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Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working
memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections
between different brain regions and information interaction between different clusters of neurons. At the same time, it was
found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM
networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e.,
online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the
present study examined the topological changes of WM networks before and after training based on the whole brain and
constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that
after WM training, the subjects’ WM networks had higher clustering coefficients and shorter optimal path lengths than before
training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect
the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory
synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant
information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the
temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided
attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network
topological attributes in the task-related mode.

1. Introduction

Working memory (WM) is a system that maintains informa-
tion online in order to complete a task or goal and carries out
the operation and processing of the retained information.
From the perspective of information processing, memory
consists of three stages: encoding, retention, and extraction.
The ability to retain information in WM is the basis for
maintaining a good cognitive state [1]. Based on the retention
stage during online WM, the WM behavioral performance
can be predicted by spectral entropy [2], and the fusion fea-
tures composed of spectral entropy and Lempel-Ziv com-
plexity can effectively classify working memory load [3].
The central role of WM in human cognition, coupled with
its limited capabilities, has led to current attempts to improve
WM function through training. WM training may affect the

functional connectivity between brain networks covered by
the task. Kelly et al. suggest that widespread practice of
WM tasks may lead to a permanent enhancement of
resting-state frontoparietal connections [4]. Several func-
tional magnetic resonance imaging (fMRI) studies have
shown how WM training affected brain activity in a variety
of ways, including interregional changes, anatomical
changes, and functional connectivity changes [5]. However,
fMRI with low temporal resolutions could not reveal the sub-
second time precision required by the neural mechanism of
integrating and coordinating processing between different
functional regions during the online WM. These functions
could be performed by oscillatory synchronization (i.e., cor-
relation between neuronal activities of frequencies over a
millisecond range of time), modulating interactions between
neurons and regulating the communication of information
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between networks [6]. Studies have shown that different
frequency band oscillations were associated with cognitive
processing such as emotional memory in the brain [7, 8]. In
terms of neurophysiology, oscillatory synchronization is
where individual neurons fire regularly at the population
oscillation frequency like clocks [9]. Oscillatory synchroniza-
tion recorded by scalp EEG can be used to define interactions
between different brain regions at relatively high temporal
resolutions [10].

On the regional level, two common modes are utilized to
study WM based on EEG. One is that one region of interest
(ROI) or several ROIs are selected to study frequency band
oscillations. For example, an intracranial EEG study showed
that theta oscillations were a key mediator of WM, in which
the theta power that changed in the dorsolateral prefrontal
cortex (DLPFC), dorsal ACC (dACC), and hippocampus
was associated with the ability to maintain information in
WM [11]. During the reward-related WM, Kawasaki and
Yamaguchi found that the amplitude of the prefrontal theta
that increased during the retention period was positively
correlated with the volume of visual working memory
(VWM), indicating that it participated in the local synchro-
nization of VWM. In addition, frontal beta oscillatory activ-
ities were identified as reward-related activities [12]. In a
short-term memory study, Sauseng et al. found that the pari-
etal alpha oscillations prevented external input from interfer-
ing with ongoing WM tasks [13]. Furthermore, neural
synchronization of alpha oscillations inhibited information
processing unrelated to WM [14]. Based on the local field
potentials, Zhang et al. analyzed the dynamic characteristics
of brain networks during WM. Experimental results showed
that the cross-frequency coupling between theta and gamma
increased with learning days, which played an important role
in the WM [15]. That is, low-frequency neural oscillations
can support information processing and interaction among
a large range of neural clusters [16]. Transient or short-
term frequency synchronization could be used to perform
information interaction, information integration, and task
coordination between different brain regions or different
neural clusters in certain brain regions [17].

The other is that the relationship between various
brain regions such as synchronization could be measured
by EEG coherence for studying on activation of multiple
brain regions [18]. EEG coherence was primarily a measure
of phase consistency, suggesting a functional connection
between paired brain regions. Strong coherence reflected
the simultaneous oscillation of neurons, while weak coher-
ence indicated independent activity between these neural
clusters [19]. Using EEG coherence, Murias et al. found that
some brain regions of the autistic population were too con-
nected, while some brain regions were not connected enough
[18]. Moreover, a study of EEG consistency in Alzheimer’s
disease revealed that alpha frequency band coherence in the
temporo-parieto-occipital regions of the Alzheimer’s group
was significantly reduced [20]. In another study, EEG coher-
ence results showed that the right hemisphere of the brain in
the normal control group was more closely connected during
the cognitive process, and the activation in the prefrontal and
parietal regions was significantly higher than moderately

depressed people [21]. In the WM task, the increased coher-
ence of the theta frequency band in the frontal region and the
decreased coherence of the high-alpha frequency band in the
anterior region reflected the increased demand for central
executive function in WM [22].

However, cognitive training interventions may affect not
only changes in one or several regions but also changes in the
integration and separation throughout the brain or brain
subnetwork during online WM. Different neuroimaging
methods, such as fMRI and transcranial magnetic stimula-
tion (TMS), have shown that the frontal and parietal regions
were engaged during online WM [23]. At the same time,
theta, alpha, and beta oscillations were involved in the inter-
action between different brain areas, indicating the dynamic
processing of information during the performance of WM
tasks [24]. Early researchers believed that WM might be
located in a specific area of the brain, but this view has been
challenged. Recent studies have suggested that WM was not
limited to a specific brain area because a single region would
not be able to complete all memory storage and processing of
individual life, work, and other experiences. WM as a com-
plex cognitive system, which cannot be accomplished by reli-
ance on a fixed neural pathway, involves interactions and
integrations of millions of neurons in multiple brain regions.

The topology of the brain network quantified by the
graph theory network index can distinguish the cognitive
states within the individual and the cognitive abilities
between individuals [25]. In neuropathology studies, the
resting-state brain networks of depressed adolescents were
significantly impaired compared to healthy controls with
graph theory analysis [26]. Li and colleagues investigated
the EEG network and clustering analyses of epilepsy in differ-
ent frequency bands, reporting that the synchronization of
the EEG network was enhanced during the preictal state
which had higher network characteristics compared to the
interictal state [27]. Yu et al. proposed that the local efficiency
of cross-frequency coupling during epileptic seizures
decreased significantly in the theta and alpha networks.
[28]. Using EEG coherence analysis, another study found
that the functional network of patients with mild depression
deviated from the small-world network in terms of the short-
est path length [21], indicating that the brain network con-
struction based on the graph theory of EEG coherence was
an effective way to distinguish between patients with mild
depression and healthy patients. Based on graph theory
coherence analysis, Langer et al. calculated the small-world
properties of the resting-state EEG network before and after
WM training. The results showed that better cognitive
performance of WM indicated higher theta power and stron-
ger small-world topology [23]. Another study found that
synchronization was strengthened with increasing memory
load among the frontoparietal regions known to underlie
executive and attentional functions during memory retention
[8]. According to the research of cognitive neuroplasticity
during development, synchronization of oscillatory activities
was an important indicator of cortical network maturation.
In task-related oscillations involved in WM executive con-
trol, activation in the frontal and parietal regions was more
pronounced and concentrated in adults than in children
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and adolescents [29]. Therefore, the synchronous changes of
brain oscillations in the task execution stage by training may
reveal the plasticity mechanism of WM.

Therefore, using the graph theory to construct the EEG
WM brain network, we were able to study the transmission
and integration of neural information during online WM.
To our best knowledge, little is known about the neural path-
ways involved in the online WM before and after training.
The continuous activity of the brain provided strong evi-
dence that this activity reflected characterization during the
retention period of WM. Many brain areas of the cortex
and subcortex also exhibited similar sustained activity and
formed a brain network for memory information interaction
to support the processing and delivery of WM information
[30]. We assumed that the effect of training on WM perfor-
mance could be observed from the changes in neural oscilla-
tion activities before and after training. Thus, graph theory
analysis is based on EEG coherence to construct the differen-
tial coherence networks before and after WM training. We
first adopted the EEG coherence method to separately obtain
the coherence matrix of theta, alpha, beta, and full frequency
before and after WM training. Then, the changes of network
attributes before and after WM training were studied by
graph theory analysis. Consequently, the statistical differen-
tial networks of different frequency bands before and after
training were obtained. In the present study, the plasticity
of WM training was studied from the perspective of the
whole-brain network, which may provide further support
for the new concept of oscillatory action to understand
WM training during online WM.

2. Materials and Methods

2.1. Subjects. Twenty right-handed normal male subjects
(average age 21 years old) participated in the experiment.
None had any cognitive impairment or history of mental
and neurological diseases. The experiment was approved by
the Ethics Committee of Chongqing University of Posts
and Telecommunications. All subjects who participated in
the experiment read the informed consent form in advance
and signed it. After the experiment, subjects received corre-
sponding compensation for their time and efforts.

2.2. Stimuli and Design. Subjects were asked to remain
relaxed throughout the experiment and to suppress as far as
possible any wide range of motion. They were asked to per-
form delayed WM tasks of three levels of difficulty (2, 4,
and 8 items) over two sessions. The experimental content
of the two sessions was the same, the only difference being
that the subjects completed the first session without training
and completed the second session after receiving short mem-
ory training.

The experimental procedure was stimulated, and the
behavioral results were recorded by E-Prime (http://www
.pstnet.com/eprime.cfm). A fixed cross (0:5° × 0:5°) was dis-
played at the center of the screen, and each session consisted
of 60 trials (using memory load items at the three levels of
difficulty). During the experiment, subjects were asked to

limit blinking, eyeball rotations, and head movements and
to respond correspondingly to the stimulus.

To begin, the fixed cross flashed for 50ms, indicating that
the experiment had started. Thereafter, the memory
sequence was presented for 200ms (the encoding period).
The memory sequence consisted of a random composition
of uppercase English letters from A to Z at three difficulty
levels (easy: 2 items, medium: 4 items, and difficult: 8 items).
They appeared randomly with the same probability. Then,
after a 3000ms delayed interval (the retention period), the
test sequence (one English letter) was presented as a probe
item on the screen for 100ms. At this point, subjects were
required to judge whether the test sequence had appeared
in the previous memory sequence. If the probe item had
not appeared in the previous memory sequence, subjects
pressed the “F” key with their left index finger. If it had, sub-
jects pressed the “J” key with their right index finger.

2.3. EEG Recordings and Preprocessing. A 64-channel Neu-
roScan system was used to record subjects’ EEG data
(Quik-Cap, bandpass filtering: 0.05-100Hz; sampling rate:
1000Hz; and impedance less than 5 kΩ), and the Cz elec-
trode was taken as the reference electrode for online EEG
acquisition.

The offline processing of the EEG data mainly included
rereferencing, data segmentation, artifact removal, filtering,
and baseline correction. Rereferencing means the EEG
recordings were infinitely rereferenced by using reference
electrode normalization techniques [31, 32]; segmentation
means EEG data was extracted from 100ms before the onset
of the memory sequence to 100ms after the subjects’
response onset; artifact removal means electronystagmogram
(EOG) and myoelectricity (EMG) were eliminated by a blind
source separation technique. At the same time, the data seg-
ments with a voltage amplitude range exceeding ±100μV
were removed. The EEG recordings were then filtered with
a bandpass of 0.5-45Hz. The data was baseline corrected
using the 100ms before the memory array onset. After the
above preprocessing, each subject’s EEG data had 120 trials
(60 trials for each session). Finally, the retention period
(3000ms) for each trial was extracted for subsequent
analysis.

2.4. Behavioral Scores. When the subjects carried out the
reaction time and reaction accuracy tasks, they either sacri-
ficed the accuracy rate in exchange for the reaction rate or
sacrificed speed to obtain high reaction accuracy [33]. In
the delayed WM matching task, the speed-accuracy trade-
off problem arose. Therefore, we used signed residual time
(SRT) for the subject’s performance score [34]. SRT was then
used to measure the balance between speed and accuracy of
the subjects when they were performing the task. The SRT
scoring rules were defined as follows:

〠
i

2RACCi − 1ð Þ MT − Tið Þ, ð1Þ

where i represented the total number of trials, indicating the
reaction accuracy of a single trial (RACC: 0 indicated

3Neural Plasticity

http://www.pstnet.com/eprime.cfm
http://www.pstnet.com/eprime.cfm


reaction error, 1 indicated correct response), and MT indi-
cated the maximum allowable reaction time for the i-th trial.
Ti indicated the latency of the reaction. The total SRT score
was the sum of each trial score. In other words, for the trial
of the correct response, the remaining time was added when
the total SRT score was calculated, and the remaining time
was subtracted for the incorrect reaction trial. Through the
above process, each subject received an SRT score.

2.5. Coherence Matrix Construction. The coherence of the
EEG signals reflected the correlation of the time domain sig-
nals of the two brain regions in different frequency bands.
The coherence function between the two signals a and b
was calculated as follows:

C2 fð Þ = Pab fð Þj j2
Paa fð ÞPbb fð Þ½ � , ð2Þ

where f was the frequency of the EEG signals; Paað f Þ and
Pbbð f Þ denoted the auto power spectrum of the signals a
and b, respectively; and jPabð f Þj represented the modulus
of the cross-power spectrum between the signals a and b. C
ð f Þwas the coherence coefficient, indicating the basic charac-
teristics of the EEG signal at the two electrodes (such as con-
sistency of the EEG amplitude, frequency, and phase). The
coherence coefficient ranged from 0 to 1. The coefficient
value with 0 indicated that the two signals a and b were abso-
lutely not synchronized; that is, they were completely inde-
pendent [22, 30]. The coherence coefficient equal to 1
meant that the two signals a and b were synchronized, and
the coherence coefficient with the value between 0 and 1
meant that there was partial coherence [22, 30].

Figure 1 shows the process flow of the coherence network
and the differential network based on a paired t-test. First, to
reduce the volume conductor effect to a minimum, 19 elec-
trodes were selected as nodes of the WM brain network.
Then, power spectral densities in theta (4-7Hz), alpha (8-
12Hz), and beta (13-30Hz) frequency bands were extracted
by using Welch’s method. After that, coherence was used to
measure the relationship between any two of the 19 elec-
trodes. In other words, the coherence coefficient represented
the strength of the relationship (i.e., functional connection)
between paired nodes and was taken to represent the edges
of the brain networks before and after WM training. The
coherence matrix was a 19 × 19 symmetric matrix. For the
coherence matrix of the full frequency band before and after
training, an appropriate threshold was selected for binariza-
tion. To obtain a differential matrix induced by WM training
in theta, alpha, and beta frequency bands, a paired t-test was
used to analyze statistically the corresponding elements (i.e.,
coherence values) in the coherence matrix of each subject
before and after the training. Finally, the statistical network
(binary network) before and after the WM training was
obtained to examine whether the subjects’ coherence coeffi-
cient between two nodes before and after training was signif-
icantly different (p < 0:05, FDR correction).

2.6. Network Properties. The graphic analysis was used to
construct the brain networks before and after WM training,

and the network topological properties were measured by
the optimal path length (Lp), clustering coefficient (CC), local
efficiency (Eloc), global efficiency (Eg), degree (Deg), and
small-world properties of the network [35–37]. The network
properties were defined as shown in Table 1 below.

3. Results

3.1. Behavioral Analysis. Figure 2 shows the behavioral anal-
ysis of the subjects before and after WM training. According
to the statistical results from a paired t-test, the average reac-
tion time in session 1 was significantly greater than that in
session 2 (t = 2:744, p < 0:05), while the response accuracy
(t = 2:716, p < 0:05) and SRT scores were significantly higher
in session 2 than session 1 (t = 4:750, p < 0:001).

3.2. Network Property Analysis. First, the appropriate thresh-
old was selected to binarize the coherence matrix before and
after training during the retention period of WM. To ensure
connectivity between the nodes of the WM brain networks,
the threshold selection principle was the maximum threshold
without isolated nodes. If the coherence coefficient value was
less than the given threshold, the binary matrix element was
0, indicating that the correlation or connection between the
two nodes was weak; that is, the information interaction
between the brain nodes was not frequent; if the coherence
coefficient value was greater than or equal to the given
threshold, the element of the matrix was 1, indicating that
the correlation or connection between the two electrode sig-
nals was strong; that is, the information interaction between
the brain nodes was close. Figure 3 illustrates the changes
in WM coherence network properties before and after
training.

In Figure 3(a), 16 out of 20 subjects’ optimal path lengths
in their WM brain coherence networks were obviously
shorter after training (session 2). Moreover, the statistical
result of the paired t-test showed that the optimal path
lengths in the WM networks between session 2 and session
1 were significantly different (t = 2:304, p < 0:05), and for
20 subjects, the averaged path length of the coherence net-
work in session 2 was shorter than that in session 1. As
shown in Figure 3(b), 15 out of 20 subjects’ global efficiencies
in their WM coherence networks in session 2 were lower
than those in session 1; the results of statistical tests revealed
that the global efficiencies in the WM networks between
session 2 and session 1 were significantly different (t =
1:515, p < 0:05), and the 20 subjects’ averaged global effi-
ciency in the WM networks in session 2 was higher than that
in session 1.

In Figure 3(c), 16 out of 20 subjects’ clustering coeffi-
cients of their WM networks increased after training (session
2); the result of a paired t-test showed that the clustering
coefficient of the delayed WM network between session 2
and session 1 was obviously different (t = 2:114, p < 0:05),
and the averaged clustering coefficient of 20 subjects’ WM
networks in session 2 was larger than that in session 1.
Figure 3(d) shows that 16 out of 20 subjects’ local efficiencies
of the WM networks in session 2 were higher than those in
session 1. The results of a paired t-test indicated that there
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was an obvious difference in the local efficiency of the delayed
coherence networks between session 2 and session 1
(t = 2:035, p < 0:05), and the 20 subjects’ averaged local effi-
ciency of WM networks in session 2 was greater than that
in session 1.

Figure 3(e) illustrates that 16 out of 20 subjects’ degrees of
WM networks in session 2 were higher than those in session
1; the results of a t-test showed that there was an obvious dif-
ference in the degree of WM networks between session 2 and
session 1 (t = 2:502, p < 0:05), and the 20 subjects’ averaged
degree of WM networks in session 2 was greater than that
in session 1. From Figure 3(f), it can be seen that the total
WM network of all 20 subjects had small-world properties

(σ≫ 1), and 17 out of 20 subjects’ WM network small-
world properties in session 2 were stronger than those in ses-
sion 1; the result of a paired t-test showed that there was an
obvious difference in the small-world properties of WM net-
works between session 2 and session 1 (t = 3:672, p < 0:05),
and the 20 subjects’ averaged small-world property in session
2 was stronger than that in session 1.

3.3. Difference Statistical Networks. The paired t-test was uti-
lized to obtain statistically the corresponding elements of the
coherence matrixes for the theta, alpha, and beta frequency
band oscillations before and after the training. That is, if
there was a significant difference in the coherence values of
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Figure 1: Construction process of coherence and differential networks.

Table 1: Brain network properties.

Measure Binary definition Meaning

Optimal path
length (Lp)

Lp = 1/N N − 1ð Þ〠
a,b∈V ,a≠bLab

Lp: optimal path length of the WM brain network
Lab: shortest path for information transfer between nodes a and b.

Through Lab, information can be transferred more quickly and effectively
V : collection of all the nodes in the WM network

N : number of network nodes

Global efficiency
(Eg)

Eg = 1/N N − 1ð Þ〠
a,b∈V ,a≠b 1/Labð Þ Eg: global efficiency; the extension of the optimal path length of networks.

Can measure the global information transmission capacity of networks

Clustering
coefficient (CC)

Ca = 2ea/ka ka − 1ð Þ
CC = 1/N∑a∈VCa

Ca: clustering coefficient of node a; describes the connectivity level between
node a and its neighbor nodes

Va: subgraph formed by all the neighbors of node a
ea: actual number of edges in the subgraph Va

CC: clustering coefficient of the network

Local efficiency
(Eloc)

Eloca = 1/NVa
NVa

− 1
� �

∑b,c∈Va ,c≠b 1/Lbcð Þ
Eloc = 1/N∑a∈VEloca

Eloca : local efficiency of node a represents the information exchange
ability after deleting node a in subgraph Va

Lbc: shortest path between nodes b and c in the subnetwork Va
Eloc: local efficiency of the network

Degree (Deg) Deg = 1/N〠
a∈VDega

Dega: degree of node a
Deg: degree of the network

Small-world
properties

γ = CCreal/CCrandom > 1
λ = Lp

real/Lprandom ≈ 1
σ = γ/λ

CCreal: clustering coefficient of the real network
CCrandom: clustering coefficient of the random network

Lp
real: optimal path length of the real network

Lp
random: optimal path length of the random network

σ: small-world properties; when σ is significantly larger than 1, the
network satisfies small-world properties
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20 subjects’WMnetworks between the two nodes before and
after WM training (p < 0:05, FDR correction), the corre-
sponding element of the statistical matrix was set to 1, and
if there was no significant difference, the element of the statis-
tical matrix was set to 0. Finally, the statistical (binary)
matrixes of theta, alpha, and beta frequency bands before
and after WM training were obtained; thereby, the differen-
tial networks of theta, alpha, and beta frequency bands were
acquired. Figures 4 and 5 show the coherence statistical
matrixes and differential networks of the theta, alpha, and
beta frequency band oscillations before and after the WM
training.

Based on graph theory analysis, we knew that a network
consisted of many nodes (or regions of interest) and edges
between paired nodes, among which some nodes played the
role of a central hub. If these nodes were destroyed, the entire
network would not be able to process and transmit informa-
tion correctly, so these nodes were considered to be hub
nodes of the network. The hub nodes reflected some of the
important brain regions in the structural or functional brain
network, interacting with functional brain regions to perform
cognitive tasks effectively [38].

Node degree and betweenness were the most com-
monly used methods to define the hub nodes of the differ-
ential networks before and after WM training [39]. The
present study utilized node degrees to define the hub
nodes of the differential networks before and after WM
training. Table 2 displays the node degrees of the 19 elec-
trodes of the differential networks before and after WM
training in the three frequency bands oscillations (theta,
alpha, and beta).

From the statistical results, for the differential network of
the theta frequency band oscillations, the F3, Fz, and F4 elec-
trodes were the hub nodes, with degrees of 10, 15, and 12,
respectively. For the differential network of the alpha fre-
quency band oscillations, the Fp2, P7, P3, Pz, P8, O1, and
O2 electrodes were the hub nodes, with degrees of 13, 11, 9,
8, 15, 12, and 12, respectively. For the beta frequency band
frequency differential network, the F3, F8, T7, C4, T8, P7,
and P3 electrodes were the hub nodes, with degrees of 8,
10, 8, 9, 7, 8, and 7, respectively.

4. Discussion

The behavioral results showed that the indexes (ACC, RT,
and SRT) of the online WM after training were significantly
higher than those before training. EEG analysis based on
the network level indicated that the online WM network
had higher clustering coefficients and shorter optimal path
lengths on the full frequency after training. For the theta net-
work, there was an increased synchronization among nodes
in the frontal region after training. For the alpha network,
the long-distance information interaction in the fronto-
occipital and frontoparietal lobes increased after training.
For the beta network, synchronization between frontoparie-
tal and temporoparietal mainly increased after training.
These results showed that both behavioral performance and
network function were improved by WM training.

4.1. Behavioral Performance during Online WM before and
after Training. The results of behavioral statistical analysis
in Figure 2 showed that the average response speed of the
subjects after training was faster and the average response
accuracy of the subjects after training was significantly
higher than those before training. Moreover, SRT was signif-
icantly higher than the pretraining behavioral scores, which
suggested the consistent conclusion that short-term WM
training could improve individual WM behavioral perfor-
mance [40–42].

4.2. Full Frequency Band Networks before and after Training.
In the present study, the relationship between two nodes of
the WM network was measured by EEG coherence, and the
different changes of network attributes before and after train-
ing were obtained by graph theory analysis (Figure 3).

The statistical results in Figures 3(a) and 3(b) revealed
there was a significant difference in the optimal path length
and global efficiency of the WM network before and after
training. That is, the optimal path length of the network after
training was lower than that before training, indicating that
the information transmission efficiency of the trained WM
network was more efficient. Global efficiency after training
was significantly higher than that before training, illustrating
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Figure 2: Behavioral analysis before and after WM training. Session 1: before training. Session 2: after training. Red star means significance
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the global information that the global information transmis-
sion capability was stronger. The statistical results in
Figures 3(c) and 3(d) confirmed that 20 subjects’ clustering
coefficients and local efficiencies were superior to those with-
out training, which presented the enhanced brain network
connectivity, the tighter information interaction between
network nodes, and the more intensive local information
transmission capability of trained WM networks. A denser
connection of the brain network and a shorter optimal path
length after training may ensure efficient processing and

transmission of WM information. From the statistics in
Figure 3(e), it can be noted that the node degree of the mem-
ory network after training was significantly larger than that of
the pretraining memory networks, which indicated that there
were more connections and more frequent information
interactions between nodes in the memory training net-
works. Figure 3(f) illustrates that both the trained and
untrained WM networks represented small-world character-
istics. That is, compared with a random network, the WM
brain networks during the retention period had a higher
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Figure 3: Analysis of WM network properties before and after training with each subject. Session 1: before training. Session 2: after training.
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clustering coefficient and a similar optimal path length. The
statistical results showed that the small-world properties (σ)
of the networks after training were stronger than those before
training, which indicated that the networks efficiently com-
pleted the processing and delivery of WM information at a
relatively low connection cost.

Previous studies have shown that resting-state networks
after WM training significantly reduced clustering coeffi-
cients and normalized the shortest path lengths [43]. This
was contrary to our conclusion in the task state, which sup-
ported the reduced shortest path length and the increased
clustering coefficient. The inconsistency may be due to the
spatial N-back experimental paradigm in the previous study
different from the digital delayed match paradigm in the
present study. One study showed that higher global network
integration and modularity predicted significantly better per-
formance in visual-spatial WM, while numerical WM was
superior in subjects with highly clustered brain networks
[44]. In the present study, the digital WM training was
adopted, and the higher local efficiency in the task execution
after the training further proved that the ability of digital
WM improved after training. Or it may be due to the differ-
ent brain network patterns between the resting and task
states. We focused on the changes of topological attributes
in the task state before and after the training rather than in
the resting state with multiple training.
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Figure 4: Coherence statistical matrix.

Theta Alpha Beta

Figure 5: Difference statistical networks. Red nodes represent the hub nodes. Blue nodes represent the nonhub nodes. Node size reflects the
degree.

Table 2: Node degrees of the differential networks.

Node degree Theta Alpha Beta

Fp1 7 1 5

Fp2 6 13 4

F7 1 6 4

F3 10 7 8

Fz 15 7 4

F4 12 4 5

F8 4 3 10

T7 5 4 8

C3 5 6 6

Cz 2 6 4

C4 2 7 9

T8 5 1 7

P7 4 11 8

P3 4 9 7

Pz 6 8 5

P4 2 3 6

P8 5 15 5

O1 2 12 1

O2 3 12 2
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4.3. Three Frequency Band Differential Networks before and
after Training. From the discussion above, individual WM
may be improved by training. On the whole, the properties
of trained WM networks were superior to the network prop-
erties of untrained WM networks, suggesting that individual
WM was plastic.

A previous study has shown that different frequency
band oscillations involved information exchange and cogni-
tive processing between brain regions [45]. Memory was
thought to depend mainly on the degree of synchronization
between neurons, which was particularly important in WM.
Typically, alpha, beta, and theta oscillations were involved
in memory processes. To explore the dynamical changes on
the brain network by WM training, the present study con-
structed the differential matrixes (Figure 4) and the differen-
tial networks (Figure 5) of theta, alpha, and beta frequency
bands before and after training based on the retention period
during online WM.

Consistent with the previous report [46, 47], our results
showed that the frontal theta enhancement was observed in
the onlineWM after training (Figure 5). The synchronization
of theta oscillations helped coordinate neural communica-
tion between multiple brain regions, which was beneficial to
maintain short-term memory. For the theta network in the
present study, the node degrees at the F3, Fz, and F4 elec-
trodes increased after WM training, pointing to increased
coherence between frontal nodes and occipital-parietal nodes
under the theta frequency band after WM training. The
previous studies based on the region levels found the theta
frequency band to be enhanced in the different regions. For
example, the previous study suggested that the theta oscilla-
tions in parietal coupling were a marker of central executive
function in WM [22, 48]. In addition, prioritizing of infor-
mation in WM was associated with theta oscillations in the
lateral prefrontal cortex [49]. The frontal theta enhancement
was primarily evident in high performers on the order WM
task. In elucidating the role of the theta frequency band in
WMmaintenance, Tóth et al. suggested that the theta oscilla-
tions in the midfrontal were a possible basis for the active
maintenance process particularly susceptible to the effects
of aging [50]. In general, it was widely accepted that the fron-
tal theta oscillations were mainly related to the executive
function of WM [51–53]. Some studies speculated that the
prefrontal theta activity seemed to reflect general task
requirements, such as attention resource deployment during
WM [54]. However, the disagreement could be due to the fact
that related research studies are limited on the regional level.
Thus, the present results based on the whole-brain network
level suggested that the increased synchronization of the
frontal theta oscillations in the retention period seemed to
reflect the enhanced executive ability of WM by training
and the more mature resource deployment after training.

For the alpha network, the size of node degrees at the
frontal (Fp2), parietal (P7, P3, Pz, and P8), and occipital
(O1 and O2) electrodes was significantly bigger after training
than that before training, indicating increased coherence
between paired nodes in the fronto-occipital network under
the alpha frequency band after WM training. Moreover, it
also involved the long-range integration of “top-down” infor-

mation processing between the frontoparietal brain regions.
This was in line with previous research. Previous research
found that alpha oscillations have also been shown to be par-
ticularly important in top-down visual processing and visual
attention [55]. In an experiment investigating imaginary
instrumental performance, researchers discovered that the
characteristic coherence mode of the alpha frequency band
mainly involved the activation of “top-down” information
processing. Here, the input to the sensory region came from
multiple cortical areas. Thus, top-down information process-
ing could be considered a distillation of all transient activa-
tion in the cortex, where a guide to future actions was
generated for the selection of new sensory inputs [45]. In
addition, alpha oscillations in the occipital-parietal cortex
were associated with suppression-independent information
[56, 57], and the enhanced alpha oscillations were associated
with suppression of sensory field inputs to protect internal
attention from external interference during the WM reten-
tion period [58]. Therefore, the increased alpha oscillatory
synchronization in the frontoparietal and fronto-occipital
regions by training in the present study may reflect the
enhanced ability to suppress irrelevant information during
the delay and pay attention to memory guidance after
training.

We found that the node degrees of the beta network at
the frontal (F3, F8), temporal (T7, C4, and T8), and pari-
etal (P3, P7) electrodes were significantly increased by
WM training, indicating increased coherence between
paired nodes in the temporoparietal and frontoparietal
regions under the beta frequency band after WM training.
Stein et al. reported that the synchronization between the
temporal and parietal regions of the lower-beta frequency
band increased during multimodal semantic processing.
And their results found synchronized activation in the
frontal and posterior parietal cortex during the WM reten-
tion period [59]. Moreover, Daume et al. proposed the
enhanced beta oscillatory synchronization from the medial
temporal lobe (MTL) to the temporal-occipital visual
region during the WM retention period [60]. Their results
were consistent with our findings based on the whole-
brain network level. Earlier studies linked the beta oscilla-
tory synchronization between the temporal-occipital
regions with the WM retention period [61]. As long as
the current cognitive state was maintained, the beta oscil-
latory synchronization could be improved [62]. Further
research suggested that the effect of the beta oscillatory
synchronization between the MTL and the postaudiovisual
region (including the superior temporal sulcus (STS) and
lateral occipital complex (LOC)) emphasized beta oscilla-
tions as a central role in maintaining visual object repre-
sentation in the ventral flow [60]. More than that, higher
beta power was associated with longer memory duration
[63]. In addition, previous studies reported an intimate
causal relationship between prefrontal beta oscillatory
desynchronization and memory formation [64]. Therefore,
the enhanced beta oscillations in the temporoparietal and
frontoparietal regions after training may indicate active
memory maintenance and preparation for memory-
guided attention during the WM retention period.
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5. Conclusion

The present study combined EEG coherence and graph the-
ory analysis and examined the topological changes by WM
training based on the whole-brain network. We have pro-
vided a new concept of oscillatory activities to understand
WM training during the retention period of onlineWM from
the perspective of the whole-brain network. Overall, fre-
quency band oscillatory synchronization was related to the
specific cognitive mechanism during the retention period.
Future work can explore whether more effective training
effects can be obtained by adjusting frequency band oscilla-
tory synchronization in WM training.
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