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Mathematics is a struggle for many. To make it more accessible, behavioral and
educational scientists are redesigning how it is taught. To a similar end, a few rogue
mathematicians and computer scientists are doing something more radical: they are
redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an
important contributor to ordinary symbolic logic, also introduced a rigorous but non-
symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic,
George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic,
algebra, and even trigonometry, resembles doing calculations on an abacus, which is
still popular in education today, has aided humanity for millennia, helps even when it is
merely imagined, and ameliorates severe disability in basic computation. Interestingly,
whereas some intellectually disabled individuals excel in very complex numerical tasks,
others of normal intelligence fail even in very simple ones. A comparison of their wider
psychological profiles suggests that iconic mathematics ought to suit the very people
traditional mathematics leaves behind.

In mathematics you don’t understand things, you get used to them.

—attributed to John van Neumann
(Zukav, 1979)

Keywords: iconic mathematics, embodied mathematics, mathematical cognition, math education, stem
education, dyscalculia, hypercalculia

INTRODUCTION: TOWARD A MORE ERGONOMIC
MATHEMATICS

Icons Versus Symbols
Mathematics is a widely used and highly effective tool. Yet over the course of some 3,000 years,
it has developed more or less organically rather than according to a carefully thought-through,
preconceived plan (Kline, 1990). Today, professional mathematicians concern themselves with
mathematical problems, rarely with revising the system in which they are expressed, and
much less with improving its ergonomic features; those are matters for others to worry about.
Yet what those others, including math teachers and behavioral and educational researchers,
focus on is not redesigning mathematics but helping people, especially children, become
better at it. Indeed, overhauling such an enormous, already well-entrenched system as that of
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mathematics may seem too daunting a task to take seriously.
Consider, however, that its imposing edifice (its derived rules or
theorems) is based on a relatively small foundation (its ground
rules or axioms). These axioms are not particularly complicated,
and a lot can be achieved by tinkering specifically with them.

The present analysis of the concept of iconic mathematics
argues that there is an opportunity for the behavioral and
educational sciences to contribute to this endeavor. The goal
would not be to break new ground in mathematics—let us leave
this to the mathematicians—but rather to apply to math what
we know about the human mind and make math easier to learn
and use, more ergonomic. The point of departure for this project
is Spencer-Brown’s (1969) seminal adaptation of Charles Peirce’s
iconic logic (Roberts, 1973; Kauffman, 2001; Shin, 2002) that
became the cornerstone of iconic mathematics (Kauffman and
Varela, 1980; James, 1993; Kauffman, 1995; Bricken, 2019a,b,
2021).

Unlike their traditional counterparts, iconic logic and iconic
mathematics shun arbitrary squiggles that have only conventional
meanings, like digits and plus, minus, and other abstract symbols.
As much as possible, they are “postsymbolic” (Bricken, 2019a),
and use icons instead. By definition, icons are more concrete
than symbols, and often illustrate their own meaning, are their
own mnemonic devices, and hint at their own intended use.
Euler and Venn diagrams, which tellingly are still very popular
tools in teaching logical and set theoretical relationships today
(Trafimow, 2011; Reani et al., 2019), can be seen as precursors
of the more versatile, more encompassing systems of iconic logic
and iconic mathematics. Here, I limit myself to the latter and
offer my take on a recent, particularly substantial contribution
to iconic mathematics by computer scientist Bricken (2019a,b,
2021) and his student James (1993). In the process, I introduce an
alternative notation to render the original one considerably more
concise and even more ergonomic. The goal is to demonstrate
that ordinary, symbolic mathematics need not be the only game
in town; that, without sacrificing rigor, one can aspire to develop
a more user-friendly kind of mathematics that can be used either
as a stepping stone to learning ordinary, symbolic mathematics
or as an alternative to it.

Iconic mathematics is, as much as possible, an “embodied”
mathematics (Bricken, 2019a). To introduce this concept and
set the stage, I therefore begin with a brief introduction
of embodiment in mathematical cognition and mathematical
education, and then, in the main conceptual analysis, show
how embodiment permeates the nuts and bolts of iconic
mathematics itself. I discuss iconic number representation and
iconic addition and subtraction, then iconic multiplication,
division, and taking the power or logarithm of numbers, and after
that—to demonstrate iconic math’s potential—iconic imaginary
numbers and their relationship with trigonometry. After the
main analysis, I address why ordinary mathematics, curiously
enough, is more difficult for some intelligent individuals than
for others deemed intellectually disabled. I lay out how both
talent in mathematics, and the near-total lack of it, are related
to genetic conflict and patterns in mental disease. On the basis
of this material and additional evidence obtained with the
abacus, I argue that iconic mathematics promises to be of help

especially to those who, with traditional mathematics, tend to
struggle the most.

Embodiment Versus Abstraction
Ordinary symbolic mathematics is highly abstract, but mounting
evidence suggests that mental number representations and
mathematical operations are embodied—that is, grounded in
Lakoff and Núñez (2000), or at least shaped or affected by
Winter and Yoshimi (2020), the sensory experiences our bodies
provide to us (for reviews, see Fischer and Brugger, 2011; Fischer
and Shaki, 2018; Soylu et al., 2018; Barrocas et al., 2020; see
also especially Fischer et al., 2021; Glenberg, 2021) and other
studies not covered by the reviews: Hilton, 2019; Proverbio and
Carminati, 2019; van den Berg et al., 2021. For example, whereas
Germans are accustomed to counting to ten using two hands,
the Chinese manage the same with just one, and as if forced to
mentally switch hands, Germans take longer than the Chinese to
identify the smaller (or larger) of such numbers as 4 and 6 but
not 2 and 4. Likewise, as if numerical distances were physical,
numbers are distinguished faster if they are numerically far apart,
like 1 and 9, than if they are close together, like 1 and 3 (Dehaene,
2011). And, as if numbers were mentally represented along a
number line, in people reading from left to right, numbers are
processed quicker if small and presented on the left, or large and
presented on the right, rather than the converse (Dehaene, 2011;
see for a related review Umiltà et al., 2009 and for related research
papers and references therein Ashkenazi and Henik, 2010; Longo
and Lourenco, 2010; Pia et al., 2010; Kramer et al., 2011; Thomas
et al., 2017; Patro et al., 2018). Relatedly, addition can be pictured
as rightward, and subtraction as leftward, movement along this
line (Knops et al., 2009; Marghetis et al., 2014). Alternative
kinds of the embodiment have been observed in mathematical
cognition too (Winter and Yoshimi, 2020).

Embodied math education is tapping into this embodied
math cognition by providing students with objects and tools
that can help them understand abstract mathematical concepts
and operations in more concrete physical or virtual ways
(Carbonneau et al., 2013; Abrahamson et al., 2020). To give them
a better sense of proportion, ratio, fraction, young students have
been asked to keep a screen green while moving two cursors up
or down (Hutto et al., 2015). The otherwise red screen turned
green whenever the students happened to raise their right hand
twice as high as their left one. Trial and error then showed the
students how, as their hands move up or down, the distance
between them had to be proportionally increased or decreased to
keep the screen green. A sense of proportion was thus instilled
in the students in terms of not abstract symbols and austere
rules but concrete physical action and sensory experience (see
also Szkudlarek et al., 2022). Hands-on mathematics has a long
history and features prominently in Montessori education (Laski
et al., 2015). Earlier in the 20th century, Laisant’s table (Laisant,
1915; Maffia and Mariotti, 2020) allowed students to physically
explore—by counting squares—the meaning and validity of the
distributive law of multiplication (Figure 1). And physically
rearranging simple geometrical shapes has been used as far back
as during the Han dynasty, 206 B.C.−220 A.D. (Wang, 2009), to
prove the Pythagorean theorem and resolve problems like finding
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FIGURE 1 | Laisant’s table [adapted from Maffia and Mariotti (2020)]. Each
black-framed rectangle represents a multiplication—that of its width in little
squares by its height in little squares. The outcome of this multiplication equals
the total number of little squares contained within the black-framed rectangle.
In the present example, the upper-left black-framed rectangle represents the
multiplication 1 × 1, the lower-right one 8 × 8. Now consider, say, the
multiplications of 2 × 3, 2 × 4, and 2 × 7. Count the number of little squares
inside the black-framed rectangles that correspond to each of these
multiplications and note that—as per the distributive law of
multiplication—(2 × 3)+(2 × 4) = 2 × 7.

the side of an unknown square that just fits a known right triangle
(Figure 2; for video demonstrations, see footnote

1
).

One major problem remains, however, a meta-analysis
found that whereas hands-on interaction considerably improves
retention of abstract mathematical facts or operations, it does
not have as big a positive effect on students’ ability to
solve new abstract mathematical problems (Carbonneau et al.,
2013). Combining embodied and symbolic mathematics helps
establish a link between the two and facilitates the desired
transfer of learned skills from the one to the other (Laski
et al., 2015; Coles and Sinclair, 2019; Maffia and Mariotti,
2020). Still, there obviously remains a gap between embodied
cognition and embodied education on the one hand and un-
embodied, formal mathematics on the other. The un-embodied,
formal mathematics itself is still as opaque and abstract as it
has always been.

Like symbolic math, iconic mathematics is rigorous and
formally based on axioms but, unlike symbolic math, it is
nonetheless much more embodied. That is, it is expressed with
the help of either physical or virtual objects, or iconic depictions
of objects, rather than with arbitrary tokens that depict nothing.
Iconic mathematics may help students transition from embodied

1
https://en.wikipedia.org/wiki/Pythagorean_theorem

FIGURE 2 | Abstract algebraic expressions as physical geometric puzzles
[adapted from Wang (2009)]. (A) Let the areas of, respectively, the dark-gray,
black, and white-framed squares be a2, b2, and c2. By placing the triangular
parts of the dark-colored squares that fall outside the white frame onto the
light-colored triangles inside it, the dark-colored squares exactly cover the
area of the white-framed square. That is, a2+b2 = c2 (the Pythagorean
theorem). (B) On the left, a dark square is shown that just fits inside a
dark-colored triangle. Task: Find the length x of one of the sides of the dark
square. Solution: Next to the triangle and square (shown in dark colors) add a
copy of it (shown in light colors) so that a rectangle emerges with area ab.
Rearrange the pieces (shown on the right) so that another rectangle emerges
with area (a+b)x. Compare the rectangle on the left with the one on the right
and note that ab = (a+b)x and thus that x = ab/(a+b).

to symbolic math by offering them something in between. Yet
more importantly, as a coherent system of mathematics in its
own right, iconic mathematics also has the potential to become a
valid alternative to symbolic mathematics. As we shall see shortly,
doing iconic mathematics resembles performing calculations on
an abacus. In the West, this age-old tool has all but fallen out
of use. In the East, however, it continues to be popular in math
education, and as shown in the last section, it has even been
found to improve the mathematical performance of students with
a severe numerical disability (dyscalculia). As a kind of extension
of the abacus, iconic math thus offers hope for those who struggle
with symbolic math.

MAIN CONCEPTUAL ANALYSIS: NUTS
AND BOLTS

Iconic Addition and Subtraction
The mathematics we currently have is more abstract, and less user
friendly, than it needs to be. The trouble starts with something
even more basic than its axioms: its digits. The problem is that
the digits of symbolic math offer no clue to either the meaning
of the numbers they represent, the interrelationships between
these numbers, or the use of these numbers in calculations. For
example, none of the tokens used in “3 + 4” suggest in any
way that the end result should be “7.” To be able to see that it
should, we need to translate the abstract tokens into something
more concrete. In fact, in the absence of anything to hold on
to, young children and dyscalculics often try to relate abstract
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FIGURE 3 | Iconic number representation. Ordinary symbolic numbers are
shown along with their iconic translations based on dot tally-marks. Of the
mighty-dice translations, all four columns are shown; of the depth-value ones,
only the first three. The three rows underneath the main table show symbolic
numbers, corresponding iconic numbers, and corresponding iconic numbers
that have been adjusted for readability. In the latter, two nested pairs of
brackets are replaced by just one pair of thick ones. The might-dice and
thin-fat notations, henceforth together referred to as the “black-and-white
notation,” have been developed for easy reading; for easy writing of this
notation, ideally some kind of an app would be developed.

digits to the physical ones of their hands (Geary, 2011; Kucian
and von Aster, 2015; Tran et al., 2017). Soon they run out of
hands and fingers, and thus out of answers. Engaging additional
body parts, New Guinean Yupno men count up to 33—a number
represented by the penis and referred to as such (Lancy, 1983; see
also Butterworth, 1999; Mareschal et al., 2013). Yupno women,
reportedly, do not count in public. It is clear, in any case, that the
body-parts system inevitably runs up against its limits.

To represent numbers, a more intuitive alternative to the use
of digits, and a more practical one to that of body parts, is
the use of tally marks—typically bars or dots (Bricken, 2019a;
see also Schwenk et al., 2017). Adopting Kauffman’s (1995)
“depth-value notation,” Bricken and James use collections of
aligned or unaligned dots (Figure 3). To render them more
ergonomic and almost as concise as digits, I organize these dots
within the standard configurations of what I call “mighty dice,”
which are like ordinary dice but can represent the numbers 1−9
rather than merely 1−6 (Figure 3; Krajcsi et al., 2013). Because
symbolic digits are abstract, and their meanings established
only by convention, their numeric value (cardinality) must be
retrieved from memory. Numbers in the mighty-dice notation,
instead, can be read in three different ways. First, one can retrieve
their cardinality from memory by recognizing the conventional
configurations of the dots. Second, one can subitize the dots
(enumerate them at a single glance with near-perfect accuracy;
Anobile et al., 2019; Liu et al., 2020; Decarli et al., 2021),
which is facilitated by the dice-like configurations (Krajcsi et al.,
2013; Jansen et al., 2014; Katzin et al., 2019). And third, one
can count the dots, which requires more than a single glance
but is nonetheless considerably easier and faster when the
dots are configured like either dice (Jansen et al., 2014) or
mighty dice (Krajcsi et al., 2013; see also Piazza et al., 2002;
Ashkenazi et al., 2013).

Bricken and James represent negative numbers by enclosing
them between angle brackets (Figure 3). Yet, black and white are
intuitively seen as opposites, and across cultures, perhaps because
we are a diurnal rather than nocturnal species, the particularly
dark color of black tends to be perceived more negatively than
the particularly light color of white (Jonauskaite et al., 2020).
Logically, emotional negativity is unrelated to mathematical
negativity. Psychologically, however, the former can be exploited
as a mnemonic device for the latter. I thus represent positive
mighty-dice numbers in black on white, with white as the
dominant color, and negative ones in white on black, with black as
the dominant color

2
. This representation, which also happens to

be more concise than the original one, I call the “black-and-white
notation.”

The depth-value system Bricken and James rely on resembles
an abacus—an apparatus that deals with numbers in a particularly
concrete and tangible way (Figure 4). The abacus features several
rungs of beads, and the higher the rung the larger the numbers it
represents. This is fairly intuitive, as high and large go together
psychologically in a way that high and small or low and large
do not—they have the same polarity (Proctor and Cho, 2006).
By arbitrary convention still, ten beads on the abacus’s lower
rung can be traded in for exactly one bead with a value of 10 on
its next higher rung, ten beads with each a value of 10 can be
traded in for one with a value of 100 on the next higher rung,
and so on. In both the depth-value and mighty-dice systems,
the rungs are replaced with “containers” (here pairs of enclosing
round brackets). Like big fish tend to eat smaller ones but not
the other way around, containers representing larger numbers
can encompass containers representing smaller ones but not the
other way around. And like in the case of the abacus, ten dots can
be traded in for exactly one dot with a value of 10 in a container,
ten dots in containers with each a value of 10 can be traded in
for one dot with a value of 100 in a container nested within
a container, and so on (Figure 4). The numeric value of dots
thus increases with the depth of their nesting within containers.
The use of the abacus, and of the depth-value and mighty-dice
systems, is only partially intuitive and partially still depends on
arbitrary conventions. Importantly, however, by appropriately
shifting beads from one side to the other on the abacus’s various
rungs, addition and subtraction become transparent mechanical
processes before our eyes rather than opaque mysterious ones
inside our heads. And, by shifting dots in and out of containers,
much the same can be achieved in the depth-value and mighty-
dice systems.

In the latter two systems, more specifically, addition and
subtraction consist of putting numbers together and rewriting
them to obtain as few numbers as possible (typically just one),
each containing as few dots as possible (Figure 5; see also
Kauffman, 1995; Bricken, 2019a). Provided standard notation
is respected (Figure 3), the dots can be moved, binned (put
into containers), and unbinned (taken out of containers), and
matching pairs of white and black elements can be eliminated

2
Perceptually, the surface of the mighty-dice extends behind their dots (a process

called amodal completion); the color of this surface thus dominates that of the dots,
even in the case of the numbers 9 and−9.
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FIGURE 4 | Iconic and abacus number representation. (A) Representation of the number 10 with ten beads shifted to the right on the abacus’s lower rung (left) or,
equivalently, with one bead with a value of 10 shifted to the right on its next higher rung (right). (B) A similar representation in depth-value notation with ten beads
(left) or, equivalently, one bead with a value of 10 in a container (right). (C) A similar representation in black-and-white notation. (D) Representation of the number 100
with ten beads with a value of 10 shifted to the right on the abacus’s second rung (left) or, equivalently, with one bead with a value of 100 shifted to the right on its
next higher rung (right). (E,F) Similar representations in the depth-value and black-and-white notations.

(Figure 5). There is no zero in iconic mathematics; the zero is
replaced with literally nothing. When clarity demands some kind
of token, in the depth-value notation one can use an empty space
between a pair of angle brackets: the negative of nothing is still
nothing, just like−0 = 0. In the black-and-white notation, I use an
empty black die instead. For anyone unaccustomed to it, dealing
with iconic digits and iconic addition and subtraction may at first
be a challenge. Yet consider how it compares to learning symbolic
digits and symbolic addition and subtraction for the first time.

Iconic Arithmetic and Algebra
The abacus can handle not only addition and subtraction but
also multiplication and division. I will not go into details here
but instead lay out a system that reminds one again of the
abacus, with its rungs replaced by containers. Unlike the abacus,
this system can not only handle arithmetic (with numbers) but
also algebra (with at least one variable instead of a number).
This James algebra (James, 1993; Bricken, 2019a,b, 2021) features
negation, addition, subtraction, exponentiation, and taking
logarithms but has no need for explicit multiplication or division.

Multiplication of natural numbers is effectively a shorthand
for repeated addition. Starting from 0, for example, adding 10
three times (10 × 3 = 30), or 3 ten times (3 × 10 = 30),
gives us 0+10+10+10 = 30 or 0+3+3+3+3+3+3+3+3+3+3 = 30.
The inverse of multiplication is division, and division of
natural numbers is effectively a shorthand for repeated

subtraction
3
. Starting from 30, subtracting 10 three times

(30/10 = 3), or 3 ten times (30/3 = 10), gets us back to
30−10−10−10 = 0 or 30−3−3−3−3−3−3−3−3−3−3 = 0.
Exponentiation can function as a shorthand for repeated
multiplication—a multiplication by itself of a number (the
“base”), repeated as many times as indicated by a another number
(its “power”). Starting from 1, for example, multiplying by 10
three times gives us 1 × 10 × 10 × 10 = 103 = 1000, with 10
representing the base of 103 and the superscript 3 its power. The
inverse of raising a base to a certain power is taking the logarithm
of its outcome: log10(1000) = log10(103) = 3, with 3 representing
the logarithm in log10(1000) = 3 and the subscript 10 its base. If
the power is not larger than 1 but between 0 and 1, exponentiation
can function as a shorthand for repeated division. Starting from
1000, dividing by 10 (10001/3 = 10) three times (log10(1000) = 3)
gets us back to ((1000/10)/10)/10 = 1. This kind of exponentiation
is also called to taking roots and 10001/3

=
3√1000 = 10.

Note that 1 × 10 × 10 × 10 = 1000 can be written
as 100

× 101
× 101

× 101 = 103 and also, without
using any multiplication, as 100+1+1+1 = 103. Likewise,
((1000/10)/10)/10 = 1 can be written as ((103/101)/101)/101 = 100

and also, without using any division, as 103−1−1−1 = 100. Log10

3
Multiplication of fractions (numbers divided by other numbers) represents a

mix of repeated addition and subtraction. For example: 2
3 ×

9
3 =

2×9
3×3 =

9+9
3+3+3 =

18
9 = 2 because, to get to zero, one can subtract 9 from 18 twice.
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FIGURE 5 | Iconic addition and subtraction. (A) Provides the rules, whereby the first rule on the right can be derived from the first two rules on the left. (B–E) Shows
examples of iconic addition and subtraction with—based on the provided rules—a justification for each next step in a calculation (left), the calculation-step itself
(middle), and a symbolic interpretation (right). Note the following: First, the brackets that enclose a number need not be adjacent to this number. For instance, in the
432+281-example, the 4 of 432 is enclosed between two pairs of brackets even though the right-most bracket of one of these two pairs appears immediately to the
right of the 3 and not the 4. The 3 itself is enclosed by one pair of brackets. Second, the order of iconic digits (mighty dice) within an iconic number is free and space
between these digits optional, like in the final two examples. Third, in the end, just for readability, dots are binned, shifted to the right as much as standard notation
allows, and compacted. Fourth, the iconic representation of a number and of an addition can coincide. For instance, in the 9+7-example, the iconic notations of
10+6 and of 16 are identical.

is often abbreviated to log, and so, log(10) = 1, log(100) = 2,
and log(10 × 100) = log(1000) = 3. What this means is that
100 × 10 can be rewritten as 10log(100 × 10), which equals
10log(1000) and thus 103. Yet, importantly, using addition
rather than multiplication, 100 × 10 can also be rewritten as
10log(100)+log(10), which equals 102+1 and thus also 103. Likewise,
100/10 can be rewritten as 10log(100/10), which equals 101. Yet,
importantly, using subtraction rather than division, it can also
be rewritten as 10log(100)−log(10), which equals 102−1 and thus

also 101. In fact, powers and logarithms can transform any
multiplication or division into an addition or subtraction. So, to
avoid bringing more operators into play than necessary, James
algebra uses the iconic equivalents of powers and logarithms but
no equivalents of multiplication or division.

In symbolic mathematical notation, the interrelationships
between mathematical operations are not very apparent and must
be learned and stored in memory. Instead of a letter string like
“log” for logarithm or seemingly unrelated tiny superscript to
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A

B

C

FIGURE 6 | Definitions. In black on white (left), symbolic operations are shown
with their James-algebraic translations. In black or white on gray (right),
equivalent symbolic operations are shown with their full black-and-white
translations and shorthand versions. These shorthands are merely a
convenience and can at any time be replaced by their full versions. (A) Basic
operations. (B) Some operations derived from the basic ones. (C) Equivalent
fat notations of the exponent of an exponent of A and the logarithm of a
logarithm of A (white), as well as their negative versions (black). The logarithms
and exponents are assumed to have the same arbitrary base B. Lacking a
better alternative, variables are still represented by letters.

express the power of a number, James algebra expresses the power
or logarithm of a number by putting it into one or another
container. This is a rather arbitrary choice, but containers do have
the advantage of being concrete and easy to picture rather than
abstract and further removed from sensory experience (Figure 6,
right; Bricken, 2019a). Indeed, one could in principle use physical
containers (and physical mighty dice) instead of their depictions;
this might be an especially good idea to let very young children
get the hang of their use (Hutto et al., 2015; Tran et al., 2017).
Bricken presents various alternatives to containers, including
blocks, nodes in networks, and even entire rooms. These can
all be turned into physical objects, concrete electronic devices,
or immersive virtual-reality worlds. For writing convenience,
Bricken most often simply uses pairs of brackets that are merely
suggestive of containers. A pair of square brackets, for example,
serve as a logarithm operator, a pair of round ones as a power
operator (Supplementary Figure 1). Note, however, that round
brackets also appear, with a different meaning, in the depth-value
notation of numbers (Figure 3). To allow an unambiguous use of
the depth-value notation within James algebra, and also to reduce
container nesting and enhance readability, I therefore propose an
alternative notation that extends the previous section’s black-and-
white one.

The extended black-and-white system relies on two
independent binary operators (Figure 6; for an alternative
notation, see Supplementary Figure 1). One is a container
operator that either takes the logarithm of a number (by putting
this number into an upright container) or raises it to a power
(by putting it into an upside-down container). The other is
a contrast operator that gives a number a value that is either
positive (light) or negative (dark). If color can be used, upright
containers could, instead of black or white, be yellow or blue
(easily distinguished by almost all colorblind people). This
would enhance the perceptual difference between upright and
upside-down containers and thereby improve readability (see
Supplementary Figures 3, 4). Alternatively, hue could also be an
interesting option for exploitation as a third operator, should one
be desired. In this case, the same container could concurrently
express three different operators with its orientation (upright vs.
upside down), contrast (light vs. dark), and hue (yellow vs. blue,
whereby brown counts as dark yellow).

I will assume that numbers only exist in combination with
their operators, just like −1, as a negative number, cannot exist
without the negation operator and 1/2, as a rational number, not
without the division operator. Because the container operator
is assumed to be binary (as simple as possible and easy to
implement in electronic devices), it can only take a logarithm or
raise a number to a power, it cannot in addition leave a number
unmodified. Yet taking the logarithm of a number (by putting
the number into an upright container), and raising the result to a
power (by putting the upright container with its content into an
upside-down container), gives us something equivalent to A. For
convenience and for short, I will label this A-equivalent simply
“A” (Figure 6, “shorthand”-column). Conversely, first raising a
number to a power and then taking the logarithm of the result
also gives us something equivalent to A, which I will therefore
also label “A.”

In this line of thought, the mighty-dice numbers should all be
considered shorthands. In fact, it is possible to even define the
number 1 as an empty upside-down white container (Figure 7;
see also Bricken, 2019a); its equivalent in symbolic terms is
B0, which—regardless of the value of B—equals 1. Similarly,
considering that the logarithm of smaller-and-smaller positive
numbers approaches negative infinity, one can define −∞ as a
completely empty white upright container and∞ as a completely
empty black upright container (see also Bricken, 2019a).

The contrast operator only affects the outer container of a
number or mathematical expression, not the container’s contents.
This procedure avoids confounding numbers and expressions
that need to be distinguished, like for example −A and – –A
(Figure 6). Note that, in the black-and-white notation, iconic
A and iconic –A differ only in contrast, not in container
type; and iconic BA and iconic log(A) only in container type,
not in contrast. This demonstrates the independence of the
contrast and container operators. In principle, instead of two, just
one operator would suffice—an operator that “marks” a single,
fundamental distinction between yin and yang, so to speak,
between something and nothing, contained and uncontained,
black and white, and—in electronic devices—on and off
(Spencer-Brown, 1969; see also Kauffman and Varela, 1980;
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FIGURE 7 | Iconic math’s axioms and a few iconic theorems. (A) The axioms of James algebra (slightly altered) shown in black-and-white notation (left) and
accompanied by a symbolic interpretation (right). The first line says that 1+1>1, which means 1+1 adds up to more than 1 (namely, 2). It follows that 1+1+1 adds up
to even more (namely, 3) and so on. (B) Iconic theorems and additional ones added by me myself, derived from the iconic axioms shown in (A) and accompanied by
symbolic interpretations. In the last additional iconic theorem, an A with a dot as a subscript should be read as A1, meaning the first copy of A, and An and Am as the
nth and mth copies of A. Intervening dots stand for intervening copies of A. So, the theorem shows n copies of A in the first upright container and m copies of A in
the second one.

Kauffman, 1995; Bricken, 2019a,b, 2021). However, reducing
operator types tends to come at the price of more container
nesting or otherwise reduced readability (Bricken, 2019b,
Chapter 20.5). For this reason, I will stick to a two-operator
system here (see also Kauffman, 1995; Bricken, 2019b). All
permissible transformations of iconic mathematical expressions,
as well as the meaning of addition, are spelled out in the
axioms and theorems provided in Figure 7 (for a proof of
the last additional theorem, see Supplementary Figure 2).
The application of these axioms and theorems is illustrated
with basic arithmetic examples in Figures 8–10 and with an
algebraic example in Figure 10C (for another example, see
Supplementary Figure 2).

Although James algebra does not use multiplication or
division in any explicit way, its iconic power-and-logarithm
equivalents of these operations are nonetheless easily interpreted
in terms of multiplication and division. For example, two or
more white upright containers nested within one white upside-
down container represent a multiplication (see the 4× 2-example
in Figure 8). These white upright containers can also be seen
as the numerator of a division in which any black upright
containers take the role of denominators (see the rest of Figure 8).
Iconic formulations, unlike symbolic ones, are thus often easy to
interpret in multiple, mathematically equivalent ways, bringing
more clearly to the fore the interrelationships between these
different interpretations (Figures 8–10).

Powers and logarithms in James algebra differ a little from
those most used in symbolic mathematics. In Bx and logB(x),

B is the base of these expressions. It so happens, however, that
expressions like these can always be rewritten in a form in which
the base can have any arbitrary value rather than just a single
specific one. For example, log4(16) = logB(16)/logB(4) regardless
of the value of B. To keep things simple, James algebra therefore
only uses “base-free” expressions in which, for example, log4(16)
is replaced—without ever mentioning any base—with an iconic
equivalent of logB(16)/logB(4) that does not use explicit division
(Figure 9C; see also Figure 10C).

All beginnings are a challenge, and already familiar symbolic
mathematics will, of course, be easier than as yet unfamiliar iconic
mathematics. To compare them fairly, therefore, put yourself in
the shoes of someone to whom both are new. Imagine you know
nothing and have to start from scratch.

Iconic Imaginary Numbers and
Trigonometry
James algebra can deal not only with mundane topics but also
with exotic ones that might seem more challenging to bring
down to earth. For example, due to their particular graphical
nature, iconic mathematical expressions can sometimes look
a bit like modernistic paintings. It is symbolic mathematics,
however, that produced a gravity-defying equation that many
consider conceptual art: eiπ + 1 = 0 (Euler’s identity). The
formula relates to one another no fewer than five mysterious
numbers. The first two are 0 and 1, which have rather unusual
properties (Bricken, 2019b, 2021). The next two are e and π, two
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FIGURE 8 | Iconic multiplication and division. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of each next step toward a
problem’s solution (left), the step itself (middle), and a symbolic interpretation (to avoid excessive clutter, the last example has only a few, key symbolic
interpretations). The last example shows how to deal with relatively large numbers and with a division’s irreducible remainder. All logarithms and exponents are
assumed to have the same arbitrary base.

numbers that, by definition, are impossible to express as rational
ones, and are thus considered irrational, and that cannot even
be described with elaborate algebraic operations and are thus
also considered transcendental. The letter e stands for “Euler’s
number” (the base of the “natural” logarithm, discovered by
Bernoulli rather than Euler) and the Greek letter π for the ratio
of a circle’s perimeter to its diameter. The fifth number is i,
an imaginary number defined as i =

√
–1. Because i2 = −1,

the number i is an imaginary solution to such equations as
x2 + 1 = 0.

A less well-known imaginary number that is also associated
with Euler’s identity is J, defined as J = log(–1). Defying common
sense, J turns out to be a nonzero solution of the equation
x + x = 0. Substituting x with J, the equation becomes J +
J = log(–1) + log(–1) = log(–1 × –1) = log(1) = 0 (for an iconic
proof, see Figure 10; see also Bricken, 2021). Thus, although J
is nonzero and therefore certainly counts for something, two Js
together add up to nothing (in iconic math) or zero (in symbolic
math). Adding two Js together is like going around a circle 180◦
(something) and then another 180◦ (something) to get back to
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FIGURE 9 | Iconic exponentiation and taking iconic logarithms and roots. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of
each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). In the first example, the logarithm’s base has been left
unspecified and the final result cannot be computed. In the third, a base has been specified in the symbolic version, and a base-free equivalent of it in the iconic
version; now the final result can be computed.

0◦ (nothing) or like taking a step toward a mirror and then
an imaginary step into the mirror, which reflects you back to
where you came from—square zero (Bricken, 2021). Although

two Js add up to nothing, J can nonetheless function as the very
cornerstone of arithmetic, as all other numbers can be derived
from it, in particular those that are candidate foundational
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FIGURE 10 | Imaginary number J. (A) An iconic proof of the fact that x = J is a solution of the equation x + x = 0, with, based on Figure 7 axioms and theorems, the
justification of each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). (B) An iconic definition of J and iconic
definitions, exclusively in terms of J, of the other candidate foundational numbers: –1, 0, 1, and i. (C) An iconic proof of the fact that x = JB solves the equation Bx +
1 = 0, with B being any arbitrary base, which for example can be e. Note that mixing real and imaginary numbers is subject to restrictions (Bricken, 2021), and to
prevent inconsistencies, the last axiom in Figure 7 is not used here.

numbers themselves (Figure 10B; Bricken, 2021). Importantly,
just like log2(–1) solves the equation 2x + 1 = 0 and log3(–1)
the equation 3x + 1 = 0, loge(–1) solves the equation ex + 1 = 0.
This means that eiπ + 1 = 0 (Euler’s identity) is a special case of
Bx + 1 = 0, popping up when B = e and x = Je = loge(–1) = iπ
(for iconic representations of i, J, and JB see Figure 10; for iconic
representations of i, π, e, and Euler’s identity, see Bricken, 2021).

Euler’s identity is better known as a special case of not Bx +
1 = 0 but Euler’s equation: eiα = cos(α) + i sin(α), emerging when
α = π. Euler’s equation implies that all three of the fundamental
functions of trigonometry can be expressed as exponential ones
instead: cos(α) = (eiα + e−iα)/2, sin(α) = (eiα

− e−iα)/2i,
tan(α) = sin(α)/cos(α). This, in turn, means that James algebra
needs no other tools than those already discussed to be able
to deal with trigonometry (Bricken, 2021). Very little extra is

needed, in fact, to allow it to handle differential calculus as well
(Bricken, 2021). This goes to show that there is no reason to
dismiss out of hand the idea that, in principle, all of mathematics
can be iconized.

BENEFICIARIES: HYPERCALCULICS
VERSUS DYSCALCULICS

Now that the background and nuts and bolts of iconic
mathematics have been laid out, the question arises who stands
to benefit from this alternative, more concrete, more grounded
system of mathematics. Who needs it and why? I lay out
how a comparison between the broader psychological profiles
of hypercalculics and dyscalculics suggests that the people
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traditional mathematics leaves behind tend to have a problem
that, compared to symbolic mathematics, iconic mathematics is
better equipped to handle.

The Problem
Intriguingly, whereas some intellectually disabled “savants” can
effortlessly perform extraordinary calculations off the top of their
heads (Treffert and Christensen, 2005; Baron-Cohen et al., 2007;
Bor et al., 2007; Crespi and Badcock, 2008; Badcock, 2009, 2019;
Heavey et al., 2012; van Leeuwen et al., 2020), quite a few properly
schooled and otherwise intelligent people can hardly manage
any math at all. About 3–6% of otherwise normal children, for
example, are afflicted with dyscalculia and have unusually poor
numerical skills (Dehaene, 2011; Kucian and von Aster, 2015;
Butterworth, 2019; see also Kaufmann et al., 2013). Dyscalculics
find it difficult to estimate quantities, understand what numbers
mean, and perform basic calculations (Kucian and von Aster,
2015). Children with mathematical learning disabilities, who may
have dyscalculia, run into trouble in telling ways (Geary, 2011).
To solve the equation 5 + 3 = ?, for example, one can count
five times “1, 2, 3, 4, and 5” and then three more times: “6, 7,
and 8.” This method tends to be preferred by the least talented
children. A quicker method lets one start from 5 right away
and then count only “6, 7, and 8.” Unlike most of their peers,
however, some children undercount with “5, 6, and 7.” Others,
trying to subtract a larger number from a smaller one, arrive
at 83−44 = 41, subtracting 4 from 8 but 3 from 4 rather than
the converse, or they misunderstand “borrowing” and arrive at
92−14 = 88 rather than 78.

The Proximate Cause
The problems of dyscalculics appear related to temporary or
permanent weaknesses in one or more cognitive or perceptual
domains (and deficits in associated brain regions; Dehaene, 2011;
Geary, 2011; Kaufmann et al., 2013; Kucian and von Aster,
2015; Rapin, 2016; Menon and Chang, 2021). The problems
concern visual-spatial ability, hence numerical representation;
working memory and attention, hence mathematical reasoning
and the maintenance and manipulation of quantities (see also
Friso-Van den Bos et al., 2013); semantic memory, hence the
storage of mathematical facts; and procedural memory, hence
the acquisition of mathematical skills, as opposed to knowledge
(see also Ullman et al., 2020). Some doubt has even been cast
on ordinary people’s mnemonic abilities. At remembering briefly
presented symbolic numbers, in fact, most of us are far worse
than a well-trained chimpanzee (Matsuzawa, 2009; to take the
test, search “chimpanzee memory” on YouTube). Of note, in any
case, is that there is substantial comorbidity between dyscalculia
and other disorders, in particular dyslexia—delayed and deficient
reading despite an otherwise normal cognitive ability (Geary,
2011; Butterworth and Kovas, 2013; Kucian and von Aster, 2015;
Ullman et al., 2020).

The talents of hypercalculics are accompanied by a mirror
opposite psychological profile to that of dyscalculics. Kim Peek,
for example, who inspired the movie “Rain man,” was able to
tell within seconds the day of the week on which people were
born (superior calculation skill) and remember the contents

of more than 9,000 books (superior memory), which he read
at a speed of about 9 s per page (hyperlexia: high-speed and
precocious reading) (Treffert and Christensen, 2005; Badcock,
2009, 2019; see also Heavey et al., 2012). In contrast, he had
poor communication skills, was socially inept, and could not live
without his father’s constant help (Treffert and Christensen, 2005;
Badcock, 2009, 2019).

Much better adjusted to society, but like most hypercalculics
diagnosed with autism (although only in its mild form of
Asperger’s) is the savant Daniel Tammet (Baron-Cohen et al.,
2007; Bor et al., 2007; Badcock, 2009, 2019; van Leeuwen
et al., 2020; see also the BBC documentary “The boy with the
incredible brain”). Tammet can learn a new language in a week,
perform complex mental calculations in seconds, and recite
22,514 decimals of the number π. To Tammet, abstract numbers
are not really abstract; they evoke in him percepts of concrete
shapes—a form of synesthesia (sensory experience unprovoked
by commensurate sensory input), which is a condition associated
with autism (Baron-Cohen et al., 2007; van Leeuwen et al., 2020,
2021). According to Tammet, it is the phantom number-shapes he
sees that help him pull off his startling numerical feats. Whether
other hypercalculics also visualize abstract numbers in concrete
ways is currently unknown but several studies confirm that
synesthesia does influence the processing of not only concrete
numerosities but also abstract numbers (for a brief review, see
Gertner et al., 2013).

The Ultimate Cause
According to the diametric theory of genomic imprinting,
people’s mental strengths and weaknesses are shaped by a
tug of war between their parents (see Bressan and Kramer,
2021 and references therein, including especially Crespi and
Badcock, 2008; Badcock, 2009, 2019; Del Giudice et al., 2010;
Crespi, 2020; see also Úbeda, 2008; Úbeda and Gardner, 2015;
Mokkonen et al., 2018). As parents bestow their genes onto
their children, some of these genes are turned on and others
off. Remarkably, in the case of so-called imprinted genes, the
maternally and paternally inherited copies show a diametrically
opposite pattern of activation and silencing (Moore and Haig,
1991; Haig, 2010; Kotler and Haig, 2018). Genomic imprinting
likely evolved for the benefit of the individual parent rather than
their offspring (and possibly also to turn off viral DNA that is
permanently embedded within the offspring’s own DNA; Kramer
and Bressan, 2015). As it normally leaves the genes of only
one parent expressed, imprinting locally annuls the offspring’s
benefit of inheriting genes from two parents rather than just
one. Much the same is true for sex chromosomes, especially in
men (Xirocostas et al., 2020). Compared to others, imprinted
genes and sex chromosomes are indeed disproportionately
often implicated in both physical and mental disease, most
prominently in pairs of syndromes that are genetically related
but have roughly opposite physical and behavioral characteristics
(Bressan and Kramer, 2021).

Some imprinted genes promote the offspring’s consumption
of maternal resources during gestation (Moore and Haig, 1991;
Haig, 2010; Kotler and Haig, 2018) and the growth of parts of
the brain that allow one to deal with the physical environment
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(Bressan and Kramer, 2021). The paternally inherited copies
of these genes tend to be turned on and the maternally
inherited ones off. Some imprinted genes promote the growth
of parts of the brain that allow the offspring to deal with
its social environment, which also facilitates its ability to
take the mother’s directions. The maternally inherited copies
of these genes tend to be turned on and the paternally
inherited ones off. A relatively strong semantic memory for
facts (including technical ones) but weak episodic memory
for events (including social ones) tends to emerge whenever
paternal imprinting dominates; the opposite whenever maternal
imprinting does (Bressan and Kramer, 2021). A paternal
imprinting bias is associated with a tendency toward autism-
spectrum disorders, which besides autism includes hyperlexia
(Ostrolenk et al., 2017), despite that other verbal skills tend
to be poor. A maternal bias, instead, is associated with a
tendency toward psychosis-spectrum disorders, which besides
schizophrenia includes dyslexia, despite that other verbal skills
tend to be good. Dyslexia is frequently comorbid with dyscalculia
and savantism with hypercalculia. This circumstance leads one
to suspect that dyscalculia may be a psychosis-spectrum feature
and hypercalculia an autism-spectrum one. In fact, because of
its strong association with autism, savantism is frequently called
“autistic savantism.”

Even disregarding full-blown mental disorders, individuals
with just a slight tendency toward autism are more likely to
be interested in math, and to be better at it, than individuals
with a slight tendency toward psychosis (Bressan and Kramer,
2021). Among people with an autistic tendency, there are
relatively many men (Bressan, 2018) and, among those with
a psychotic tendency, relatively many women (Bressan and
Kramer, 2021). Overall, men do not outperform women in
math, but among the best performing are relatively many
men (Wang and Degol, 2017). Moreover, better math than
verbal performance predicts greater affinity with, and success
in, math and the physical sciences (Wang and Degol, 2017;
see also Su et al., 2009). Parental and societal expectations
and pressures seem important (Wang and Degol, 2017) but
the reason behind their existence is still unclear. In fact,
countries with the greatest gender equality in such things as
income, parliamentary seats, and academic enrollment (Norway,
Sweden, and Finland) do not have the highest, but the lowest,
percentage of women with college degrees in mathematics and
the physical sciences compared to other disciplines (Stoet and
Geary, 2018, 2020). What the dyscalculia and hypercalculia
research and the diametric theory together suggest, in any case,
is that math ought to be easier for the least talented among
us if it were less of a burden on reading ability and (non-
episodic) memory.

The Solution
Requiring no reading and hardly any memorization, the abacus
accommodates these needs perfectly. No wonder it has been
in continuous use for more than 4,000 years (Ifrah, 2001).
Interestingly, learning to perform mental calculations with
an imaginary, rather than a real, abacus has been associated
with functional and structural changes in visuospatial and

frontoparietal areas of the brain, with related improvements
in working and short-term memory, numerical magnitude
processing, and calculation performance (review: Wang, 2020;
recent papers: Lu et al., 2021; Zhang et al., 2021) as
well as with a reduction in dyscalculia (Lu et al., 2020).
Several studies found a greater practice effect of abacus-
based mental calculation than of additional course work in
symbolic mathematics (Wang, 2020). When they compare
which of two abacus depictions has more beads, children
trained in abacus-based mental calculation are distracted by
the beads’ positions on the abacuses’ rungs (Du et al.,
2014). These positions are task-irrelevant but do affect the
beads’ numerical value. The finding thus demonstrates that
bead arrangements can fully automatically invoke associations
with cardinality.

The abacus is ill-suited to dealing with powers and logarithms
and cannot handle algebra. As a sophisticated kind of abacus,
iconic mathematics is much more versatile; yet it can be seen as
a natural extension of the abacus and it still mimics the features
that brought the abacus success.

DISCUSSION: MAIN BENEFITS OF
ICONIC MATHEMATICS

To better understand mathematics, it can help to change one’s
perspective of it. The solution of many an algebraic problem, for
example, seems more apparent when this problem is rephrased
as an equivalent geometric one. Likewise, that nonzero numbers
can add up to zero is difficult to wrap one’s head around, until
one thinks of them as steps along a circle that bring you back
to where you came from. Iconic mathematics offers a different
perspective on math than symbolic mathematics does, and this
can be instructive for the same reason. Changing perspective also
helps keep one’s mathematical thinking flexible.

It is often said that mathematics needs to be understood
rather than learned by heart. The more exotic the math, however,
the less intuitive its axioms, and more generally, theorems
only make sense if one manages to recall their derivations,
which can be a tall order. In fact, as laid out in the previous
section, remembering abstract mathematical facts that on the
surface may seem senseless is a major challenge to those who
underperform in math. Iconic mathematics can help out by
making mathematical expressions more concrete, more intuitive,
easier to picture, or even more tangible, and thus—for all these
reasons—more memorable.

Like a game of chess or checkers, math is a rule-based game.
The rules of chess and checkers are quite arbitrary. To be able
to play, however, one need not make sense of these rules, one
merely needs to accept them, get used to them, make them second
nature. Some games are, of course, easier to learn than others,
and the game of mathematics is quite complex and requires
extensive training. Whether in a game-like simulator or for real,
flying an airplane is complex and requires extensive training too.
Yet it is understood that what suffices to avoid accidents are
neither technically perfect airplanes nor optimal pilot training;
to keep them in the air, airplanes need to be designed to respect
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their pilots’ perceptual, attentional, and cognitive limitations.
Human factors research has, in fact, greatly improved the design
of airplanes and countless other products. Yet, although the faulty
use of mathematics can certainly have disastrous consequences,
math’s ergonomic design is hardly ever questioned. We put all
our eggs in the basket of education and hope for the best. No
wonder that even for many intelligent and properly schooled
individuals, math is not a pair of wings but merely a plane
crash waiting to happen. Iconic mathematics, instead, offers
hope that we may be able to mold not only users’ brains to
the requirements of mathematics, but also mathematics to the
requirements of users’ brains.
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