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Abstract: Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients
with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung ep-
ithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of
the epithelial Na+ channel (ENaC), TGFβ signaling and the biosynthesis of surfactant protein-C
proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the
lung phenotype remains limited. In this study, we therefore determined the effects of congenital
deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic
Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology,
inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found
that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice
that shares key features with interstitial lung diseases in children (chILD), including hypoxemia,
growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital
deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging
of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital
deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies
for chILD.
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1. Introduction

Nedd4-2 is an E3 ubiquitin-protein ligase that participates in the posttranscriptional
regulation of several proteins including ENaC, Smad2/3 and proSP-C, which play key
roles in multiple cellular processes such as epithelial ion and fluid transport, TGFβ sig-
naling and surfactant biogenesis that are essential for epithelial homeostasis and lung
health [1–8]. In a previous study, we found that NEDD4-2 is reduced in the lung tissue of
patients with idiopathic pulmonary fibrosis (IPF) [9]. Further, we demonstrated that the
conditional deletion of Nedd4-2 in lung epithelial cells by doxycycline induction of adult
Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, hereafter referred to as conditional Nedd4-2−/− mice,
causes a chronic progressive, restrictive lung disease that shares key features with IPF in
patients including signature lesions such as radiological and histological honeycombing
and fibroblast foci [9]. These studies also identified the dysregulation of (i) ENaC, leading to
airway surface liquid depletion and reduced mucociliary clearance; (ii) proSP-C biogenesis
and (iii) TGFβ/Smad signaling, promoting fibrotic remodeling as epithelial defects and
potential mechanisms triggering IPF-like disease in adult conditional Nedd4-2−/− mice [9].

Compared to the detailed characterization of the functional consequences and re-
sulting pulmonary phenotype produced by the conditional deletion of Nedd4-2 in the
lung epithelial cells of adult mice [9], current knowledge on the impact of the congenital
deletion of Nedd4-2 on the lung phenotype in neonatal mice remains limited. A mouse
line with constitutive systemic deletion of Nedd4-2 demonstrated that the majority of mice
lacking Nedd4-2 died during or shortly after birth and that survivors developed substantial
neutrophilic inflammation in the lungs at the age of 3 weeks [10]. Subsequent studies in
mice with constitutive lung-specific deletion of Nedd4-2 using a “leaky” Nedd4-2fl/fl/Sftpc-
rtTA/Cre triple transgenic system under the control of the surfactant protein C (Sftpc)
promoter showed massive neutrophilic inflammation, aspects of cystic fibrosis-like lung
disease and premature death 3–4 weeks after birth [11]. However, the lung phenotype of
neonatal Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC-1 mice, facilitating “tight” deletion of Nedd4-2 in
alveolar type 2 (AT2) cells as well as club cells of the conducting airways under control of
the club cells 10 kDa secretory protein (CCSP) [12] promoter, has not been studied.

The aim of the present study was therefore to determine the effects of congenital
deletion of Nedd4-2 in lung epithelial cells of neonatal Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC-1
mice, hereafter referred to as congenital Nedd4-2−/− mice. Using physiologic, histopatho-
logic, inflammatory and microbiological endpoints, we focused on the clinical phenotype
including survival, lung morphology, inflammation markers in BAL, mucin (Muc5b and
Muc5ac) expression in whole lung and airway mucus content, ENaC-mediated Na+ trans-
port in freshly excised tissues of the conducting airways and proSP-C trafficking in AT2
cells to provide a comprehensive characterization of the lung phenotype of congenital
Nedd4-2−/− mice, and to elucidate the impact of epithelial defects identified in adult condi-
tional Nedd4-2−/− mice in the neonatal lung. The results of this study validate a new mouse
model that shares key aspects of interstitial lung diseases in children (chILD), and thus
offers new opportunities for studies of the pathogenesis and therapy of these childhood
lung diseases with high unmet need [13].

2. Results
2.1. Congenital Deletion of Nedd4-2 in Lung Epithelial Cells Causes Severe Hypoxemia, Failure to
Thrive and Early Mortality in Neonatal Mice

To determine the effect of the congenital deletion of Nedd4-2 in epithelial cells of the
neonatal mouse lung, we crossed mice carrying Nedd4-2 flanked by loxP sites (Nedd4-2fl/fl)
with CCSP-rtTA2S-M2S/LC1 mice to enable tight doxycycline-dependent Cre expression
for the targeted deletion of Nedd4-2 in club cells of the conducting airways and AT2 cells
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of the lung [9,12]. Dams were continuously fed with doxycycline from the first day of
mating to obtain triple transgenic congenital Nedd4-2−/− mice. At 10 days after birth, before
the onset of clinical signs of lung disease, body weight did not differ between congenital
Nedd4 2−/− mice (5.4 ± 0.08 g) vs. littermate controls (5.3 ± 0.11 g). Around 3 weeks after
birth, congenital Nedd4-2−/− mice showed clinical symptoms of respiratory distress with
severe hypoxemia (Figure 1a), weight loss (Figure 1b) and ~95% mortality within 4 weeks
after birth (Figure 1c).
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Figure 1. Congenital deletion of Nedd4-2 in lung epithelial cells causes severe hypoxemia, failure to
thrive and high mortality in neonatal mice: (a,b) Oxygen saturation (a) and body weight (b) measured
in 3-week-old mice. n = 4–13 mice per group. ** p < 0.01, *** p < 0.001. (c) Survival curve of congenital
Nedd4-2−/− and control mice. n = 18–27 mice per group. * p < 0.05. Data are shown as mean ± S.E.M.

2.2. Congenital Deletion of Nedd4-2 in Lung Epithelial Cells Causes Alveolar Inflammation and
Fibrosis in Neonatal Mice

Microscopically, hematoxylin- and eosin (H&E) stained lung sections from 10-day-
old congenital Nedd4-2−/− mice did not show abnormalities compared to littermate con-
trols (Figure 2a), whereas lung sections from 3-week-old congenital Nedd4-2−/− mice dis-
played patchy inflammatory infiltrates, especially in the periphery of the lung (Figure 2b).
These same regions also showed evidence of epithelial hyperplasia and alveolitis, with
large foamy macrophages and granulocytes infiltrating the alveolar airspaces in the affected
areas (Figure 2b). Masson-Goldner-Trichrome staining of lung sections of 3-week-old con-
genital Nedd4-2−/− mice showed substantial collagen deposition in affected lung regions
(Figure 2c). The use of multiple control lines established that the observed phenotype
was not caused by off-target effects of rtTA, Cre recombinase or doxycycline and that the
expression system was tight in the absence of doxycycline (Figure A1, Appendix A).

2.3. Development of Pneumonitis in Congenital Nedd4-2−/− Mice

BAL studies demonstrated that the histological pneumonitis observed in congenital
Nedd4-2−/− mice was accompanied by a dynamic polycellular inflammatory cell influx,
as well as a mixed proinflammatory cytokine response. Assaying the BAL of 10-day-old
and 3-week-old congenital Nedd4-2−/− mice revealed that the congenital deletion of Nedd4-
2−/− produced an early (10 days) increase in the number of macrophages that demonstrated
morphologic features of activation, including irregular shape, vacuolized cytoplasm and
increased size, which was accompanied by increased acitiviy of matrix-metalloproteinase
12 (Mmp12) on the cell surface (Figure 3a–d), as previously described in Scnn1b-Tg mice
with muco-obstructive lung disease [14,15]. Inflammatory parameters further increased
by the age of 3 weeks, with elevated numbers of neutrophils and eosinophils (Figure 3e,f),
as well as increased concentrations of KC, IL-13 and IL-1β (Figure 3g–i).
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Figure 2. Congenital deletion of Nedd4-2 in lung epithelial cells causes alveolar inflammation and
fibrosis in neonatal mice: (a,b) Representative micrographs of H&E stained lung sections of 10-day-
old (a) and 3-week-old (b) congenital Nedd4-2−/− and control mice. Scale bars, 1 mm (left column),
100 µm (middle column) and 15 µm (right column). (c) Masson-Goldner-Trichrome stained lung
sections of 3-week-old congenital Nedd4-2−/− and control mice. Scale bars, 100 µm (left column) and
50 µm (right column). n = 7–10 mice per group.
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Figure 3. Development of pneumonitis in neonatal mice with congenital deletion of Nedd4-2: (a) Rep-
resentative micrographs of BAL macrophages in 3-week-old congenital Nedd4-2−/− and control
mice. Scale bars, 20 µm. (b,c) Number (b) and size (c) of macrophages in BAL. (d) Quantification
of Mmp12 activity on the surface of BAL macrophages using the membrane-bound FRET reporter
Laree1. Mmp12 activity was determined from the donor to acceptor (D/A) ratio of fluorescence
emission produced by Mmp12-mediated cleavage of Laree1. Data were normalized to age-matched
control mice. (e,f) Number of neutrophils (e) and eosinophils (f) in BAL of 10-day and 3-week-old
congenital Nedd4-2−/− and control mice. (g–i) Concentrations of IL-1β (g), KC (h) and IL-13 (i) in
BAL supernatant of 10-day and 3-week-old congenital Nedd4-2−/− and control mice. n = 4–27 animals
per group. * p < 0.05, ** p < 0.01, *** p < 0.001. Data are shown as mean ± S.E.M.
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The observed inflammation in congenital Nedd4-2−/− mice was not attributable to
bacterial infection. Microbiological surveys of BAL of 3-week-old congenital Nedd4-2−/−

mice and littermate controls using bacterial cultures (Figure 4a,b), as well as 16S rRNA
PCR (Figure 4c), did not show any evidence of bacterial infection.
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Figure 4. Bacterial species detected in BAL by bacterial culture and 16S rRNA quantitative PCR
in neonatal mice with congenital deletion of Nedd4-2 and littermate controls: (a) Individual colony
forming units (CFUs) for bacterial species cultured from BAL of 3-week-old congenital Nedd4-2−/−

mice and littermate controls. Each dot represents the result obtained from an individual mouse.
(b) Summary of all CFUs in BAL of 3-week-old Nedd4-2−/− mice and littermate controls. (c) Bacterial
load determined by 16S rRNA analysis in BAL. n = 10–25 mice per group. Data are shown as
mean ± S.E.M.

2.4. Congenital Deletion of Nedd4-2 in Lung Epithelial Cells Causes Mucus Plugging and
Epithelial Necrosis in Distal and Terminal Airways in Neonatal Mice

Previous studies in adult mice with conditional deletion of Nedd4-2 identified epithelial
remodeling of the distal airways with increased numbers of mucin-producing goblet cells,
expression of Muc5b and impaired mucociliary clearance as key features of IPF-like lung
disease in this model [9]. We therefore determined expression of the secreted mucins Muc5b
and Muc5ac and mucus content in lungs of congenital Nedd4-2−/− mice. Transcript levels of
Muc5b and Muc5ac were increased in the lungs of 3-week-old congenital Nedd4-2−/− mice
compared to controls (Figure 5a,b). Alcian blue-periodic acid–Schiff (AB-PAS) staining
of lung sections showed goblet cell metaplasia and mucus plugging in the distal and
terminal airways of 3-week-old congenital Nedd4-2−/− mice, especially in regions with
a high grade of inflammation and fibrosis (Figure 5c), but not in age-matched littermate
controls. Previous studies in Scnn1b-Tg mice and patients with muco-obstructive lung
disease demonstrated that airway mucus plugging, probably via local hypoxia in the
airway lumen, led to hypoxic degeneration and necrosis of airway epithelial cells [16–19].
Similarly, we found increased numbers of degenerative cells in the mucus-obstructed
distal and terminal airways, especially in inflamed and fibrotic lung regions of 3-week-old
congenital Nedd4-2−/− mice (Figure 5d,e).

2.5. Increased ENaC Activity in Freshly Excised Airway Tissues of Congenital Nedd4-2−/− Mice

Nedd4-2 was shown to regulate cell surface expression of ENaC [4,20], and our
previous studies demonstrated that a lack of Nedd4-2 caused increased ENaC function,
which led to airway surface liquid depletion and impaired mucociliary clearance in adult
conditional Nedd4-2−/− mice [9]. To investigate the effects of the congenital deletion of
Nedd4-2 on ENaC activity, we performed bioelectric Ussing chamber experiments in
freshly excised tracheal tissue from 10-day-old neonatal mice. At postnatal day 10, i.e.,
prior to detectable histological changes, the ENaC-mediated amiloride-sensitive short
circuit current (ISC) was significantly increased in congenital Nedd4-2−/− mice compared
to littermate controls (Figure 6a,b), supporting a role of increased ENaC acitvity in the
patohphysiology of the observed phenotype.
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Figure 6. Increased ENaC activity in congenital Nedd4-2−/− mice: (a) Representative Ussing chamber
recordings of the effect of amiloride (Amil) on transepithelial voltage (Vte) and resistance (Rte) of
freshly excised tracheal tissues from a 10-day-old congenital Nedd4-2−/− mouse and a littermate
control. (b) Summary of amiloride-sensitive short circuit current (ISC) across freshly excised airway
tissues of 10-day-old congenital Nedd4-2−/− and control mice. n = 12–43 mice per group. ** p < 0.01.
Data are shown as mean ± S.E.M.

2.6. proSP-C Is Mistrafficked in Lung Epithelial Cells of Congenital Nedd4-2−/− Mice

Nedd4-2 was also shown to play a role in the posttranslational regulation of SP-C
expressed in AT2 cells, and previous studies found mutations in the SFTPC gene in as-
sociation with the development of ILD both in children (chILD) and in familial IPF in
adults [21–26]. In our previous studies, we found that a lack of Nedd4-2 causes mistraf-
ficking of proSP-C, but that this defect did not play a dominant role in determining the
IPF-like lung phenotype produced by the conditional deletion of Nedd4-2 in adult mice [9].
To determine the impact of proSP-C mistrafficking due to lack of Nedd4-2 in the neonatal
lung, we performed biochemical studies and investigated the effect of the genetic deletion
of Sftpc in congenital Nedd4-2−/− mice.
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Using double label fluorescence immunohistochemistry for proSP-C and Lamp-1, we
found that, in 3-week-old neonatal control mice, the subcellular distribution of proSP-C
was predominantly found in Lamp-1 positive lamellar bodies. In the lungs of 3-week-
old congenital Nedd4-2−/− mice, similar to our findings in adult conditional Nedd4-2−/−

mice [9], a significant proportion of proSP-C expression shifts to Lamp-1 negative cy-
tosolic compartments (Figure 7a). The mistrafficking of proSP-C was accompanied by
marked changes in its posttranslational processing. Western blots of proSP-C from lung
homogenates of 3-week-old mice revealed a 21–22 kDa proSP-C doublet in control mice
while, in congenital Nedd4-2−/− mice, the primary translation product doublet shifts to a
single band, accompanied by the appearance of a new intermediate around 16 or 17 kDa
(Figure 7b). In BAL, Western blotting revealed a reduction in mature SP-C in 3-week-old
congenital Nedd4-2−/− mice compared to littermate controls (Figure 7c). Despite a major
impact on SP-C biosynthesis, other components of the surfactant system, such as surfactant
protein B and D (SP-B and SP-D), were largely unaffected (Figure 7b).
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Figure 7. Evidence of proSP-C mistrafficking in lung epithelial cells of congenital Nedd4-2−/− mice:
(a) Representative confocal images of double label fluorescence immunohistochemistry for proSP-C
(green) and Lamp-1 (red). (b) Western blots for proSP-C, SP-B and SP-D from lung homogenates of
3-week-old congenital Nedd4-2−/− and control mice. (c) Western blots for mature SP-C in BAL of
3-week-old congenital Nedd4-2−/− and control mice. (d) Survival curve of congenital Nedd4-2−/−,
congenital Nedd4-2−/−/Sftpc−/−, littermate Sftpc−/− and control mice. n = 9–32 mice per group.
* p < 0.05. (e–g) Number of macrophages (e), neutrophils (f) and eosinophils (g) in BAL of 3-week-old
congenital Nedd4-2−/−, congenital Nedd4-2−/−/Sftpc−/−, littermate Sftpc−/− and control mice. n = 7–9
mice per group. * p < 0.05, ** p < 0.01. Data are shown as mean ± S.E.M.
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Despite in vivo confirmation of the previously described role for NEDD4-2 in SFTPC
biosynthesis [1,2], and similar to our previous studies in adult conditional Nedd4-2−/−

mice [9], we found that proSP-C mistrafficking alone was insufficient to drive the ab-
normal lung phenotype found in neonatal mice with the congenital deletion of Nedd4-2.
When Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice were crossed with Sftpc-deficient (Sftpc−/−)
mice and induced in utero with doxycycline, the genetic deletion of Sftpc in quadruple
transgenic mice had no effect on survival (Figure 7d), the number of BAL macrophages
(Figure 7e), neutrophils (Figure 7f), eosinophils (Figure 7g) or on structural lung disease
(data not shown) compared to triple transgenic congenital Nedd4-2−/− mice. These data
are consistent with our previous results in adult conditional Nedd4-2−/− mice, and imply
that congenital Nedd4-2 deficiency imparts a toxic effect that is not attributable to a single
protein but more likely caused by pleiotropic effects on AT2 cell homeostasis.

3. Discussion

This study demonstrates that the congenital deletion of Nedd4-2 in lung epithelial cells
causes a spontaneous and rapidly progressive lung disease in neonatal mice that shares
key clinical and histopathological features of interstitial lung diseases in children (chILD),
and thereby extends recent reports on the E3 ubiquitin ligase NEDD4-2 in the pathogenesis
of ILD [9]. These features include respiratory distress, hypoxemia, growth failure, sterile
alveolitis, patchy fibrotic remodeling of the alveolar airspaces and high neonatal mortality
(Figures 1–4) [27,28]. Similar to conditional deletion in adult mice [9], we found that
the congenital deletion of Nedd4-2 results in increased expression of the mucins Muc5b
and Muc5ac and a remodeling of the distal airways including goblet cell metaplasia in
congenital Nedd4-2−/− mice (Figure 5). In addition, epithelial defects previously reported in
adult conditional Nedd4-2−/− mice, such as increased ENaC-mediated Na+/fluid transport
and abnormal proSPC trafficking, were confirmed in the lungs of neonatal congenital
Nedd4-2−/− mice (Figures 6 and 7) [9]. Taken together, these results demonstrate that Nedd4-
2 in lung epithelial cells plays an important role in normal lung development, provide
additional evidence for its importance in lung health and have established a mouse model
of chILD, comprising a spectrum of lung diseases in children with high unmet need.

Besides the important similarities of pulmonary phenotypes caused by the congenital
vs. the conditional deletion of Nedd4-2 in the murine lung, including restrictive lung
disease with patchy fibrotic remodeling of distal airspaces due to dysregulated Smad2/3
signaling, leading to increased levels of TGFβ, remodeling of distal airways with goblet
cell metaplasia and increased expression of Muc5b, as well as high pulmonary mortality
(Figures 1, 2 and 5) [9,29], our study also revealed some striking age-dependent differences.
First, the onset and progression of ILD was substantially accelerated in congenital vs. con-
ditional Nedd4-2−/− mice, as evidenced by the time point of mortality that occurred within
~4 weeks after birth in most neonatal congenital Nedd4-2−/− mice compared to ~4 months
after conditional deletion of Nedd4-2−/− in adult mice (Figure 1) [9]. Second, alveolitis with
inflammatory cell infiltrates, including morphologically activated “foamy” macrophages,
neutrophils and eosinophils associated with elevated pro-inflammatory cytokines such
as IL-1β, KC and IL-13 in BAL, was substantially more prominent in neonatal congenital
Nedd4-2−/− compared to conditional Nedd4-2−/− mice (Figure 3) [9]. Third, histopathologic
studies of the lungs of congenital Nedd4-2−/− mice revealed mucus plugging of the dis-
tal airways that was associated with hypoxic epithelial necrosis (Figure 5), a phenotype
that was previously reported in neonatal Scnn1b-Tg mice with muco-obstructive lung
disease [16–19], but not observed in adult conditional Nedd4-2−/− mice [9].

Based on these findings, we studied the role of pro-SPC trafficking in AT2 cells and
ENaC-mediated Na+ transport across freshly excised airway tissues of neonatal congenital
Nedd4-2−/− mice, i.e., epithelial cell functions that we previously found to be abnormal
in adult conditional Nedd4-2−/− mice, as a potential explanation for these age-dependent
differences in lung phenotypes. Using a variety of techniques, our data provide evidence
of defective proSP-C trafficking, maturation and secretion in this neonatal model (Figure 7),
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which parallels findings we reported in adult conditional Nedd4-2−/− mice [9]. However,
similar to adult conditional Nedd4-2−/− mice, the genetic deletion of Sftpc was insufficient
to rescue the lung disease phenotype in congenital Nedd4-2−/− mice (Figure 7) [9]. Thus,
the effect size of neither misprocessed proSP-C nor loss of mature SP-C in surfactant is
sufficient to drive the ILD phenotype and explain the age-dependent differences observed
in neonatal congenital vs. adult conditional Nedd4-2−/− mice.

Similar to previous studies in adult conditional Nedd4-2−/− mice [9], we show that
congenital deletion of Nedd4-2 produces increased ENaC activity in airway epithelial cells
of neonatal mice (Figure 6). In adult conditional Nedd4-2−/− mice, we demonstrated that
increased ENaC-mediated Na+/fluid absorption across airway epithelia, as previously
shown in patients with cystic fibrosis and Scnn1b-Tg mice [6,30–33], results in airway
surface liquid depletion and impaired mucociliary clearance [9]. As mucociliary clearance
is an important innate defense mechanism of the lung, and retention of inhaled irritants
and pathogens leads to repeated micro-injury and chronic inflammation, our data support
mucociliary dysfunction as an important disease mechanism triggering ILD in both congen-
ital and adult conditional Nedd4-2−/− mice [9,32,34,35]. Of note, this concept is consistent
with studies in Muc5b-overexpressing mice that exhibit impaired mucociliary clearance
and develop more severe bleomycin-induced pulmonary fibrosis [36]. The importance
of dysregulated ENaC activity in the pathogenesis of ILD in congenital Nedd4-2−/− mice
is also supported by the observation that this epithelial ion transport defect was already
present in 10-day-old mice with normal lung morphology, i.e., prior to the onset of his-
tological signs of ILD (Figure 2), as well as previous studies in Nedd4-2fl/fl/Sftpc-rtTA/Cre
mice with the constitutive deletion of Nedd4-2 under control of the SP-C promoter [11]
and mice with the constitutive overexpression of the α and β subunits of ENaC in the
lung [37]. In both models, increased ENaC activity in the distal lung was associated with
severe pulmonary inflammation, mucus obstruction of distal airways and high neonatal
mortality [11,37]. Taken together, these data support increased ENaC activity leading to
airway/alveolar surface liquid depletion and mucociliary dysfunction in distal airways as
a key pathogenetic mechanism of ILD in congenital Nedd4-2−/− mice.

Interestingly, a previous study in fetal distal lung epithelial cells of wild-type rats
found that the male sex is associated with reduced ENaC-mediated Na+ transport [38].
Our study included all newborns from each litter, resulting in a balanced distribution
of male and female neonates that enabled an exploratory analysis of potential gender
differences. Similar to previous studies in rat lung epithelia [38], we observed a ~30%
reduction in ENaC-mediated Na+ absorption in male vs. female mice in the control group,
as well as the congenital Nedd4-2−/− group (data not shown). However, this gender
difference in ENaC function did not reach statistical significance based on the number of
mice available for our study. Similar, other pulmonary phenotypes of neonatal congenital
Nedd4-2−/− mice including hypoxemia, growth failure, pulmonary inflammation, mucin
expression, epithelial cell necrosis, abnormal proSP-C trafficking and mortality did not
differ between male vs. female mice. However, our study was not powered to detect
gender differences, and future studies are necessary to determine the potential role of
gender differences in ENaC-mediated Na+ absorption in the pathogenesis of lung disease
in congenital Nedd4-2−/− mice.

Several factors may explain the age-specific differences in pulmonary phenotypes
produced by deletion of Nedd4-2 in neonatal vs. adult mice. First, the accelerated onset and
increased severity of pulmonary inflammation observed in congenital Nedd4-2−/− mice
may be explained by an increased susceptibility of the neonatal lung to the retention of
inhaled irritants, as previously shown for cigarette smoke exposure in Scnn1b-Tg mice with
muco-obstructive lung disease [39]. Second, in congenital Nedd4-2−/− mice, we found that
increased ENaC activity leading to mucociliary dysfunction, probably due to a smaller
diameter of neonatal vs. adult airways, is associated with mucus plugging and hypoxic
epithelial cell necrosis of the distal airways (Figure 5), whereas this phenotype was not
observed in conditional Nedd4-2−/− mice [9]. As hypoxic epithelial cell necrosis in mucus-
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obstructed airways has been identified as a strong trigger of sterile inflammation via
triggering the pro-inflammatory IL-1 signaling pathway in the absence of bacterial infection
in Scnn1b-Tg mice, and patients with muco-obstructive lung diseases such as cystic fibrosis
and chronic obstructive pulmonary disease [16,40–42], this mechanism may also contribute
to the more severe inflammatory phenotype caused by the congenital deletion of Nedd4-2
in the neonatal lung. Finally, the differences in the onset and progression of ILD in
congenital vs. conditional Nedd4-2−/− mice may be explained by age-dependent differences
in the temporal and spatial activity of the CCSP promoter observed in previous studies of
the CCSP-rtTA2S-M2 activator line that was used for inducible lung-specific deletion of
Nedd4-2 [9,12]. These studies demonstrated a broader expression of the reverse tetracycline
transactivator rtTA2S-M2 in AT2 cells, as well as club cells throughout the conducting
airways of the neonatal lung whereas, in adult mice rtTA2S-M2 expression was more
restricted to AT2 cells and club cells of the distal airways [12]. In addition, a previous study
demonstrated age-dependent activity of the CCSP promoter, with the highest levels around
birth and decreasing activity in older mice [43]. These temporal and spatial differences
are expected to result in a faster and more widespread deletion of Nedd4-2 in the neonatal
vs. adult lung that may aggravate increased ENaC activity and mucociliary dysfunction,
increased pro-fibrotic TGFβ signaling and potentially other pathogenic processes induced
by Nedd4-2 deficiency [1–3,8–11,44–49]; therefore, they might also contribute to the more
rapid onset and progression of ILD in congenital vs. conditional Nedd4-2−/− mice.

Previous studies demonstrated that systemic deletion of Nedd4-2 leads to perinatal
lethality in mice and loss-of-function variants of NEDD4-2 have not been described in
humans [10]. In our study, targeted in utero deletion of Nedd4-2 in lung epithelial cells
did not cause perinatal morbidity or mortality, as evidenced by a normal distribution of
genotypes and as expected from Mendelian ratios, normal development and weight gain,
as well as a lack of respiratory symptoms in the the first 10 days of life (Figures 2, 3 and A2).
However, our data demonstrate that the congenital deletion of Nedd4-2 in the lung leads
to an early onset and rapid progression of ILD beyond the perinatal period (Figures 1–3).
In our previous study, we found that NEDD4-2 protein and transcript levels were reduced
in lung tissue biopsies from IPF patients, supporting the role of NEDD4-2 dysfunction in
human ILD [9]. Based on these findings in adult IPF patients, we speculate that NEDD4-2
deficiency may also be implicated in the pathogenesis of chILD. However, future studies
are necessary to test this hypothesis and determine mechanisms of lung-specific NEDD4-2
deficiency that may be caused, e.g., by transcriptional, post-transcriptional or epigenetic
regulation of NEDD4-2 in the lung.

In summary, our results demonstrate that the congenital deletion of Nedd4-2 in lung
epithelial cells causes severe ILD in neonatal mice that shares key features with interstitial
lung diseases in children (chILD), including respiratory distress, hypoxemia, growth failure,
sterile alveolitis, progressive fibrotic remodeling of the lung parenchyma and high mortality.
These data further substantiate an important role of Nedd4-2 in normal lung development
and lung health, and have established a mouse model of chILD that may serve as a useful
tool for studies of the complex in vivo pathogenesis, the identification of biomarkers and
therapeutic targets, as well as preclinical evaluations of novel therapeutic strategies that
are urgently needed to improve the clinical outcome of patients with chILD [13].

4. Materials and Methods
4.1. Experimental Animals

All animal studies were approved by the animal welfare authority responsible for the
University of Heidelberg (Regierungspräsidium Karlsruhe, Karlsruhe, Germany). Mice
for congenital deletion of Nedd4-2 in lung epithelial cells were generated as previously
described [9]. In brief, mice carrying Nedd4-2fl/fl [11] were intercrossed with CCSP-rtTA2S-
M2 line 38 (CCSP-rtTA2S-M2) [12] and LC1 mice [50,51]. All three lines were on a C57BL6/N
background. Sftpc−/− mice [52] were obtained on a 129S6 background. Mice were housed in
a specific pathogen-free animal facility and had free access to food and water. For prenatal



Int. J. Mol. Sci. 2021, 22, 6146 12 of 18

induction, dams were treated continuously with doxycycline from the first day of mating
and mice were studied at 10 days and 3 weeks of age. All newborn mice of a litter
were included in our study, irrespective of gender and genotype, yielding a balanced
gender distribution in the control groups and congenital Nedd4-2−/− groups. Details on the
genotype distribution are provided in Figure A2, Appendix A.

4.2. Measurement of Inflammatory Markers in BAL

BAL was performed and differential cell counts and macrophage sizes were deter-
mined as previously described [17]. Concentrations of KC (CXCL-1) and IL-13 were
measured in cell-free BAL supernatant and IL-1β was measured in total lung homogenates
by ELISA (R&D Systems, Minneapolis, MN, USA) according to manufacturer’s instructions.
Mmp12 acitivity on the surface of BAL macrophages was assessed by a Foerster resonance
energy transfer (FRET) based activity assay as previously described [14]. In brief, BAL cells
were incubated for 10 min at room temperature with the membrane-anchored FRET re-
porter Laree1 (1 µM). Cells were diluted with PBS to a volume of 200 µL and centrifuged
on slides by cytospin. Membrane-bound Mmp12 activity was measured by confocal mi-
croscopy. Images were acquired on a Leica SP8 confocal microscope with an HC PL APO
CS2 63× 1.3 oil objective (Leica microsystems, Wetzlar, Germany). Donor/acceptor ratio
was calculated using the open source imaging analysis software Fiji version 1.46r [53,54].

4.3. Histology and Morphometry

Right lungs were inflated with 4% buffered formalin to 25 cm of fixative pressure. Non-
inflated left lungs were immersion fixed. Lungs were paraffin embedded and sectioned
at 5 µm and stained with H&E, Masson-Goldner-Trichrome and AB-PAS. Images were
captured with a NanoZoomer S60 Slidescanner (Hamamatsu, Hamamatsu City, Japan) at a
magnification of 40×. Airway regions were determined from proximal-to-distal distances
and airway branching, as determined by longitudinal sections of lung lobes at the level
of the main axial airway, as previously described [55]. Degenerative cells were identified
by morphologic criteria such as swollen cells with vacuolized cytoplasm and pycnotic
nucleus in H&E stained lung sections. Numeric cell densities were determined using
NDP.view2 software version 2.7.52 (Hamamatsu, Hamamatsu City, Japan), as previously
described [16].

4.4. Pulse Oximetry

Oxygen saturation of 3-week-old mice was determined using a noninvasive pulse
oximeter for laboratory animals (MouseOx® Plus, Starr Life Science, Oakmont, PA, USA)
and measured with a thigh clip sensor, as previously described [9]. Percent oxygen satura-
tion was measured after stabilization of heart rate and breathing frequency.

4.5. Immunofluorescence Microscopy

Lung sections were evaluated for proSP-C using a primary polyclonal anti-NproSP-C
antibody and Alexa Fluor 488 conjugated goat anti-rabbit IgG (Jackson Immuno Research,
111-545-062, West Grove, PA, USA), as described previously [24]. Confocal images were
acquired using a 488 nm laser line package of an Olympus Fluoview confocal system
attached to an Olympus IX81 microscope (60× oil objective).

4.6. SDS-PAGE and Immunoblotting

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using Novex
Bis–Tris gels (NP0301, ThermoFisher Scientific, Waltham, MA, USA) and immunoblotting
of PVDF membranes with primary antisera followed by species specific horseradish perox-
idase conjugated secondary antisera was performed as published [24,56]. Bands detected
by enhanced chemiluminescence (ECL2, ThermoFisher Scientific, 80196, Waltham, MA,
USA; or WesternSure, LI-COR, 926-95000, Lincoln, NE, USA) were acquired by exposure to
film or direct scanning using an LI-COR Odyssey Fc Imaging Station (Lincoln, NE, USA)
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and quantitated using the manufacturer’s software. For immunoblotting of surfactant
proteins, the following antisera were used. Polyclonal anti- NproSP-C raised against the
Met [10]–Glu [23] domain of rat proSP-C peptide, polyclonal anti-SP-B (PT3) raised against
purified bovine SP-B and polyclonal anti-SP-D (antisera 1754) raised against 2 synthetic
SP-D peptides were each produced in rabbits in house and validated as published [56–59].
Polyclonal mature anti-SP-C antisera was obtained from Seven Hills Bioreagents (WRAB-
76694; Cincinnati, OH, USA) and validated in a prior study [24]. Monoclonal anti-Actb
was obtained from Sigma Aldrich (A1978) St. Louis, MO, USA.

4.7. Electrogenic Ion Transport Measurements

Mice were deeply anesthetized via intraperitoneal injection of a combination of ke-
tamine and xylazine (120 mg/kg and 16 mg/kg, respectively) and killed by exsanguination.
Airway tissues were dissected using a stereomicroscope as previously described [60,61]
and immediately mounted into perfused micro-Ussing chambers. Experiments were per-
formed at 37 ◦C under open-circuit conditions and amiloride-sensitive ENaC-mediated
short circuit current (ISC) was determined as previously described [61].

4.8. mRNA Expression Analysis

Lungs from mice were stored at 4 ◦C in RNAlater (Applied Biosystems, Darmstadt,
Germany). Total RNA was extracted using Trizol reagent (Invitrogen, Karlsruhe, Ger-
many) according to manufacturer’s instructions. cDNA was obtained by reverse tran-
scription of 1 µg of total RNA with Superscript III RT (Invitrogen, Karlsruhe, Germany).
To analyze mRNA expression of mucins, quantitative real-time PCR was performed on
an Applied Biosystems 7500 Real Time PCR System using TaqMan universal PCR mas-
ter mix and the following inventoried TaqMan gene expression assays for Muc5b (Ac-
cession No. NM_028801.2; Taqman ID Mm00466391_m1) and Muc5ac (Accession No.
NM_010844.1; Taqman ID Mm01276718_m1) (Applied Biosystems, Darmstadt, Germany)
according to manufacturer’s instructions. Relative fold changes of target gene expression
were determined by normalization to expression of the reference gene Actb (Accession No.
NM_007393.1; Taqman ID Mm00607939_s1) [17,62].

4.9. Microbiology Studies

BAL was performed in 3-week-old mice under sterile conditions. Mice were deeply
anesthetized via intraperitoneal injection with a combination of ketamine and xylazine
(120 mg/kg and 16 mg/kg, respectively) and killed by exsanguination. A cannula was
inserted into the trachea and whole lungs were lavaged 3 times with 300 µL PBS. The re-
covered BAL fluid was plated on columbia blood agar (Becton Dickinson, Heidelberg,
Germany), chocolate agar, Mac Conkey agar, prereduced Schaedler agar and kanamycin-
vancomycin blood agar plates (bioMérieux, Nürtingen, Germany). After 48 h of incuba-
tion at 37 ◦C, colony forming units were counted and classified by MALDI-TOF mass-
spectrometry (Bruker Daltonik, Bremen, Germany). Then, 16S rRNA PCR was performed
to detect non-culturable bacterial species [63].

4.10. Statistical Analysis

All data are shown as mean ± S.E.M. Data were analyzed with GraphPad Prism
version 7 (GraphPad Software Inc, LaJolla, CA, USA). Distribution of data was assessed
with Shapiro–Wilk test for normal distribution. For comparison of two groups, unpaired
two-tailed t-test or Mann–Whitney test were used as appropriate. Comparison of more than
two groups with normally distributed data was performed with one-way ANOVA followed
by Tukey’s post hoc test. Genotype frequency was analyzed by χ2 test. Comparison of
survival was evaluated using the log rank test. A p value < 0.05 was accepted to indicate
statistical significance.
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lung sections (d) in mice with the different genotypes that served as controls to exclude potential
off-target effects of the expression system. Dams were treated with doxycycline from the start of
mating and offspring was studied 3 weeks after birth. Upper row, scale bars, 1 mm. Lower row, scale
bars, 50 µm. n = 9–10 mice per group. Data are shown as mean ± S.E.M.
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