
C
V
Im
P

X
L

*T
H
C
N
U

T
m
de
po
ca
ce
vi
re
su
th

as
ca
un
au
ge
th
ea
fr
id
co
hi
an
po

www.transonc.com

Trans la t iona l Onco logy Volume 12 Number 5 May 2019 pp. 733–738 733
ancer-Testis Antigen Peptide
accine for Cancer
munotherapy: Progress and

rospects1
va
su
In
ap

“

A
an
va
in
th
ch
B

Ad
D
In
liu
1N
2T
Re

©
op
by
19
ht
iao Wei*, 2, Fangjun Chen†, 2, Kai Xin†, Qin Wang†,
ixia Yu†, Baorui Liu*† and Qin Liu†

he Comprehensive Cancer Center of Drum Tower
ospital, Nanjing Medical University; †The Comprehensive
ancer Center of Drum Tower Hospital, Medical School of
anjing University and Clinical Cancer Institute of Nanjing
niversity
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective
cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large
number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in
cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently,
personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage
rational selection of CTA peptides to design “personalized” CTA peptide vaccines. This review summarizes the
advances in CTA peptide vaccine research and discusses the feasibility of establishing “personalized” CTA peptide
vaccines.
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he field of cancer vaccines, including peptide-based vaccines, has
oved forward drastically during the last 2-3 decades after the
monstration that in both animal models and, later, in patients, it is
ssible to generate antitumor immune responses [1]. Naive T cells
n be induced to proliferate and be activated by antigen-presenting
lls, particularly dendritic cells (DCs), which present tumor antigens
a the major histocompatibility complex (MHC). As T cells
cognize and kill tumor cells that express these antigens on their
rface, selecting appropriate tumor antigens as targets is crucial for
e preparation of peptide vaccines.
Tumor antigens have been grouped into three categories: tumor-
sociated antigens (TAAs); cancer-specific antigens, which are also
lled neoantigens; and cancer-testis antigens (CTAs) [2]. The
favorable tumor specificity of TAAs carries the risk of inducing
toimmunity against corresponding normal tissues. The neoepitopes
nerated by somatic mutations can be recognized by T cells and
erefore are regarded as ideal cancer vaccine targets [3]. Nonetheless,
ch tumor has a unique combination of mutations, with only a small
action shared among cases [4], resulting in the difficulty of
entifying neopeptides and preparing mutanome vaccines. In
ntrast, as CTAs are normally expressed in the testis but are also
ghly expressed across cancers [5,6] and associated with disease stage,
unfavorable prognosis, and cancer invasion, CTAs may constitute
tentially promising targets and allow convenient establishment of
ccines based on “off-the-shelf” CTA peptides. This review
mmarizes the recent advances in CTA peptide-based cancer vaccines.
particular, we describe the details of our novel immunotherapeutic
proach, called the CTA personalized peptide vaccine.

Conventional” CTA Peptide Vaccines
ccumulating experimental evidence favors CTAs as highly suitable
tigens for cancer vaccination. Compared to DC vaccines, peptide
ccines do not require the use of autologous cells, which has resulted
strong interest in CTA peptide vaccines in recent years. However,
e complexity and diversity of cancer antigens and tumor cell
aracteristics seem to limit the clinical application of this knowledge.
elow, we discuss the progress thus far in the identification of CTA
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munogenic peptides and the clinical trials of peptide vaccines, as
mmarized in Tables 1-2. In addition, advances in developing
fective cancer peptide vaccines are reviewed.

TA Peptide-Based Clinical Trials
mong a large number of explorations of CTA peptide-based
ccines, the investigations of the widely expressed tumor antigens
AGE-A3 and NY-ESO-1 are noteworthy as paradigms. The
elanoma antigen gene (MAGE) protein family is a large, highly
nserved group of proteins that share a common MAGE homology
main [7,8]. MAGE-A3, as one of the most immunogenic MAGE
oteins, is restricted in expression to reproductive tissues but is
errantly expressed in a wide variety of cancer types [9]. NY-ESO-1
a CTA that was first described in a patient with esophageal cancer in
97 [10] and has subsequently been reported to be expressed in a
ide range of tumor types [11–15]. Humoral immune responses and
llular immune responses against NY-ESO-1 and MAGE-A3 have
en detected [16], and the restricted epitopes have been identified as
e recognition sites for CD8+ cytotoxic T lymphocytes (CTLs)
7,18]. Numerous preclinical and clinical studies have indicated that
AGE-A3 peptide vaccines can trigger immune responses, and
omising findings have been achieved in cancer subjects [19–24].
wo phase III clinical trials, known as DERMA and MAGRIT, have
en approved for patients with melanoma and non–small cell lung
ncer (NSCLC) [25,26]. However, the MAGRIT trial was stopped
2014 due to a lack of clinical benefit for NSCLC patients. Despite
e disappointing result, other ongoing clinical trials remain, and the
eld anticipates satisfactory outcomes. However, cancer vaccines
sed on NY-ESO-1–restricted immunogenic peptides combined
ith various adjuvants exhibit antitumor potential [27–30].
In addition to the CTAs described above, other CTAs could be
eal targets, such as DEPDC1 [31–33], CDCA1 [34], LY6K
5,36], IMP3 [37–39], and TTK [40,41]. These antigens are all
embers of a class of CTAs with specific expression characteristics.
ith the identification of immunogenic epitopes, particularly
LA-A*24–restricted peptides, studies of these CTA multipeptide-
sed vaccines continue and are achieving promising results. For
ample, Wataru Obara et al. [42] reported the DEPDC1
munogenic peptide 294EYYELFVNI302 and successfully con-
ructed the peptide vaccine S-288310. In the ensuing phase I/II
inical trial, S-288310 was found to be well tolerated and to
fectively increase survival time for patients with advanced
ble 1. Peptide-Based Vaccination Trials

ase Indication CTAs

Prostate cancer NY-ES
Advanced malignancies NY-ES
Neuroblastoma and sarcoma MAGE
Metastatic melanoma MAGE
NSCLC MAGE
Melanoma skin cancer MAGE
Gastric cancer DEPDC

I Urothelial carcinoma of the bladder DEPDC
I Esophageal squamous cell carcinoma TTK, L

Gastric cancer LY6K
Gastric cancer URLC1
NSCLC CDCA
Pancreatic cancer CDCA
HNSCC CDCA
ESCC TTK, U
Advanced solid cancer KOC1,
ro the l i a l c a r c inoma of the b l adde r . Add i t iona l l y ,
7RYCNLEGPPI186, 567SYRNEIAYL575, 508KTVNELQNL516,
d 56VYGIRLEHF64 (derived from LY6K, TTK, IMP3, and
DCA1, respectively) have been reported to be promising HLA-
*24–restricted epitope peptides [43,44]. A clinical cancer
ccination study, based on the peptides above, demonstrated
tisfactory safety and good disease control in patients with solid
mors [45–49]. Remarkably, due to a lack of effective and standard
eatment, pancreatic carcinoma is associated with a high mortality
te, but a phase I clinical cancer vaccination trial with a
mbination of peptides derived from CDCA1, KIF20A,
EGFR2, and VEGFR1 showed a detectable clinical benefit in
ur patients, suggesting this vaccine as a novel treatment for
ncreatic cancer [50]. In general, CTA peptide-based vaccines can
icit a potent immune response against cancers, particularly solid
mors. Because additional studies have explored and established
her HLA-restricted immunogenic epitopes [51–54], a CTA
ptide-based vaccine is expected to have wide applications for
tients.

odified Vaccine Strategies
nce CTA peptide vaccines seem to be an effective treatment to
mbat cancers, strategies to modify vaccines to improve their clinical
ficacy have attracted great interest for superior clinical benefits. A
essing concern for CTA peptide vaccines is the considerable
terogeneity of CTA tumor expression. Thus, further studies are
quired to explore new CTAs as candidates. For instance, Kita-
yushu lung cancer antigen-1 (KK-LC-1) [55–57] and sperm protein
(SP17) [58–60] are reportedly expressed frequently in tumors and
rry epitope peptides recognized by CTLs [61–63], making them
ew candidate tumor biomarkers and immunotherapy targets.
dditionally, many other CTAs are expected to be ideal
rgets for peptide vaccines, and further exploration is needed.
oreover, various adjuvants have been tested for their ability
enhance cytotoxic CD8+ T lymphocyte activity. These
juvants include GM-CSF, Flt3-ligand, incomplete Freund's
juvant, and saponin-based adjuvant (ISCOMATRIX)
4,65]. Stronger adjuvants have been shown to improve the
equency of eliciting T cells [66].
Another strategy to enhance vaccination efficacy is to induce CD4+
mune responses to support the priming and maintenance of CD8+
TLs [67]. Interestingly, an NY-ESO-1 peptide containing the
Year of Publication

O-1 2014
O-1 2007
-A1, MAGE-A3, NY-ESO-1 2015
-A3, GP100, Tyrosinase, MAGE-A2, MAGEA1 2012
-A3 2009
-A3 2010
1, URLC10, FoxM1, Kif20A, VEGFR1 2017
1, MPHOSPH1 2016
Y6K, IMP3 2009/2012

2014
0, VEGFR1 2014
1, LY6K, VEGFR1, VEGFR2 2013
1, Kif20A, VEGFR1, VEGFR2 2013
1, LY6K, IMP3 2015
RLC10, KOC1, VEGFR1, VEGFR2 2014
TTK, URLC10, DEPDC1, MPHOSPH1 2016
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Table 2. Previously Identified CTA Peptides

CTAs Amino Acid Sequence (mer) Start Position HLA Type

NY-ESO-1 SLLMWITQC 157 HLA-A*0201
YLAMPFATPME 91 HLA-A*2402
LLMWITQCF 158 HLA-A*2402

MAGE-A3 FLWGPRALV 271 HLA-A*0201
KVAELVHFL 112 HLA-A*0201
TFPDLESEF 97 HLA-A*2402
VAELVHFLL 113 HLA-A*2402

DEPDC1 FLDLPEPLL 282 HLA-A*0201
EYYELFVNI 294 HLA-A*2402

LY6K RYCNLEGPPI 177 HLA-A*2402
CDCA1 YMMPVNSEV 65 HLA-A*0201

KLATAQFKI 351 HLA-A*0201
KTVNELQNL 508 HLA-A*2402

IMP3 NLSSAEVVV 515 HLA-A*0201
RLLVPTQFV 199 HLA-A*0201
KTVNELQNL 508 HLA-A*2402

TTK SYRNEIAYL 567 HLA-A*2402
KK-LC-1 RQKRILVNL 78 HLA-B*1501
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im
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w
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LA-DP4–restricted epitope can also generate HLA-A2–restricted
D8+ T cells [68], suggesting that this peptide may be used as a
ncer vaccine to induce both CD4+ and CD8+ T cell responses,
hich is a promising direction for the development of peptide
ccines and constitutes a beneficial situation for future immuno-
erapies [69]. DNA vaccination has become a favored strategy for
ducing immunity [70]. It offers the opportunity to engineer peptide
tigen expression with more detailed design and delivery parameters
1]. Recombinant vectors encoding CTAs and even short hairpin
NA have been used in preclinical models to enhance immune
stem activation [72]. Other modifications to the vaccine approach
rrently in clinical trials include the use of combinatorial treatment.
he microenvironment is an important factor due to the impact on
e outcome of immune-modulating treatments. Therefore, multiple
mbined therapeutic strategies [73] have the potential for efficient
ntrol of tumor burden and improvement of the tumor microen-
ronment, and the details will be discussed below.
g. 1. Workflow for targeted peptide selection and vaccine manufactu
munohistochemical and HLA typing and determined by serotyping
lected as target peptides for vaccine design. Candidate peptides are
hich is administered to patients in combination with an immune adju
Personalized” CTA Peptide Vaccines
the clinical trials and advances of CTA peptide vaccines described
ove, multipeptide vaccines exhibited potent antitumor ability,
ough the immune response induced by the vaccination suggested
at the potential could be improved. Currently, personalized
eatment for cancer has become a trend after the demonstration of
s feasibility, safety, and immunotherapeutic activity against
dividual tumors. However, the published experiments were
nducted using a combination of multiple peptide vaccines rather
an individualized administration of peptide vaccines. Therefore, for
aximal efficacy, we envisage the establishment of a “personalized”
TA peptide vaccine for eligible patients.

election of Target Peptides for Vaccine Design
espite issues with immunogenicity and specificity, CTAs are
ceiving attention as potential antineoplastic targets. Unfortunately,
e immunogenicity of most CTAs is too low to induce antitumor
re.Certain CTAs have been discovered in tumor tissues through
techniques. Thus, personal CTA HLA-binding peptides can be
selected for incorporation into the personalized peptide vaccine,
vant to trigger an immune response to attack tumor cells.

Image of Fig. 1
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sponses, and the poor specificity can result in off-target toxicity. To
dress these limitations, additional studies are needed to explore new
TAs with high immunogenicity and specificity that can serve as
eal targets for cancer immunotherapy, and CTA peptide vaccines
ay thus be universal in clinical application. Accordingly, a critical
allenge for personalized CTA peptide vaccines is accurate and
mprehensive construction of a CTA peptide library to select the most
itable target peptides for optimal immune responses. The processing and
esentation of antigens are complex processes. Protease cleavage products
thousands of proteins compete for binding in the pockets of MHC
olecules [74], though only a portion of MHC-presented peptides can
duce an effective T cell response. MHC-peptide stability can be
edicted through epitope prediction algorithms including BIMAS,
etMHC, and NetCTL. These algorithms employ different prediction
odels but have all been trained using characterized epitope/MHC
mbinations, resulting in the prediction of the likelihood of short peptide
quences binding to a given HLA-allele. However, compared to MHC
ass I molecules, accurate prediction of ligands able to bind toMHC class
molecules is more difficult due to the variable lengths of binding
ptides and the high abundance of MHC class II binding epitopes [75].
oreover, considering that CD8+ CTLs have been demonstrated to
cognize peptide epitopes derived from CTAs that are presented on
HC class I molecules and to kill tumor cells, the establishment of CTA
HC class I-restricted peptides is worthy of exploration.

anufacturing of “Personalized” CTA Peptide
accines
comprehensive CTA peptide library can be conveniently employed
design individual CTA peptide vaccines. Tissue samples are

agnosed as positive for certain CTAs via immunohistochemical
alysis, and simultaneously, peripheral blood mononuclear cells
om patients are evaluated using a serotyping technique to determine
eir HLA type. Certain CTA HLA-binding peptides have thus been
lected as target peptides for design of a vaccine that is administered
patients combined with an immune adjuvant (Fig. 1). Nanovac-
nes represent an emerging area, and advances have been made to
prove the delivery system of NY-ESO-1 and provide strong
otection against cancer through nanotechnology [76]. In addition,
e PC7A nanovaccine is an attractive candidate with potential for T
ll activation and synergy with checkpoint inhibition [77]. This
novaccine platform is expected to be adopted to incorporate
ptides and constitute personalized peptide nanovaccines via the
TA peptide library. Compared to the conventional CTA peptide
ccines described above, administration of a personalized CTA
ptide vaccine may trigger a stronger immune response for attacking
mor cells and lead to a better prognosis.

eveloping Combination Therapy
is also critical to define the most suitable clinical setting for CTA
ptide vaccination. A therapeutic vaccine will most likely be highly
nctional in an adjuvant or minimal residual disease setting. Efficient
ntrol of a larger tumor load may require multiple combined therapeutic
rategies to eliminate the tumor burden and improve the overall tumor
icroenvironment. A promising area of study is the combination of
ptide vaccines with chemoradiation therapy, including biotherapeutics
ch as immunomodulating or antivascular antibodies [78]. For instance,
a phase I vaccination trial with combined chemotherapy, the number
regulatory T cells decreased from the baseline value after administration
cyclophosphamide [79], reflecting the safety, flexibility, and superiority
CTA peptide vaccines combined with chemotherapy. Chemoradiation
erapy combined with immunotherapy has demonstrated promising
tcomes in clinical trials [80] due to its synergistic effect of enhancing
titumor immunity by inducing antigen expression on tumor cells and
tivating lymphocytes [81,82]. Immunosuppression in the tumor
icroenvironment attenuates vaccine-induced immune effectors, and
-1 is an important inhibitory component in the tumor microenvi-

nment. Thus, combination therapy consisting of immune checkpoint
hibitors and cancer vaccine-enriched populations of CTA-reactive T
lls may function synergistically to induce more effective antitumor
mune responses. For example, Karyampudi et al. reported that in
tients with breast cancer, PD-1 blockade enhances vaccine efficacy by
tering both CD8+ T cell and DC components of the tumor
icroenvironment [83]. Furthermore, cancer vaccines stimulate and
hance active immunity; thus, coadministration of an agent that
tivates DCs can lead to increased immunogenicity of protein antigens
d induction of immune responses [84]. These findings support the use
multiple combined therapeutic approaches that may amplify T cell
pansion and increase the durable effect of vaccination, which is
cessary to achieve promising results.

onclusions
he capacity of the immune system to specifically attack cancer cells
nders it the most powerful weapon for controlling cancer in the long
rm. CTAs are promising targets for cancer immunotherapy due to
eir expression in cancers and their rarity in normal tissues. With the
entification of CTA peptides and clinical trials of CTA multi-
ptide vaccines, establishing personalized CTA peptide vaccines has
come possible. Challenges remaining include the search for
omising targets, identification of additional immunogenic CTA
ptides, choice of suitable clinical settings, and development of
asible combination therapy. It is believed that when these
itations are overcome, personalized CTA peptide vaccines may
ovide a powerful tool to induce an immune response against cancer
d become a universal treatment in cancer immunotherapy.
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