply remain fresh to keep responding to the DEV

[17,18]. Despite their conceptual disparities, both the sensory-memory and the adaptation

hypotheses agree that early AC processing is highly sensitive to specific stimulus features. Con-

versely, PFC activity seems more reliant on an overall evaluation of global properties, which

occurs upstream of initial sensory discrimination processes [6,19].

Recent proposals under the predictive processing framework have attempted to integrate

previous accounts of the generation of the MMN (for a recent in-depth discussion, see [20]),

establishing a hierarchical and reciprocal relationship between the AC and the PFC. The AC

would first represent the spectral properties of sensory stimuli, suppressing redundant audi-

tory inputs based on their frequency-specific features, by means of short-term plasticity mech-

anisms such as synaptic depression and lateral inhibition [21–23]. During an oddball

paradigm, this would be functionally observable as SSA, or more appropriately, as repetition

suppression [22,24–26]. The information that could not be explained away in the AC is for-

warded as a prediction error signal (PE) to higher levels in the processing hierarchy [27,28].

Eventually, the bottom-up flow of PEs reaches the PFC, which tries to explain PEs away by

means of higher-order expectations regarding emergent properties of the auditory stimulation,

such as complex interstimulus relationships and structures [22,29,30]. Thus, whereas fast PEs

forwarded from the AC are purely auditory in nature, the PFC would generate PEs when more

abstract expectations are not met, requiring an update.

Despite the several hypotheses accounting for MMN generation, its neuronal substrate

remains elusive and poorly understood, mostly due to the ethical constraints on human brain

research. Noninvasive techniques, such as ERP analysis or functional magnetic resonance

imaging, cannot pinpoint response measurements with enough temporal and spatial resolu-

tion as to deem with absolute certainty whether AC potentials precede those from the PFC

[31–33]. When invasive approaches are available, electrocorticography (ECoG) electrode

placement in human patients is strictly restrained by clinical criteria, causing intra- and inter-

individual variability that hampers systematic and detailed comparisons [34–37]. In contrast,

invasive techniques of electrophysiological recording in animal models offer both the spatial

and temporal resolution necessary to compare mismatch signals across areas more precisely.

Auditory-evoked spiking activity and local field potentials (LFPs) can provide the accurate
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locations and time courses of mismatch responses at microscopic and mesoscopic levels,

respectively [38,39]. In turn, those local-scale mismatch responses can be correlated with the

large-scale MMN-like potentials which are thought to be the specific analog of the human

MMN in the corresponding animal model [40,41]. Hence, animal models can help to define

the neuronal substrate of the human MMN, as well as to ratify or discard certain hypotheses

about its generation.

In the present study, we recorded spiking activity and LFPs from 1 possible frontal source

contributing to the emergence of MMN-like potentials in the rat brain: the medial prefrontal

cortex (mPFC). Following the standards of the most thorough human MMN studies, we

included 2 “no-repetition” controls, namely, the many-standards [42] and the cascade

sequences [43], in order to account for the possible stimulus-specific effects that could be

induced by the oddball paradigm. We found delayed, context-dependent, more robust, and

longer-lasting mismatch responses in the rat mPFC than in our previous studies in the rat AC

[38,39]. The mismatch responses recorded from both the AC and the mPFC as spiking activity

and LFPs correlated in time with the large-scale MMN-like potentials from the rat brain

reported in other studies [40,44,45]. Furthermore, the mismatch responses from the mPFC

could be mainly identified with PE signaling activity (or genuine deviance detection, in classic

MMN terminology), thus confirming their fundamentally different nature from the mismatch

responses recorded in the AC.

Results

In order to find auditory mismatch responses and PEs in the mPFC, we recorded sound-

evoked neuronal activity in the secondary motor cortex (M2), the anterior cingulate cortex

(ACC), the prelimbic cortex (PL), and the infralimbic cortex (IL) of 33 urethane-anesthetized

rats (Fig 1A). For this purpose, we used sets of 10 pure tones arranged in different sequences to

create distinctive contextual conditions: the deviant conditions (DEV ascending, DEV

descending, and DEV alone) and the standard condition (STD) of the oddball paradigm (Fig

1C), along with their corresponding no-repetition control conditions (CTR), provided by the

many-standards (CTR random) and cascade sequences (CTR ascending and CTR descending;

Fig 1D).

In the vein of human MMN research [43], we used CTRs to dissociate the higher-order pro-

cesses of genuine deviance detection or abstract PE signaling from the possible contribution of

other lower-order mechanisms related to spectral processing and SSA [21]. On the one hand,

CTRs cannot induce SSA or repetition suppression on the auditory-evoked response, in con-

trast to the STD. On the other hand, CTR patterns remain predictable and should not trigger

deviance detection or PE signaling, or at least not as intensely as the DEV [20] (see Oddball

paradigm controls for more detailed rationale). By comparing auditory-evoked responses in

each condition, we could quantify the estimated contribution of each process to the total mis-

match response in the form of 3 indices (Fig 1B): index of neuronal mismatch (iMM = DEV–
STD), index of repetition suppression (iRS = CTR–STD), and index of prediction error

(iPE = DEV–CTR). Therefore, the iMM quantifies the total mismatch response; the iRS esti-

mates the portion of the mismatch response that can be accounted for by the adaptation

hypothesis; and the iPE reveals the component of the mismatch response that can only corre-

spond to genuine deviance detection (according to the sensory-memory hypothesis) or to PE

signaling (under a predictive processing interpretation).

In the following sections, we present the results of recording from 83 sound-driven multiu-

nits across all mPFC fields (M2: 25; ACC: 20; PL: 20; IL: 18; Fig 2A), where we were able to test

a total of 384 tones at every aforementioned condition (M2: 132; ACC: 90; PL: 81; IL: 81),
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between 1 and 8 per multiunit (Fig 2C). Although the frequency-response areas (FRAs)

appeared unstructured (Fig 2B), these multiunits exhibited robust responses to many combi-

nations of frequency (0.6 to 42.5 kHz) and intensity (25 to 70 dB SPL) during experimental

testing (Fig 2C and 2D). This indicates that the auditory sensitivity of mPFC neurons is

Fig 1. Experimental design. (A) Schematic representation of an experimental setup for extracellular recording of auditory-evoked responses in a rat brain. In the left

sublet, a schematic coronal section where mPFC fields are highlighted in violet tones. At the right, maroon elements represent the flow of auditory information during

the experimental session, from the speaker through the rat brain and into a raw recording trace. (B) Decomposition of mismatch responses using the CTR and

quantification in 3 indices. (C) Three possible experimental conditions within an oddball paradigm for a given tone of interest fi (colored). (D) Three possible control

conditions for a given tone of interest fi (colored). At the top, the many-standards sequence; at the middle and bottom, 2 versions of the cascade sequence. AC, auditory

cortex; ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant condition; IC, inferior colliculus; IL, infralimbic cortex; iMM, index of neuronal

mismatch; iPE, index of prediction error; iRS, index of repetition suppression; M, medial; MGB, medial geniculate body; mPFC, medial prefrontal cortex; M2,

secondary motor cortex; PFC, prefrontal cortex; PL, prelimbic cortex; SEM, standard error of the mean; STD, standard condition; V, ventral.

https://doi.org/10.1371/journal.pbio.3001019.g001
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fundamentally driven by the contextual characteristics of auditory stimulation, rather than its

spectral properties.

Context-dependent responses and large PE signals across all mPFC fields

First, we compared the responses elicited by the many-standards and the cascade sequences.

Similarly to previous works studying the rat AC [39] and the human MMN [46], we found no

significant differences between CTR random, CTR ascending, and CTR descending (Fig 1D),

neither within each mPFC field nor for our whole sample (Wilcoxon signed-rank test). There-

fore, we used the cascade-evoked responses as CTR for the rest of analyses, based on the theo-

retical advantages that the cascade sequence offers over the many-standards sequence to

control for effects of spectral processing (see Oddball paradigm controls for a detailed ratio-

nale) [43].

DEV evoked the most robust discharges across all mPFC fields, usually more than doubling

the responses elicited by any other condition (Fig 2C and 2D). Median normalized response to

DEV was significantly larger than that to STD or CTR (within-field multiple comparisons

Friedman test; Table 1; Fig 3B). Only in M2 the difference in the responses to CTR and STD

reached statistical significance (p = 0.0490), whereas the distribution of CTR and STD

responses proved to be too overlapped in the rest of mPFC fields (within-field multiple com-

parisons Friedman test; Table 1; Fig 3B). The iMM revealed very large and significant mis-

match responses coming from all the mPFC fields (within-field multiple comparisons

Friedman test; Table 1; Fig 3C, in magenta). Most of these robust mismatch responses could

be accounted for by strong PE signaling, as high iPE values were very significant and very close

to those of the iMM (within-field multiple comparisons Friedman test; Table 1; Fig 3C, in

orange). Conversely, iRS values were very low in general, and only M2 showed a median iRS

significantly different from zero (within-field multiple comparisons Friedman test; Table 1;

Fig 3C, in cyan). Remarkably, the values of each index did not differ significantly between

mPFC fields (Kruskal–Wallis test with Dunn–Sidak correction; p> 0.05 for all comparisons

with the 3 indices), so a hierarchical relationship between mPFC fields during the processing

of auditory contexts cannot be established in our sample.

According to “standard” implementations of cortical predictive processing [47], error units

forwarding PEs are located in superficial layers (II/III), while expectations are encoded by pre-

diction units found in the deep layers (V/VI). Index variations could be expected between

superficial and deep mPFC layers, so we attempted to pinpoint the laminar location of our mul-

tiunits by means of electrolytic lesions (Fig 2A). Given that such lesions can cover diameters of

about 300 μm, half of our multiunit sample had to be excluded from this analysis, as our conser-

vative histological assessment deemed their location inconclusive. Nevertheless, this restrictive

histological analysis allowed us to comfortably locate the rest of our multiunit recordings within

layers II/III (19 multiunits, 92 tones) or layers V/VI (22 multiunits, 113 tones). Unfortunately,

we could not find any significant index changes between II/III and V/VI groups, neither within

each mPFC field nor for the whole sample (Wilcoxon signed-rank test).

Fig 2. Multiunit recording examples from each mPFC field. (A) Coronal mPFC sections where electrolytic lesions (black arrows) mark the recording sites of the

multiunits whose auditory-evoked responses are plotted in the sublets below. Hence, column-wise sublets correspond to the same multiunit. (B) FRA of 1 multiunit from

each mPFC station. Within each FRA, 10 gray dots mark the set of 10 pure fi tones selected to generate the testing sequences (Fig 1C and 1D), whose evoked response is

plotted in the sublet below. (C) Multiunit spike counts for every experimental condition of the 10 fi tested. A vertical gray arrow points at the fi tone whose peristimulus

time histogram is plotted in the sublet below. (D) Peristimulus time histogram showing the firing rate elicited by each experimental condition tested for 1 fi tone,

illustrated as a gray horizontal line. The underlying data for this Figure can be found in S1 Data. ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant

condition; FRA, frequency response area; IL, infralimbic cortex; mPFC, medial prefrontal cortex; M2, secondary motor cortex; PL, prelimbic cortex; STD, standard

condition.

https://doi.org/10.1371/journal.pbio.3001019.g002
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Fast repetition suppression of the response to predictable auditory input

To explore the dynamics of the mismatch responses over time for each mPFC field, we aver-

aged the firing rate to DEV, CTR, and STD in each trial of the sequence across all multiunit

recordings. The effect of the position of a stimulus within its sequence is shown in Fig 3D,

where each dot indicates the mean response to a given condition, when the position of the trial

within the sequence corresponds to the one indicated in the x-axis. We searched for statistical

differences between the spike counts of STD and CTR across the trial number. We computed

the mean spike counts in groups of 10 trails to obtain 40 measurements (to have the same

number of data points for each condition). Then, we calculated the difference of these 40 spike

counts to STD minus the 40 spike counts to CTR and tested for statistical significance against

zero with a Wilcoxon signed-rank test. Across trial presentation, mean spike counts for STD

and CTR events were significantly different only in M2 and IL (Fig 3D; M2: p = 8.68 × 10−07,

ACC: p = 0.87, PL: p = 0.14, IL: p = 4.87 × 10−06).

A power-law model of 3 parameters provided the best fit of the STD responses per mPFC

field: y(t) = atb + c (adjusted R2, M2: 0.358; ACC: 0.259; PL: 0.076; IL: 0.380). Across trials,

DEV events maintained a high firing rate (adjusted R2, M2: −0.054; ACC: 0.489; PL: 0.213; IL:

−0.054). On the other hand, CTR responses showed repetition suppression, although not as

strong and prompt as the STD (adjusted R2, M2: 0.1864; ACC: 0.324; PL: 0.187; IL: 0.245).

Table 1. Median spike counts and indices in each mPFC field. Significant p-values are highlighted.

M2 ACC PL IL

Number of multiunits 25 20 20 18

Tested frequencies 132 90 81 81

Median raw spike counts

DEV 8.6875 4.8125 6.4750 6.0750

STD 2.7000 1.5500 1.7750 1.1750

CTR 2.9875 1.7000 2.5750 2.4250

Median normalized spike counts

DEV 0.8693 0.8653 0.8951 0.8511

STD 0.2751 0.2280 0.2583 0.2202

CTR 0.3389 0.3189 0.3225 0.3926

Raw spike count differences, Friedman test

DEV − STD 5.9875 3.2625 4.7000 4.9000

p-value 3.4655 × 10−26 2.6737 × 10−14 4.5502 × 10−20 3.8146 × 10−16

DEV − CTR 5.7000 3.1125 3.9000 3.6500

p-value 6.9089 × 10−18 6.3210 × 10−14 6.0892 × 10−14 3.8465 × 10−11

CTR − STD 0.2875 0.1500 0.8000 1.250

p-value 0.0490 0.9109 0.0953 0.1249

Normalized spike count differences, Friedman test

iMM = DEV − STD 0.5941 0.6373 0.6368 0.6310

p-value 3.4655 × 10−26 2.6737 × 10−14 4.5502 × 10−20 3.8146 × 10−16

iPE = DEV − CTR 0.5304 0.5464 0.5726 0.4586

p-value 6.9089 × 10−18 6.3210 × 10−14 6.0892 × 10−14 3.8465 × 10−11

iRS = CTR − STD 0.0638 0.0910 0.0642 0.1724

p-value 0.0490 0.9109 0.0953 0.1249

ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant condition; IL, infralimbic cortex; iMM, index of neuronal mismatch; iPE, index of prediction

error; iRS, index of repetition suppression; mPFC, medial prefrontal cortex; M2, secondary motor cortex; PL, prelimbic cortex; STD, standard condition.

https://doi.org/10.1371/journal.pbio.3001019.t001
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Fig 3. Spiking activity analysis. (A) Schematic representation of coronal planes highlighting each mPFC field for column-wise reference. (B) Violin plots representing

the distribution of normalized spike counts for each experimental condition. The boxplots inside each distribution indicates the median as a white dot, the interquartile

range as the box, and the confidence interval for the median as the notches. Asterisks denote statistically significant difference between conditions (n.s., nonsignificant,
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Only the repetition suppression to STD manifested very fast and robustly across trials in all

mPFC fields (b parameter [with 95% confidence intervals]: M2, −1.373 [−1.656 to −1.089];

ACC, −2.247 [−3.138 to −1.357]; PL, −1.951 [−3.064 to −0.839]; IL, −2.210 [−2.862 to −1.557]).

Only 1 repetition sufficed to yield>50% decay of the initial response. Another repetition

attenuated the STD response to levels comparable to the steady-state, where the firing rate

remained constant until the end of the sequence (c parameter [with 95% confidence intervals]:

M2, 0.296 [0.290 to 0.302]; ACC, 0.337 [0.330 to 0.344]; PL, 0.318 [0.309 to 0.326]; IL, 0.302

[0.293 to 0.312]). These findings mean that only 2 repetitions are needed to generate a precise

repetition expectation that suppresses this kind of redundancy in the mPFC.

Microscopic and mesoscopic measurements of PE signals coincide in time

To identify the overall response patterns of each mPFC field, we computed the population

temporal dynamics of the average firing rate as normalized spike-density functions. Consis-

tently across all fields, mPFC multiunits exhibited extremely robust and long-lasting firing to

DEV (Fig 4B, in red). DEV responses showed very long latencies, needing more than 100 ms

poststimulus onset to become discernible from spontaneous activity. Then, DEV firing

increased slowly over a course of more than 200 ms before peaking (DEV spike-density func-

tion peak latency, M2: 377 ms; ACC: 396 ms; PL: 464 ms; IL: 352 ms). The peak latency in

response to DEV stimuli was longer in the PL than in the other mPFC fields (Wilcoxon rank-

sum test, PL versus M2: p = 4.43 × 10−04, PL versus ACC: p = 4.48 × 10−04, PL versus IL:

p = 1.50 × 10−04; whereas M2 versus ACC: p = 0.729, M2 versus IL p = 0.490, ACC versus IL

p = 0.756). This DEV-evoked activity continued in decay, well into the following STD trial of

the oddball paradigm. CTR responses tended to follow these same patterns, although with less

robust responses and longer latencies (CTR spike-density function peak latency, M2: 516 ms;

ACC: 428 ms; PL: 523 ms; IL: 446 ms), such that the response evoked by the previous tone in

the cascade sequence is still visible in the current trial (Fig 4B, in green). Finally, the STD did

not evoke any robust responses or clear peaks (Fig 4B, in blue).

To analyze PE signaling within each field, we computed the average iPE for each tested tone

recorded in 35 time windows of 20 ms width in the range of −50 to 650 ms around tone onset.

We tested the indices for significance against zero (Wilcoxon signed-rank test, FDR-corrected

for 35 comparisons, p< 0.05). iPE started to be significant at 120 ms in the PL, followed by the

IL at 140 ms, and later by the M2 and ACC at 180 ms poststimulus onset. In all mPFC fields,

iPE signals exceeded half of the index maximum for a sustained length, from about 250 ms

poststimulus onset to the end of the analysis window, beyond 600 ms (Fig 4D, in orange).

The extended period of DEV-evoked spiking activity could be the neuronal trace of an

updating process of the internal representation by means of PE signals [24,48], as it has been

suggested for the human MMN. However, spike responses reflect local activity at the neuron

level, whereas the MMN is a large-scale brain potential. One reasonable way of bridging this

gap is to probe the correlation between PEs present in the microscopic level with those present

within the LFPs [38,39], which constitute the average synaptic activity in local cortical circuits

[49]. Hence, we averaged LFP responses for each condition and station (Fig 4C), as well as the

difference between DEV and CTR conditions (Fig 4D, in black). We termed this difference as

�p< 0.05, ��p< 0.01, ���p< 0.001). (C) Distribution of indices in each mPFC field. (D) Average spike count per trial number for each condition along the test sequence.

Asterisks denote statistical significance against zero (n.s., nonsignificant, �p< 0.05, ��p< 0.01, ���p< 0.001). The underlying data for this Figure can be found in S2 Data.

AC, auditory cortex; ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant condition; IC, inferior colliculus; IL, infralimbic cortex; iMM, index of

neuronal mismatch; iPE, index of prediction error; iRS, index of repetition suppression; MGB, medial geniculate body; M2, secondary motor cortex; PL, prelimbic cortex;

STD, standard condition.

https://doi.org/10.1371/journal.pbio.3001019.g003
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“prediction error potential”: PE-LFP = LFPDEV – LFPCTR. Indeed, LFP analysis confirmed that

the robustness of DEV responses was also clearly observable at the mesoscopic level, in stark

contrast to the feeble or nonexistent modulations yielded by CTR and STD (Fig 4C). Signifi-

cant PE-LFP modulations were also detectable in all mPFC fields, beginning at 147 ms after

change onset in IL and PL, followed by M2 at 167 ms and considerably later by ACC at 275 ms

(paired t test, FDR-corrected for 428 comparisons, p< 0.05; Fig 4D, thick black line). Most

remarkably, these PE-LFP modulations occur within the time window where iPE values

become significant (Fig 4D, compare the distribution of orange asterisks and thick black lines

over time), unveiling a correlation between the PE signals recorded at microscopic and meso-

scopic levels.

Strong responses to unpredictable sounds over a background of silence

In a subset of 9 multiunits (6 rats) from the previously reported data, we tested 39 frequency

tones while muting the STD tones of the oddball paradigm, hence obtaining a condition where

DEV was presented “alone” (Fig 5A). DEV alone tones were separated by silent periods of a

minimum of 1.925 s, equivalent to 3 silenced STD. DEV and DEV alone median spike counts

and response patterns did not differ significantly (multiple comparisons Friedman test; Fig 5B

and 5C). Although some differences could be observed in the modulations of their LFPs (Fig

5D), these divergencies are negligible as they failed to reach statistical significance (paired t
test, FDR-corrected for 428 comparisons; Fig 5E). Thus, the responses of mPFC to unexpected

tones are similar, regardless of whether they are presented over a background of silence or

interrupting a regular train of other repetitive tones.

Comparisons between the mPFC and the AC in the rat brain

In order to achieve a more general picture of auditory deviance detection in the rat brain, we

also used the data set of a previous work from our lab with similar methodology [39] to study

the differences between the mismatch responses in the mPFC and the auditory system. In our

previous study, the adaptation hypothesis could only be endorsed in the subcortical lemniscal

pathway, whereas predictive activity was identified all along the nonlemniscal pathway and the

AC [21,39]. Interestingly, the relative magnitude of mismatch responses along all these audi-

tory centers was comparable, as reflected by their respective median iMM values: 0.49 in the

nonlemniscal inferior colliculus (IC), 0.52 in the nonlemniscal medial geniculate body (MGB),

0.50 in the lemniscal (or primary) AC, and 0.60 in the nonlemniscal (or nonprimary) AC. This

is also the case in the mPFC, with a median iMM value of 0.59 (Wilcoxon signed-rank test,

p = 6.81 × 10−57).

However, the composition of these mismatch responses was fundamentally distinct in the

PFC as compared to the auditory system. Repetition suppression was the dominant effect con-

tributing to the mismatch responses of all auditory neurons: 0.46 in both the nonlemniscal IC

and MGB, 0.39 in the lemniscal AC, and 0.33 in the nonlemniscal AC. Conversely, the influ-

ence of frequency-specific effects in mPFC neurons was almost irrelevant, with a median iRS

Fig 4. LFP analysis. (A) Schematic representation of coronal planes highlighting each mPFC field for column-wise reference. (B) Average firing rate profiles of each

mPFC field as the normalized spike-density function for every condition. Gray horizontal lines illustrate tone presentation. (C) Average LFP across all tested tones and

multiunit recordings from each mPFC field for every condition. (D) In orange, the time course of the average iPE of the spiking activity (mean ± SEM) where the

asterisks above mark a significant iPE value (p< 0.05) for the corresponding time window. In black, PE-LFP is the difference wave between the LFPs of DEV and CTR.

The thick black horizontal bar below marks the time intervals were the PE-LFP turns significant (p< 0.05). The gray sublets below display with a white trace the

instantaneous p-values corresponding to the PE-LFP of each mPFC field. The underlying data for this Figure can be found in S3 Data. ACC, anterior cingulate cortex;

CTR, control condition; DEV, deviant condition; IL, infralimbic cortex; iPE, index of prediction error; LFP, local field potential; mPFC, medial prefrontal cortex; M2,

secondary motor cortex; PE-LFP, prediction error potential; PL, prelimbic cortex; STD, standard condition.

https://doi.org/10.1371/journal.pbio.3001019.g004
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Fig 5. DEV alone analysis. (A) Illustration of the DEV alone condition as an oddball paradigm where the STD train is

muted. (B) Violin plots representing the distribution of normalized spike counts for each experimental condition. The

boxplots inside each distribution indicates the median as a white dot, the interquartile range as the box, and the

confidence interval for the median as the notches. (C) Average firing rate profiles as the normalized spike-density

function for every condition. Gray horizontal lines illustrate tone presentation. (D) Average LFP across all tested tones

and multiunit recording for different conditions. (E) Difference wave between the LFP to the DEV and to the DEV

alone. The underlying data for this Figure can be found in S4 Data. DEV, deviant condition; LFP, local field potential;

STD, standard condition.

https://doi.org/10.1371/journal.pbio.3001019.g005
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value of 0.06 (Wilcoxon signed-rank test, p = 9.75 × 10−06). On the other hand, median iPE val-

ues are rather low along the auditory system: 0.03 in the nonlemniscal IC, 0.06 in the nonlem-

niscal MGB, 0.11 in the lemniscal AC, and 0.27 in the nonlemniscal AC. AC neurons exhibit

the most prominent PE signaling, accounting for 22% of the mismatch response in the lemnis-

cal AC and 45% in the nonlemniscal AC. In contrast, PE signaling in mPFC neurons is domi-

nant, with a median iPE value of 0.53 (Wilcoxon signed-rank test, p = 5.73 × 10−55) that

accounts for 90% of the total mismatch response (Fig 6A). Thus, spectral properties were the

main subject of mismatch responses in the auditory system, while mPFC processing seemed to

be abstracted from them.

Statistical comparisons between AC regions and mPFC fields confirmed the general trends

described above. The magnitude of the iMM exhibited no significant differences (Kruskal–

Wallis test with Dunn–Sidak correction; p> 0.05 for all comparisons), but the iPE component

grew significantly from the AC to the mPFC (Kruskal–Wallis test with Dunn–Sidak correc-

tion; lemniscal AC versus M2: p = 4.50 × 10−14, versus ACC: p = 1.07 × 10−11, versus PL:

p = 4.10 × 10−12, versus IL: p = 1.09 × 10−08; nonlemniscal AC versus M2: p = 3.93 × 10−05, ver-

sus ACC: p = 2.12 × 10−04, versus PL: p = 6.74 × 10−05, versus IL: p = 0.011) to the detriment of

iRS, whose proportion drastically shrank to a rather insubstantial contribution to the mis-

match response (Kruskal–Wallis test with Dunn–Sidak correction; lemniscal AC versus M2:

p = 1.69 × 10−12, versus ACC: p = 1.11 × 10−12, versus PL: p = 2.61 × 10−10, versus IL:

p = 3.12 × 10−06; nonlemniscal AC versus M2: p = 7.46 × 10−08, versus ACC: p = 1.76 × 10−08,

versus PL: p = 1.29 × 10−06, versus IL: p = 0.003). This demonstrates that the nature of mis-

match responses in the AC and the PFC is fundamentally different, as predicted by the sen-

sory-memory and the predictive processing hypotheses (Fig 6A).

Temporal dynamics also agree with the abovementioned hypotheses, with the extremely

dissimilar latencies observed in the AC and the mPFC point at a sequential processing. Both

DEV- and CTR-evoked spiking activity in the AC peaks and stars decaying well before the

75-ms tone has even ended [39]. In stark contrast to the fast AC response, the spiking activity

of our whole mPFC multiunit sample began to slowly rise after 150 ms poststimulus onset and

took an impressive 462 ms to peak to the DEV and 517 ms to peak to the CTR (Fig 6B). In fact,

the entire peristimulus time histogram of a nonlemniscal AC neuron can be represented

within the latency of the auditory-evoked responses measured in mPFC neurons (Fig 6C).

Regarding the LFPs, an early PE-LFP becomes significant in the AC at about 40 ms and van-

ishes by 160 ms poststimulus onset, whereas the PE-LFP in our mPFC sample started at 140

ms and lingered with significant magnitudes up to 623 ms poststimulus onset. Both AC and

mPFC PE-LFPs coincided precisely with the time course of their respective significant iPE val-

ues in spiking activity, thus confirming the PE signaling asynchrony at both microscopic and

mesoscopic levels (Fig 6D).

According to data from previous studies in anesthetized rats [38,39], the contrast between

AC and mPFC processing is also very apparent in the time needed to explain away STD input.

To suppress their initial response to the STD by half, lemniscal AC neurons need 7 repetitions,

and nonlemniscal AC neurons 2 repetitions, whereas mPFC neurons only need 1 repetition

(Fig 6E, cyan arrow). To reach a steady-state level of maximum attenuation of the auditory-

evoked response takes more than the initial 9 STD repetitions in the lemniscal AC, 5 repeti-

tions in the nonlemniscal AC, but only 2 in the mPFC (Fig 6E, dashed lines). This finding

rules out the possibility that suppressive effects on the STD could be simply inherited or ampli-

fied downstream from the auditory system. On the contrary, the capacity of the mPFC to

explain away redundant input more efficiently than the AC supports the predictive processing

hypothesis: mPFC expectations are imposed top-down on the AC, thereby influencing earlier

stages of auditory processing.
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Fig 6. Comparisons between AC and mPFC responses. (A) Median iPE (orange) and iRS (cyan) of each auditory or prefrontal subdivision, represented with respect to

the baseline set by the CTR. Thereby, iPE is upwards-positive while iRS is downwards-positive (see Fig 1B). Asterisks denote statistical significance of the indices against

zero median (n.s., nonsignificant, �p< 0.05, ��p< 0.01, ���p< 0.001). (B) Within the interval of 0–150 ms poststimulus onset, average firing rate profile of the

nonlemniscal AC as the normalized spike-density function for every condition. Similarly, the mPFC firing rate profile is displayed within the interval of 150–700 ms. Gray

horizontal line illustrates tone presentation. (C) Peristimulus time histogram examples of 1 nonlemniscal AC single unit (in solid colors) and 1 mPFC multiunit (in

transparent colors), plotted together. Spontaneous activity in the mPFC before 200 ms poststimulus onset has not been represented for clarity. (D) In orange tones, time

course of the average iPE of the spiking activity (mean ± SEM) in the nonlemniscal AC (in light orange) and in the mPFC (in dark orange), where the asterisks above

mark a significant iPE value (p< 0.05) for the corresponding time window. In dark tones, the PE-LFP is the difference wave between the LFP to the DEV and to the CTR

PLOS BIOLOGY Prediction error signaling in medial prefrontal cortex

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001019 December 21, 2020 14 / 29

https://doi.org/10.1371/journal.pbio.3001019


Discussion

In this study, we recorded multiunit responses in the rat mPFC to the auditory oddball para-

digm and its no-repetition controls, i.e., the many-standards and cascade sequences (Fig 1).

We did not observe meaningful differences in the strength of the evoked responses across the

4 mPFC fields or between superficial and deep cortical layers. Unpredictable auditory stimula-

tion prompted robust responses, as compared to the weak (or even absent) activity elicited by

sounds that could be expected (Figs 2–5). The time course of the mismatch responses found in

the spiking activity and LPFs of the mPFC (Fig 4C and 4D) correlated with that of the frontal

sources of the large-scale MMN-like potentials from the rat brain [40,44,45]. Most impor-

tantly, our data indicated that mismatch responses of the mPFC are almost purely comprised

of PE signaling activity (Figs 3C and 4D), in contrast to the mismatch responses recorded

along the auditory system (Fig 6A) [39].

Unpredictability drives auditory responsiveness in the PFC

Despite the alleged advantages of the cascade over the many-standards sequence for control-

ling repetition effects during the oddball paradigm [21,43], we did not find any statistically sig-

nificant differences between the 2 no-repetition controls in the mPFC for the tested

parameters. This goes in line with evidence from the auditory system, where the responses

evoked by both no-repetition controls were also comparable in AC, MGB, and IC of anaesthe-

tized rats [39]. Such similarity between no-repetition controls tends to be the usual observation

in human MMN studies as well [46,50,51]. This suggests that both no-repetition controls are

probably processed as a regular succession of pitch alternations, without distinguishing

whether those alternations of pitch are random, ascending or descending. Both controls seem-

ingly generate an “alternation expectation” capable of suppressing to a certain extent the audi-

tory-evoked responses in the mPFC, but without inducing stimulus-specific effects of

repetition suppression (like STD does). Therefore, the many-standards and the cascade

sequences work as largely equivalent CTRs for the oddball paradigm.

Spiking activity in the rat mPFC peaked earlier and higher when evoked by unexpected

auditory stimulation, i.e., DEV and DEV alone (which did not differ significantly from each

other), more than doubling or even tripling in magnitude the spike response elicited by pre-

dictable conditions, i.e., CTR and STD (which only differed significantly from each other in

M2; Table 1; Figs 3B, 3D, 4B, 5B and 5C). DEV response dominance was even more pro-

nounced in the LFP analysis, where unexpected DEV and DEV alone conditions prompted

robust local field fluctuations whereas the impact of predictable CTR and STD stimulation was

negligible (Figs 4C and 5D). We found the same response unbalance between unpredictable

and predictable stimulation conditions in all mPFC fields, regardless of whether recordings

were performed in superficial or deep cortical layers. The robust mismatch between mPFC

responses to unexpected and predictable conditions resulted in similarly high values of iMM

(DEV–STD) and iPE (DEV–CTR). Conversely, the meager or insignificant values of iRS (CTR–
STD) indicate that the influence of frequency-specific effects is rather irrelevant in the mPFC

recorded from the nonlemniscal AC (in gray) and from the mPFC (in black). The thick horizontal bar below marks the time intervals were the PE-LFP of the

nonlemniscal AC (in gray) and the mPFC (in black) turns significant (p< 0.05). The gray sublet below displays the instantaneous p-values corresponding to the PE-LFP

(in white). (E) Average responses for the first 10 STD trials (mean ± SEM) in the lemniscal AC (in light gray), the nonlemniscal AC (in dark gray), and the mPFC (in

black). Vertical cyan arrows mark the trial where the initial STD response has undergone more than 50% of attenuation. Dashed lines mark the maximum level of

attenuation of the STD response during the sequence (the steady-state parameter of a power-law fit of 3 parameters). The underlying data for this Figure can be found in

S5 Data. AC, auditory cortex; ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant condition; IC, inferior colliculus; IL, infralimbic cortex; iPE, index of

prediction error; iRS, index of repetition suppression; LFP, local field potential; MGB, medial geniculate body; mPFC, medial prefrontal cortex; M2, secondary motor

cortex; PE-LFP, prediction error potential; PL, prelimbic cortex; SEM, standard error of the mean; STD, standard condition.

https://doi.org/10.1371/journal.pbio.3001019.g006
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(Table 1; Figs 1B, 3C and 6A). Hence, the mismatch responses evoked in the mPFC by the

auditory oddball paradigm are better explained as pure PE signaling (for more detailed ratio-

nale, see Oddball paradigm controls).

Reports from other frontal sources have found comparable results despite using different

methods, recording techniques and model species. Spiking responses in the lateral and ventral

orbitofrontal cortex of anesthetized and awake mice also found a great predominance of DEV

responses over STD responses [52]. Epidural electrodes placed over the frontal cortices of

awake and freely moving rats [40,45] recorded stronger ERPs to DEV than to CTR or STD. In

awake macaques, 1 study using multichannel electrodes placed in the dorsolateral PFC found

larger responses to DEV than to STD [53], while another using ECoG found strong mismatch

responses in the PFC to deviant changes within a roving-standard paradigm, but not to repeti-

tions or the many-standards control [54]. Regarding invasive research in human patients,

ECoG studies have consistently proven that, in contrast with the AC, the PFC ceases respond-

ing to DEV when its occurrence can be expected [34,37,55]. Although the different prefrontal

locations analyzed in the aforementioned studies across rodents, macaques and humans

should not be hastily regarded as direct homologs [56], all these works agree in that the key

driver of auditory responsiveness in the PFC is unpredictability.

The neuronal substrate of MMN-like potentials in the rat brain

According to our results, PE spiking activity starts appearing at 120 ms poststimulus onset.

About 100 ms later, PE signaling becomes very prominent (iPE >0.5), where it remains more

or less sustained beyond 600 ms poststimulus onset, even after the next tone in the sequence

has been presented (Figs 4D and 6D, in orange). Most remarkably, such time distribution of

the iPE spans enough to include all significant PE-LFP modulations in every mPFC field (Figs

4D and 6D, in black). Therefore, the time course of PE signaling observed in the mPFC at

microscopic level coincides in time with that observed at mesoscopic level.

At macroscopic level, ERPs from awake rats exhibited strong mismatch responses begin-

ning about 40 ms poststimulus onset [40,44,45]. Similarly, both our spiking activity and LFP

analyses confirmed that early PE signaling starts about 40 ms poststimulus onset in the AC

until about 150 ms, when the PFC takes over and continues PE signaling beyond 600 ms post-

stimulus onset (Fig 6B and 6D). Moreover, the strongest MMN-like potentials are reported in

the time window of 100 to 500 ms [40,44,45], precisely coinciding with the period where we

registered the most intense PE spiking activity (iPE >0.5), as well as the highest peaks in the

PE-LFP (Figs 4D and 6D). Thus, our data allow to correlate the microscopic, mesoscopic, and

macroscopic levels at which PE signaling can be detected in the rat PFC. Since the so-called

MMN-like potentials are regarded as the rat analog of the human MMN [41], our results could

model the possible neuronal substrate of the frontal MMN generators.

Different nature of PE signaling in the AC and the PFC

Compared to our previous work in the AC [38,39], evoked responses to pure tones in the

mPFC were relatively rare and difficult to find. Multiunits that responded to stochastic bursts

of white noise during search then exhibited unstructured FRAs, where a concrete receptive

field could not possibly be determined (Fig 2B). However, these same multiunits fired consis-

tently in response to many combinations of frequencies and intensities when the tested pure

tones were embedded within an experimental sequence (Fig 2C and 2D). Thus, whereas AC

processing was clearly driven by the spectral properties of auditory stimulation, auditory sensi-

tivity in mPFC neurons seemed solely dependent on contextual or abstract characteristics. In

the same vein, a previous study of spiking activity and LFPs in alert macaques also found
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stimulus specificity in the auditory-evoked responses of the AC, but not the dorsolateral PFC

[53]. In addition, frequency-specific effects present in the AC within the train of STD or after a

DEV were not apparent in the dorsolateral PFC of those alert macaques [53]. Similarly,

whereas the iRS in the rat AC can still account for more than half of the mismatch responses

[39], at the rat mPFC we found scant or even not significant values of iRS (Fig 6A), thus dis-

missing any relevant spectral influences in PFC processing.

Our data show that while iMM values in the AC and the mPFC of anesthetized rats are anal-

ogous, iPE values are significantly different (Fig 6A). This means that the nature of mismatch

responses at the AC is distinct from those at the PFC, despite been paired in their relative mag-

nitude. For this reason, generators at both the AC and the PFC are important contributors to

the MMN, but their contributions are fundamentally different in nature, something that has

been advocated since the classic sensory-memory interpretation of the human MMN

[4,9,10,12] and has also been inherited by the more modern predictive processing framework

[20,23]. Given that the iPE can account for 90% of the iMM value, and that in most mPFC

fields both indices are not even significantly different, prefrontal mismatch responses can be

safely interpreted as genuine deviance detection (in classic terminology) or as pure PE signal-

ing (in predictive processing terminology).

Following this logic, the mPFC would be generating an abstracted mismatch response de

novo, signaling “deviance” or a “PE” without reflecting the low-level spectral properties of the

driving acoustic stimuli, which have been already represented at earlier processing stages

within the auditory system [20,39]. This interpretation is consistent with the huge latency dis-

parities observed between the AC and the mPFC in our anesthetized rats. Whereas AC

responses to pure tones take just a few milliseconds to emerge [38,39], evoked responses in the

mPFC take hundreds of milliseconds to appear, both at spike activity (Figs 2D, 4B, 5C and 6B)

and LFP recordings (Figs 4C, 4D, 5D, 5E and 6D). Prefrontal response delays over 100 ms

with respect to the AC have also been reported in the lateral and ventral orbitofrontal cortex of

anesthetized and awaked mice [52], as well as in the dorsolateral PFC of alert macaques [53].

Entire AC responses could fit within the latency of the auditory-evoked responses found in the

PFC (Fig 6B and 6C). This suggests that AC and PFC processing occur to a certain extent in

sequential manner, as described by both the classic sensory-memory [4] and the predictive

processing hypotheses [30] of the generation of the MMN. First, acoustic deviances from spec-

tral regularities must be detected at the AC (temporal sources), and only after that, the PFC

(frontal sources) can identify global and behaviorally relevant deviations from more abstract

internal representations.

Further evidence of the hierarchical relationship between the AC and the PFC could be

found in the notable differences between the time each cortical region needs to explain redun-

dant STD input away. According to our previous studies [38,39], neurons in primary or lem-

niscal AC need 7 repetitions to suppress their initial auditory-evoked response by half, and 2

repetitions in the nonprimary or nonlemniscal AC (Fig 6E, in gray). By contrast, only 1 repeti-

tion was enough for the initial auditory-evoked response in the mPFC to drop between>50%

and>70%, and a second repetition to reach maximum suppression levels (Fig 6E, in black).

Similar suppressive dynamics were reported in the orbitofrontal cortex of anesthetized and

awake mice [52], in the dorsolateral PFC of alert macaques [53], as well as in human frontal

sources [22].

Given that the PFC responds much later to sound but suppresses redundant auditory input

more efficiently than the AC, the mismatch responses observed at the PFC cannot be simply

inherited or amplified downstream from the auditory system. The inverse hierarchical

arrangement, proposed by the predictive processing hypothesis [30], is thereby more plausible.

The PFC is not part of the auditory system; in fact, it is not a sensory processor per se, but
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rather an executive center. In more natural conditions, the PFC most likely integrates manifold

inputs to generate very complex cross-modality sensorimotor representations [57,58]. These

abstract internal representations at the PFC could in turn guide in top-down manner the pro-

cessing at lower-level systems, hyperparameterizing the more concrete operations carried in

their respective (sensory) modalities, and thus increasing overall processing efficiency. In

other words, the gestalt acquired at the PFC could be feedbacked to the AC, generating specific

expectations in the spectral domain (the native format of AC), but ultimately regarding

higher-order properties (such as interstimulus relationships, auditory tokens, or sequence

structures) that could have not been computed otherwise in the local AC circuitry. This top-

down predictive activity would exert an inhibitory influence on AC responses whenever cer-

tain auditory input is already accounted for by the prefrontal gestalt, but any unpredicted

information would be conveyed bottom-up in a PE to update the internal representation at the

PFC. Thus, hierarchical predictive processing can explain why the PFC exhibits longer laten-

cies than the AC, while also performing more effective and overarching expectation suppres-

sion, capable of fully explaining away STD input, and even CTR input. As soon as auditory

information becomes redundant to the big picture, it stops reaching the PFC, avoiding cogni-

tive overload, and saving high-order processing resources for more fruitful endeavors.

Subcortical middle players could relay PE signals to the PFC

Finally, it is worth mentioning that most accounts of deviance detection and PE signaling tend

to overrepresent cortical sources, downplaying the role of subcortical contributions. Since the

MMN is recorded from the human scalp, the frontotemporal cortical network is more readily

accessible for study. The predictive processing framework is also eminently focused on cortical

processing [27,47,59]. However, the important contribution of subcortical nuclei is becoming

ever clearer in recent literature. Regarding the auditory system, no-repetition controls revealed

that SSA could not fully account for the mismatch responses found in the nonlemniscal divi-

sions of the IC and the MGB of anesthetized rats and awake mice. Hence, subcortical auditory

nuclei seem to constitute the first levels of the predictive processing hierarchy, which is ulti-

mately responsible for auditory deviance detection [39,60,61].

Human brain research has also identified auditory mismatch signals from subcortical nuclei

outside the auditory system, such as the nucleus accumbens [62], the hippocampus [63], or the

amygdala [64,65]. Evidence from animal models has been able to confirm these subcortical sig-

nals and describe locations and time courses more precisely. Auditory mismatch responses

took about 20 ms to appear in the CA1 region of the hippocampus of freely moving mice [66],

and 30 to 60 ms to show in the basolateral amygdala of alert macaques [53]. Furthermore, like

in the PFC, mismatch responses in the basolateral amygdala did not exhibit stimulus-depen-

dent effects [53]. Minding the different model species, these time delays would place the hippo-

campus and the amygdala right between the response windows observed in the auditory

pathway and those in the PFC.

This could provide a potential explanation for the lack of significant differences between

mismatch responses across mPFC fields, despite been quite distinct from each other. The mis-

match responses we recorded at the rat mPFC resembled to those recorded at the mouse orbi-

tofrontal cortex [52] and the macaque dorsolateral PFC [53]. It is possible that nonauditory

subcortical nuclei such as the hippocampus or the amygdala could compute PEs and then

broadcast that signal all over the PFC for further processing and integration. Indeed, a very

recent study has demonstrated that the emergence of robust and long-lasting mismatch

responses in the mouse orbitofrontal cortex is directly controlled from the nonlemniscal MGB

through the basolateral amygdala [52]. Therefore, all these auditory and nonauditory
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subcortical nuclei could be fundamental middle players in the automatic process of deviance

detection and PE signaling reflected in the MMN. This is a possibility that should be further

explored in future studies.

Limitations

All theoretical implementations of the predictive processing hypothesis assume that expecta-

tions and PEs are computed by separated neuronal types distributed across distinct cortical

layers, which should result in characteristic laminar profiles [47,59]. Unfortunately, we have

not been able to identify any significant response differences between superficial and deep lay-

ers of the mPFC, in contrast to what predictive processing models expect. This lack of differ-

ences between layers could be due to the unspecific nature of our multiunit measurements.

Extracellular recordings can capture the evoked responses of several neurons within a consid-

erable volume of up to hundreds of μm3 around the tip of the electrode. The recorded activity

does not always allow for spike sorting and waveform analyses to isolate and assign putative

neuronal types to the single units contained within one multiunit recording [67], as it was the

case in the present study.

Nevertheless, it is worth mentioning that the concrete role of neuronal types and their lami-

nar distribution is still a subject of intense debate within the predictive processing framework.

Several possible but conflicting implementations have been proposed [47,68–71], and empiri-

cal evidence from human research is mixed (for an in-depth discussion, see [48]). In fact, pre-

vious attempts from our lab and others to find a laminar distribution of mismatch responses

which fitted the standard implementation of cortical predictive processing [47] also failed in

the AC of rats and mice [38,39,66,72]. Therefore, focused research efforts will be needed to dis-

ambiguate this issue in the future.

Lastly, the MMN is a notorious obligatory component of the human ERP, remaining persis-

tent in situations where consciousness is absent, such as during sleep [73,74], anesthesia

[75,76], or even coma [77,78]. Hence, the fact that we have been able to record very robust mis-

match responses in the rat mPFC during anesthesia further strengthens the link between our

data and MMN evidence from human research. Moreover, previous studies of mismatch

responses in both the auditory system and the PFC of rodents did not find dramatic differ-

ences between anesthetized and awake preparations [39,52,79,80]. Notwithstanding, the use of

anesthesia is always a limiting factor that must be minded when comparing these data with

those obtained from awake preparations, or when trying to extrapolate possible behavioral

implications from the conclusions presented in our study.

Materials and methods

Ethics statement

All methodological procedures were approved by the Bioethics Committee for Animal Care of

the University of Salamanca (USAL-ID-195) and performed in compliance with the standards

of the European Convention ETS 123, the European Union Directive 2010/63/EU, and the

Spanish Royal Decree 53/2013 for the use of animals in scientific research.

Surgical procedures

We conducted experiments on 33 female Long-Evans rats aged 9 to 17 weeks with body

weights between 200 and 330 g. Rats were anesthetized with urethane (1.9 g/kg, intraperito-

neal). To ensure a stable deep anesthetic level, we administered supplementary doses of ure-

thane (approximately 0.5 g/kg, intraperitoneal) when the corneal or pedal withdrawal reflexes
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were present. Urethane preserves balanced neural activity better than other anesthetic agents

having a modest balanced effect on inhibitory and excitatory synapses [81]. Normal hearing

was verified with auditory brainstem responses recorded with subcutaneous needle electrodes,

using a RZ6 Multi I/O Processor (Tucker-Davis Technologies, TDT, Alachua, FL, USA) and

processed with BioSig software (TDT), using 0.1 ms clicks presented at a rate of 21/s, delivered

monaurally to the right ear in 10 dB steps, from 10 to 90 decibels of sound pressure level (dB

SPL), using a close-field speaker. Every 10 hours, we administered 0.1 mg/kg of atropine sul-

fate (subcutaneous), 0.25 mg/kg of dexamethasone (intramuscular), and 5 to 10 ml of glucosa-

line solution (subcutaneous) to ameliorate the presence of bronchial secretions, brain edema,

and prevent dehydration, respectively. Animals were artificially ventilated through a tracheal

cannula with monitored expiratory [CO2] and accommodated in a stereotaxic frame with hol-

low specula to facilitate direct sound delivery to the ears. Rectal temperature was maintained at

approximately 37˚C with a homeothermic blanket system (Cibertec, Madrid, Spain). We sur-

gically exposed bregma by making an incision in the scalp at the midline and retracting the

periosteum. A craniotomy of approximately 3 mm in diameter was performed above the left

mPFC and the dura was removed.

Data acquisition

We recorded multiunit activity to look for evidence of predictive coding signals under acoustic

oddball stimulation across fields of the mPFC of the urethane-anesthetized rat: M2, ACC, PL,

and IL. The rodent mPFC combines anatomo-electrophysiological elements of the primate dor-

solateral PFC and ACC at a rudimentary level [56]. Experiments were conducted in an electri-

cally shielded and sound-attenuating chamber. Recording tracts were orthogonal to the brain

surface of the left mPFC: approximately 2.5 to 4.68 mm rostral to bregma, approximately 0.2 to

1.8 mm lateral to the midline, and approximately 0.2 to 4.5 mm dorsoventrally. Therefore, we

covered the 4 fields of the mPFC and various cortical layers (II–VI). We performed extracellular

neurophysiological recordings with glass-coated tungsten microelectrodes (1.4 to 3.5 MO

impedance at 1 kHz). We used a piezoelectric micromanipulator (Sensapex, Oulu, Finland) to

advance a single electrode and measure the penetration depth. We visualized electrophysiologi-

cal recordings online with custom software programmed with OpenEx suite (TDT, https://

www.tdt.com/component/openex-software-suite/) and MATLAB (MathWorks, https://www.

mathworks.com/products/matlab.html). Multiunit activity was extracted automatically by man-

ually setting a unilateral action potential threshold above the background noise as an accurate

estimation of neuronal population dynamics [82]. Analog signals were digitized with a RZ6

Multi I/O Processor, a RA16PA Medusa Preamplifier and a ZC16 headstage (TDT) at 97 kHz

sampling rate and amplified 251×. Neurophysiological signals for multiunit activity were band-

pass filtered between 0.5 and 4.5 kHz using a second order Butterworth filter.

The sound stimuli were generated using the RZ6 Multi I/O Processor (TDT) and custom

software programmed with OpenEx Suite (TDT) and MATLAB. Sounds were presented mon-

aurally in a close-field condition to the ear contralateral to the left mPFC, through a custom-

made speaker. We calibrated the speaker using a ¼-inch condenser microphone (model 4136,

Brüel & Kjær) and a dynamic signal analyzer (Photon+, Brüel & Kjær) to ensure a flat response

up to 73 ± 1 dB SPL between 0.5 and 44 kHz, and the second and third signal harmonics were

at least 40 dB lower than the fundamental at the loudest output level.

Oddball paradigm controls

One limitation of the mismatch measurements obtained using the oddball paradigm is that the

effects of high-order processes like genuine deviance detection or PE signaling cannot be
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distinguished from lower-order spectral-processing effects such as SSA [21,25]. The so-called

“no-repetition” controls allow to assess the relative contribution of both higher- and lower-

order processes to the overall mismatch response [43]. These CTRs of the auditory oddball

paradigm are tone sequences that must meet 3 criteria: (1) to feature the same tone of interest

with the same presentation probability as that of the DEV; (2) to induce an equivalent state of

refractoriness by presenting the same rate of stimulus per second (which excludes the DEV

alone from being considered a proper CTR); and (3) present no recurrent repetition of any

individual stimulus, specially the tone of interest, thus ensuring that no SSA is induced during

the CTR [20].

Whether the CTR-evoked response exhibited signs of expectation suppression, that could

be only explained by high-order regularity encoding or predictive processing, capable of

explaining away interstimulus relationships more complex than sheer repetition [21,25].

Hence, we can assess the portion of the mismatch response (DEV–STD) that can be attributed

to the effects of spectral repetition yielded during the STD train, such as SSA [15,16], by com-

paring the auditory-evoked responses to DEV and to CTR. When the auditory-evoked

response is similar or higher during CTR than in DEV, then the mismatch response can be

fully accounted for by repetition suppression, and no higher-order process of deviance detec-

tion or PE signaling can be deduced (i.e., DEV� CTR; Fig 1B). In other words, this result

would provide support for the adaptation hypothesis [17,18] while severely undermining the

sensory-memory account [4,10]. Otherwise, a stronger response to DEV than to CTR unveils a

component of the mismatch response that can only be explained by a genuine process of devi-

ance detection or PE signaling (i.e., DEV> CTR; Fig 1B).

In order to dissociate the relative contribution of frequency-specific effects from processes

of genuine deviance detection or predictive processing, we generated 2 different no-repetition

CTRs for our oddball paradigms: the many-standards and cascaded sequences (Fig 1D). The

many-standards sequence presents the tone of interest embedded in a random sequence of

assorted tones, where each tone shares the same presentation probability as the DEV in the

oddball paradigm [42]. However, some authors have argued that this CTR-random is not fully

comparable with the oddball paradigm, inasmuch as the disorganized succession of tones

never allows to form the memory trace of a proper regularity, nor can it generate high-preci-

sion expectations, whereas the STD does. Moreover, the random succession of stimuli might

generate small mismatch responses, which would underestimate the contributions of deviance

detection or predictive processing in the comparison of DEV against CTR [21,43].

The cascade sequence [43] tries to overcome the alleged caveats of the many-standards

sequence by presenting tones in a regular fashion, e.g., in an increasing or a decreasing fre-

quency succession. Thus, the stimulus of interest conforms to a regularity—as opposed to the

DEV—, but not a regularity established by repetition and susceptible to undergo SSA—con-

trary to the STD—, making the cascade sequence a more fitted and less conservative CTR than

the many-standards sequence. As an additional advantage, the tone immediately preceding

our tone of interest is the same in both oddball and cascaded sequences, since only versions

following the same direction are compared (i.e., DEV-ascending versus CTR-ascending, DEV-

descending versus CTR-descending). This allows to control for another possible spectral sensi-

tivity, which are responses to a rise or fall in frequency between 2 successive tones. For these

reasons, the cascade sequence is regarded as a better CTR for the oddball paradigm [21,43].

Recording protocol

In search of evoked auditory multiunit responses from the mPFC, we presented stochastic

trains of white noise bursts and sinusoidal pure tones of 75 ms duration with 5-ms rise-fall
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ramps, varying presentation rate and intensity to avoid possible stimulus-specific effects that

could suppress evoked responses.

Once auditory activity was detected, we only used pure tones (also 75 ms duration and

5-ms rise-fall ramps) to record the experimental stimulation protocols. All stimulation

sequences ran at 2 stimuli per second. First, a multiunit FRA was computed by randomly

presenting pure tones of various frequency and intensity combinations that ranged from 1

to 44 kHz (in 4 to 6 frequency steps/octave) and from 0 to 70 dBs (10 dB steps) with 1 to 3

repetitions per tone. In our previous studies in the auditory system [39,60,61], we selected

10 tones at frequency steps of 0.5 octaves to generate our stimulation paradigms within the

receptive field determined by the FRA. However, we could not determine clear receptive

fields in the multiunit FRAs of the mPFC, so we had to choose the frequencies and intensity

of our test sequences based on our observations during manual search, trying to maximize

the auditory-evoked response when possible. Our 400-stimuli test sequences were pre-

sented in randomized order leaving periods of >10 min of silence in between to minimize

potential long-term habituation effects [83]. All test sequences presented while recording

from the same multiunit were delivered at the same intensity, but we varied intensity

among the different multiunits of our sample to maximize the auditory-evoked response in

each case.

For each multiunit, we used all the 10 preselected tones to generate 3 no-repetition

sequences (i.e., the many-standards, cascade ascending, and cascade descending) and pairs of

consecutive frequencies (within those 10 tones) to generate oddball sequences. An oddball

sequence consisted of a repetitive tone (STD, 90% probability), occasionally replaced by a dif-

ferent tone (DEV, 10% probability) in a pseudorandom manner. The first 10 stimuli of the

sequence set the STD, and a minimum of 3 STD tones always preceded each DEV. Oddball

sequences were either ascending or descending, depending on whether the DEV tone had a

higher or lower frequency than the STD tone, respectively (Fig 1C). Additionally, in a subset of

experiments, we muted the STD train to measure the response of the tone of interest over a

background of silence, as a DEV alone. The number of test sequences presented to each multi-

unit depended on the stability of the recording.

Histological verification

At the end of each experiment, we inflicted electrolytic lesions (10 μA, 10 seconds) through the

recording electrode. Animals were afterwards euthanized with a lethal dose of pentobarbital,

decapitated, and the brains immediately immersed in a mixture of 4% formaldehyde in 0.1 M

PB. After fixation, tissue was cryoprotected in 30% sucrose and sectioned in the coronal plane

at 40-μm thickness on a freezing microtome. We stained slices with 0.1% cresyl violet to facili-

tate identification of cytoarchitectural boundaries (Fig 2A). Histological assessment of the elec-

trolytic lesions to any of the fields of the mPFC was processed blindly to each animal history.

Multiunit locations were assigned to M2, ACC, PL, or IL within a rat brain atlas, accordingly

with the histological verification and the stereotaxic coordinates in the three axes of recording

tracts [84].

Data analysis

Offline data analyses were performed with MATLAB functions, the Statistics, and Machine

Learning toolbox and custom-made MATLAB scripts. We measured multiunit responses to

each tested tone by computing a PSTH with 40 trials of every condition (DEV, STD, and

CTR). In the case of the STD, we analyzed the last evoked-response before a DEV to have the

same number of trials per condition as in DEV and CTR. PSTHs were smoothed with a 6 ms
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Gaussian kernel in 1 ms steps to calculate the spike-density function over time (ksdensity func-

tion). Thereby, we obtained the mean and standard error of the mean (SEM) of spiking rates

from −100 to 700 ms around tone onset. The spike-density function of the DEV responses of

the mPFC population showed a response latency of approximately 150 ms with a sustained fir-

ing spanning up to the next tone (Fig 4B). To avoid overlap of consecutive tone responses, the

response analysis window preserved the interstimulus interval of 500 ms and was delayed 100

ms from stimulus onset. For this reason, we did not perform a baseline correction. We only

used a baseline window of 50 ms after stimulus onset to assess significantly increased responses

to sound to be included in the analyses. We performed a Monte Carlo simulation, which is a

probability simulation that withdraws numerical values from several random samplings. We

simulated 10,000 PSTHs with a Poisson model of a constant firing rate equivalent to the baseline

spontaneous spiking activity and thus, a null distribution of baseline-corrected spike count was

generated from the PSTHs. We computed a p-value for the original baseline-corrected spike

count as p = (g+1)/(N+1), where g is the count of null measures� baseline-corrected spike

count and N = 10,000 is the size of the null sample. The significance level was set at α = 0.05.

To compare across different multiunits, we normalized the auditory-evoked responses to

each tone of interest in 3 testing conditions as follows:

Normalized DEV ¼ DEV=N

Normalized STD ¼ STD=N

Normalized CTR ¼ CTR=N

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEV2 þ STD2 þ CTR2
p

is the Euclidean norm of the vector defined by the DEV, STD, and CTR responses. Thereby,

normalized responses are the coordinates of a 3D unit vector defined by the normalized DEV,

normalized STD, and normalized CTR responses that ranged between 0 and 1. This normal-

ized vector has an identical direction to the original vector defined by the non-normalized

data and equal proportions among the 3 response measurements.

To quantify and facilitate the interpretation of the oddball paradigm controls, we calculated

the indices of neuronal mismatch (iMM, computing the overall mismatch response), repeti-

tion suppression (iRS, accounting for lower-order frequency-specific effects), and prediction

error (iPE, unveiling higher-order deviance detection or PE signaling activity) with the nor-

malized spike counts as:

iMM ¼ Normalized DEV � Normalized STD

iRS ¼ Normalized CTR � Normalized STD

iPE ¼ Normalized DEV � Normalized CTR

Index values ranged between −1 and 1, where

iMM ¼ iRSþ iPE

Lastly, to analyze the emergence of predictive signals around stimulus presentation, we also

calculated the average iPE in 35 time windows of 20 ms width from −50 to 650 ms relative to

stimulus onset.
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For the LFP signal analysis, we filtered the raw recording between 2.2 and 50 Hz (second

order Butterworth filter), and then we aligned the recorded wave to the onset of the stimulus

for every trial, and computed the mean LFP for every recording site and stimulus condition

(DEV, STD, CTR), as well as the “prediction error potential” (PE-LFP = LFPDEV−LFPCTR).

Then, grand-averages were computed for all conditions, for each auditory station separately.

The p-value of the grand-averaged PE-LFP was determined for every time point with a 2-tailed

t test (Bonferroni-corrected for 428 comparisons, with family-wise error rate < 0.05), and we

computed the time intervals, where PE-LFP was significantly different from zero.

Our data set was not normally distributed so we used distribution-free (nonparametric)

tests. These included the Wilcoxon signed-rank test, Wilcoxon rank-sum test, and Friedman

test (for spike counts, normalized responses, indices, and response latencies), as well as the

Kruskal–Wallis test with Dunn–Sidak correction for multiple index comparisons between

each field from the mPFC and AC. Only the difference wave for the LFPs (PE-LFP) was tested

using a t test, since each LFP trace is itself an average of 40 waves, and thus approximately nor-

mal (according to the Central Limit Theorem). For multiple comparison tests, p-values were

corrected for false discovery rate (FDR = 0.1) using the Benjamini–Hockberg method [85].

To analyze the time course of suppression over the auditory-evoked response, we measured

the DEV, STD, and CTR responses of each tone of interest as average spike counts (each unit

normalized to the Euclidean norm, as previously explained) for every trial number within the

sequence, for each field separately [38]. Given that the Euclidean Norm vector was calculated

for each unit based on the mean DEV, CTR, and STD responses, some individual trials have

values above 1. We included all the standard tones, not just the last standard before a deviant

event as previously. Thereby, we ordered average normalized spike counts at their absolute

trial position within the sequence and generated the time course of responses from the begin-

ning of the sequence. Then, we fitted these time series to various models, namely, linear, expo-

nential, double exponential, inverse polynomial, and power-law with 2 or 3 coefficients. We

used the fit function in MATLAB that computes the confidence intervals of the fitted parame-

ters and the adjusted R2, the coefficient of determination of the function fit.

For the additional data set including the DEV alone, tests of sound-driven enhanced

responses, spike-density functions, spike counts, and normalized responses followed the same

previously described analyses. This time, the 3 compared conditions were the DEV alone,

DEV, and STD. Since this was an additional experiment to compare the influence of different

stimulation contexts on DEV responses, the whole sample was merged along the mPFC.

Supporting information

S1 Data. Multiunit recording examples from each mPFC field. ACC, anterior cingulate cor-

tex; CTR, control condition; DEV, deviant condition; IL, infralimbic cortex; M2, secondary

motor cortex; PL, prelimbic cortex; STD, standard condition.

(XLSX)

S2 Data. Spiking activity analysis. ACC, anterior cingulate cortex; CTR, control condition;

DEV, deviant condition; IL, infralimbic cortex; iMM, index of neuronal mismatch; iPE, index

of prediction error; iRS, index of repetition suppression; M2, secondary motor cortex; PL, pre-

limbic cortex; STD, standard condition.

(XLSX)

S3 Data. LFP analysis. ACC, anterior cingulate cortex; CTR, control condition; DEV, deviant

condition; IL, infralimbic cortex; iPE, index of prediction error; M2, secondary motor cortex;

PE-LFP, prediction error potential; PL, prelimbic cortex; SEM, standard error of the mean;
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STD, standard condition.

(XLSX)

S4 Data. DEV alone analysis. DEV, deviant condition; LFP, local field potential; SEM, stan-

dard error of the mean; STD, standard condition.

(XLSX)

S5 Data. Comparisons between AC and mPFC responses. AC, auditory cortex; ACC, ante-

rior cingulate cortex; CTR, control condition; DEV, deviant condition; IC, inferior colliculus;

IL, infralimbic cortex; iMM, index of neuronal mismatch; iPE, index of prediction error; iRS,

index of repetition suppression; MGB, medial geniculate body; M2, secondary motor cortex;

PE-LFP, prediction error potential; PL, prelimbic cortex; SEM, standard error of the mean;

STD, standard condition.

(XLSX)
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Funding acquisition: Manuel S. Malmierca.

Investigation: Lorena Casado-Román.

Methodology: David Pérez-González, Manuel S. Malmierca.

Project administration: Manuel S. Malmierca.

Software: David Pérez-González.
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