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Abstract: Real-time connectivity and employment of sustainable materials empowers point-of-care
diagnostics with the capability to send clinically relevant data to health care providers even in
low-resource settings. In this study, we developed an advantageous kit for the on-site detection of
carcinoembryonic antigen (CEA) in human serum. CEA sensing was performed using cellulose-
based lateral flow strips, and colorimetric signals were read, processed, and measured using a
smartphone-based system. The corresponding immunoreaction was reported by polydopamine-
modified gold nanoparticles in order to boost the signal intensity and improve the surface blocking
and signal-to-noise relationship, thereby enhancing detection sensitivity when compared with bare
gold nanoparticles (up to 20-fold in terms of visual limit of detection). Such lateral flow strips showed
a linear range from 0.05 to 50 ng/mL, with a visual limit of detection of 0.05 ng/mL and an assay
time of 15 min. Twenty-six clinical samples were also tested using the proposed kit and compared
with the gold standard of immunoassays (enzyme linked immunosorbent assay), demonstrating an
excellent correlation (R = 0.99). This approach can potentially be utilized for the monitoring of cancer
treatment, particularly at locations far from centralized laboratory facilities.

Keywords: lateral flow immunoassay; carcinoembryonic antigen; cancer diagnosis; smartphone-
based sensors; point-of-care testing

1. Introduction

Cancer is the main cause of morbidity and mortality around the world, with an
approximated 18.1 million recent patients and 9.6 million deaths in 2018 [1]. Despite the
significant progress in cancer treatment in recent years, the current methodologies have
still failed to reach completely satisfactory results, mainly due to late detection. Hence, the
early diagnosis of cancer via the quantification of some biomarkers can be considered the
golden step for its timely treatment, since it increases the successful treatment rate and,
consequently, reduces the related costs and health burden. Moreover, the monitoring of
cancer biomarkers is necessary during the treatment process, which further intensifies the
importance of the development of on-site diagnostic devices [2].

The carcinoembryonic antigen (CEA) is a collection of glycoproteins that are usu-
ally produced for the duration of fetal development, but its production ends prior to
birth. Its increase is mostly utilized as a tumor marker to monitor the treatment of col-
orectal carcinoma or other carcinomas, to recognize recurrences, and for the staging of
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tumors [3]. Enzyme-linked immunosorbent assay (ELISA) [4], radioimmunoassay [5],
chemiluminescence immunoassay [6], and chemiluminescent enzyme immunoassay [7]
are the conventional methods for CEA quantification. However, these methodologies are
mainly based on expensive devices and time-consuming procedures, and require skilled
personnel, hindering their widespread application for patient monitoring—especially at
the point-of-care, as well as in resource-limited settings. Therefore, the development of
easy-to-use, fast, affordable, but efficient cancer diagnostic methods obviating the need
for sophisticated, expensive, bulky equipment and skilled technicians is still in high de-
mand [8,9].

The ASSURED criteria, proposed by the World Health Organization (WHO) in
2003 [10], are a collection of conditions for the ideal tests that can be employed at all
levels of health care systems. These criteria emphasize that the ideal diagnostic devices
should be affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free,
and deliverable to the end-users. However, subsequently, Peeling et al. added two further
criteria—real-time connectivity (R), and ease of specimen collection (E)—to the afore-
mentioned conditions, so that these REASSURED criteria enable real-time monitoring
of patients by diagnostic systems and enhance the efficiency of health care systems [11].
In this context, lateral flow immunoassays (LFIAs) are simple-to-use immunochromato-
graphic test strip devices with broad applications in clinical analysis, food safety control,
environmental monitoring, and drug-abuse assessment [12], which satisfy the WHO’s
ASSURED criteria to some extent. Interestingly, the integration of smartphone technology
with LFIAs can effectively promote their further potential applications through meeting the
real-time connectivity (R) criterion. Benefiting from simplicity and portability, a plethora of
smartphone-based (bio)sensing platforms have been reported for the detection of various
analytes [13]; however, little attention has been paid to the detection of cancer biomark-
ers [8]. Although some LFIAs have been developed recently for CEA quantification using
quantum dot beads [14,15] and magnetic nanoparticles [16,17] as tags, those studies do not
satisfy the REASSURED criteria completely. Meanwhile, despite the broad applications of
bare gold nanoparticles (GNPs) as the most straightforward tags in LFIAs, these tags suffer
from two traits: (1) the low efficiency of formed immunocomplexes due to the random
orientation of antibodies (Abs) prepared by passive adsorption, and (2) their bright-red
color, which impedes their visual detection and the interpretation of results—especially
in target concentrations near to the limit of quantification—even for analysis via strip
readers [18]. To remedy this issue, the traditional strategy involves the application of
thiol-containing linkers that bind spontaneously to the surface of GNPs and remain an
active carboxyl or amine group for subsequent covalent coupling to Abs [19]. The other
approach is the utilization of functional polymers for the encapsulation of GNPs, which not
only stabilize nanoparticles, but also provide an active layer for subsequent immobilization
of Abs. In this regard, Xu et al. [20] modified the surface of GNPs with a polydopamine
layer (GNP@PDA) and used it in a competitive-type LFIA for the sensitive detection of
zearalenone in maize, where there was an indirect relation between the visual signal and
the target concentration. To the best of our knowledge, the efficiency and behavior of the
GNP@PDA tag has not been investigated in a sandwich-type LFIA, and its advantageous
quantification via smartphone-based module has not yet been reported.

Herein, a highly sensitive sandwich-type GNP@PDA-based LFIA was developed for
the quantification of CEA in sera. The GNPs were first synthesized via the Turkevich
method, and then coated with a nanolayer of polydopamine, via the self-polymerization
of dopamine in alkaline media, to act as an antibody immobilization layer. By employing
GNP@PDA as a tag, in the presence of CEA, sandwich immunocomplexes were formed at
the test zone, providing a slightly dark-red color proportional to the concentration of the
target. In addition, the fabricated plasmonic LFIA was further coupled with a 3D-printed
smartphone-based colorimetric imaging device to capture digital images of the strips’ test
zones and, subsequently, to quantify the target concentration via a detection algorithm
with a self-developed smartphone app. The developed platform provides a cost-effective,



Biosensors 2021, 11, 392 3 of 13

easy-to-use, portable smartphone-based LFIA kit for the quantification of CEA in serum
samples down to 0.05 nM, and satisfies the REASSURED criteria, for which it needs only
to capture an image of the test zone to show the respective concentration of the target in a
sample.

2. Materials and Methods
2.1. Reagents and Instruments

Hydrogen tetrachloroaurate (III) hydrate (HAuCl4 ·3H2O), trisodium citrate
(Na3C6H5O7·2H2O), Tween-20, bovine serum albumin (BSA), and dopamine hydrochloride
(DA·HCl) were all purchased from Sigma-Aldrich. The MF1 membrane was obtained
from Whatman International Ltd. (Maidstone, UK). The mouse monoclonal antibody
(MAB1393) and goat polyclonal antibody (PAB7939)—both against human CEA—were
obtained from Abnova (Taipei City, Taiwan). Based on the manufacturer’s information,
these Abs are specific to human CEA, and have no cross-reactivity with human nonspecific
cross-reacting antigen (NCA, NCA2) or biliary glycoprotein-l (BGP1). The stock solutions
of CEA involved in the CEA ELISA kit (MONOKIT)—solely or by dilution—were used as
targets. For the preparation of all solutions, Milli-Q-grade water was used. The components
of the strips—including pads (SP08, SCL0020215), nitrocellulose membrane (LFNC-C-SS03-
15 µm, JCN476015), and backing card (type-L)—were all acquired from Nupore Filtration
Systems Pvt. Ltd. (Ghaziabad, India).

The UV–Vis spectra of the solutions were recorded using Cytation 5 (BioTek, Winooski,
VT, USA) with a quartz microplate. The structure of synthesized GNP@PDA was observed
via transmission electron microscopy (TEM) with a 100 kV running voltage (Zeiss-EM10C-
Germany, Jena, Germany). The ζ-potentials were acquired using a Zetasizer Nano ZS
(Malvern Instruments, Malvern, UK). A smartphone containing a 13 MP rear camera
(Samsung galaxy C8) was utilized for image capturing and analysis. The Fourier-transform
infrared–attenuated total reflectance (FTIR–ATR) spectra were measured using an AVATAR
(Thermo Scientific, Minneapolis, MN, USA).

2.2. Synthesis of GNP@PDA

The GNPs were firstly synthesized via the conventional Turkevich method [21].
In brief, 50 mL of 0.01% HAuCl4 solution was heated until boiling, and then 5 mL of
0.04 mol/L sodium citrate was quickly added to it under stirring. After heating for 10 min,
the mixture was cooled down to room temperature with constant stirring. The obtained
colloidal gold was filtered with a 0.22 µm syringe filter and then kept in a dark bottle at
4 ◦C.

The GNP@PDA was then synthesized as stated by an earlier work [20], with some
modifications. In brief, the pH of the prepared GNPs (1 mL) was set to 7.5 by adding
0.1 mol/L K2CO3 solution, followed by the addition of 5 µL of 3% H2O2. Following
vigorous stirring for 5 min, 5 µL of freshly prepared DA·HCl solution (10 mg/mL) was
added to the solution and stirred for 1 h. The addition of dopamine and stirring were
repeated in order to control the graft polymerization of dopamine on the GNPs surfaces.
After centrifugation at 9000 rpm for 20 min and removal of the supernatant, the prepared
GNP@PDA was washed twice and re-suspended in borate buffer (0.005 mol/L, pH 7.5).

2.3. Preparation of GNP–mAb and GNP@PDA–mAb Conjugates

The mouse monoclonal antibody against human CEA (mAb) was conjugated to
the GNPs (OD = 1) or corresponding GNP@PDA via simple mixing [20]. To this end,
different values of mAb were added dropwise to 1 mL of GNPs or GNP@PDA solution,
and after gentle shaking at 4 ◦C overnight, the mixture was blocked with 2% BSA for 1 h.
Subsequently, via centrifugation at 9000 rpm for 20 min, the conjugates were re-suspended
in 50 µL of 0.005 mol/L borate buffer containing 5% sucrose and 1% BSA. The conjugates
were then kept in microtubes at 4 ◦C for further use.
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2.4. Preparation of the Lateral Flow Test Strips

Before assembling the strip components, the sample pad and conjugate pad were
pre-treated by dipping them in blocking solutions (0.005 mol/L borate buffer pH 7.5, 0.05%
Tween-20 for the former, and the same solution with 3% sucrose for the latter). The pads
were then dried out in an oven at 50 ◦C for 2 h. Thereafter, considering an overlap of
2 mm between the pads and the NC membrane, they were subsequently laminated onto
the backing card. Finally, the assembly was cut into strips with a 3.5 mm width. The
lengths of the sample pad, conjugate pad, NC membrane, and adsorption pad were 30,
5, 20, and 27 mm, respectively. The desired value of the conjugate was pipetted onto the
conjugate pad in each test. For the test zone (TZ), 0.2 µL of polyclonal antibody (pAb) (0.25,
0.5, 1 mg/mL), and for the control zone (CZ), 0.2 µL of 100 µg/mL Protein G (PG), were
pipetted. The ready-to-test strips were then dried at room temperature for 1 h and stored
for up to one week.

2.5. The Fabrication and Setup of the Smartphone-Based Colorimetric Imaging Device

The smartphone-based colorimetric imaging device was composed of two major
constituents: a strip cartridge, and an optical imaging box containing a cartridge-placing
section, USB cable, and smartphone-reading section (Figure S1). The strip cartridge was
designed to hold the strips within the imaging box, with reproducible sections of the TZ
being imaged with the camera. The optical imaging box was also composed of an internal
light source (high-power white LED, TOP-1BD1, from Epileds, Taiwan, with λ = 7000 nm,
light intensity 100–140 Lm, and forward voltage 3–3.4 V) and an electric circuit fixed on
a stand powered by municipal electricity along with an adaptor, or by the smartphone
itself; it was made with a 3D printer using acrylonitrile butadiene styrene polymer. The 3D
CAD file of the platform was first prepared using SolidWorks software. More details of the
design and dimensions are given in the Supplementary Materials (Figure S2). The total
cost of this platform was USD ~2.5 (Table S1).

2.6. The App Development

The smartphone app—TBZMed Sensor (Figure S3)—was planned for the Android
platform (version 7.1.1) in the Android studio environment and installed on a Samsung
Galaxy C8 smartphone. The app benefits from a user-friendly interface (Figure S3a,b) for
selecting and cropping the images of the test zone. For imaging, the strip was placed in
the strip cartridge and then inserted in the cartridge-placing section within the imaging
box. The light source was then turned on and an image was captured after setting the
camera to manual mode, autofocus, and zoom to 4×, and clicking on the strip on the screen.
After capturing the image and cropping the test zone with the same area for all samples,
the TBZMed Sensor extracted the RGB and grayscale values from the JPEG digital image.
Therefore, a calibration curve was first established based on the relationship between the
concentration of CEA in standard serum samples and the grayscale value of the TZ. To
this end, the area of interest within a TZ could be selected by a circle frame (Figure S3c),
and the color information of the selected area was then recorded. The mean values of the
R, G, B, and grayscale channels were calculated automatically. The calibration graphs for
standard serum samples were investigated and calculated in Microsoft Excel based on
different R, G, B, and grayscale data. Then, the best calibration equation was obtained, and
was entered into the TBZMed Sensor environment. The channel type was also saved in the
app environment (Figure S3d). Finally, the concentration of CEA in an unknown sample
could be calculated easily in ng/mL using the saved calibration curve in the app, by simply
capturing an image from the TZ and selecting the equation from the app (Figure S3e). In
addition, an image of the test result could be easily shared by clinking on the sharing icon
( ) for possible real-time connectivity (Figure S3f).
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2.7. Lateral Flow Immunoassay Procedure

The standard CEA solutions, or dilutions thereof, were used as targets by mixing
them with buffer or standard serum samples. Firstly, the assay procedure consisted of
dispensing 5 µL of sample solution onto the sample pad and then adding 60 µL of running
buffer (Tris buffer 0.05 mol/L, 0.05% Tween-20). After complete running of the test, images
were captured by the smartphone-based platform and then analyzed via the developed
app. The data were represented as mean ± SD for three replicates. The calibration graph
obtained for the serum samples was used for insertion into the app environment and
reading the concentrations of clinical samples. For serum and clinical samples, the sample
pad’s performance was improved by putting the MF1 membrane on it. According to the
manufacturer’s information, this pad is a bound glass-fiber filter that can be used for lateral
flow assays, and is typically used for whole-blood analysis.

2.8. Clinical Samples Analysis

This study was approved by the Medical Ethics Committee of Tabriz University of
Medical Sciences, Iran, and all methods were performed following the relevant guidelines
and regulations. The clinical serum samples were obtained from Shahid Ghazi Tabatabaei
Hospital of Tabriz, Iran, and included 12 positive samples and 14 negative samples. Real
and false negative samples were determined according to a report from the hospital during
a one-year follow-up of the patients’ conditions. The assay procedure for clinical sample
analysis was as described in Section 2.7. The values of CEA in clinical samples were
measured using a CEA ELISA kit (MONOKIT) in the hospital laboratory.

3. Results and Discussion

Scheme 1 displays the schematic diagram of CEA detection by the GNP@PDA-based
lateral flow immunosensor and its components (Scheme 1a). In the absence of CEA
(Scheme 1b), only a slightly dark red at the CZ was formed for the conjugate bound
to PG; however, in the presence of CEA (Scheme 1c), a GNP@PDA–mAb–CEA–pAb
immunocomplex was formed at the TZ, and GNP@PDA–mAb–PG was formed at the
CZ; hence, a slightly dark-red color appeared on them. The color intensity at the TZ was
recorded with the developed platform. A higher concentration of CEA in the sample
resulted in the stronger color intensity of the TZ up to the hook effect region, which then
turned to low signal intensities. Eventually, the results can be easily quantified via the
smartphone readout and subsequently shared via the Internet with a physician, family,
and or even emergency services (Scheme 1d).

3.1. Characterization of GNP–mAb and GNP@PDA–mAb Conjugates

The physicochemical properties of nanoparticles and nanobioconjugates have a con-
siderable effect on the performance of the test strip. The full characterization of these
nanostructures is given in the Supplementary Materials, Section S2 and Figure S4, showing
successful functionalization of GNPs by a nanometer layer of PDA. The average ζ-potential
for GNPs is −15.6 ± 1.4 mV, which is reduced by the formation of the PDA layer around
them, reaching as low as −29.2 ± 2.3 mV. This is mainly attributed to the abundance of hy-
droxyl groups in the PDA layer [20]. After the immobilization of Abs on the nanoparticles’
surface, due to the positive charge of Abs at pH 7.5, the ζ-potential is increased slightly
(−28.0 ± 1.6 mV). Using Tukey’s multiple comparisons test clearly shows significant differ-
ences between the zeta potential values obtained for all materials except for GNP@PDA
and GNP@PDA–Ab, which showed no significant statistical differences (p-value = 0.7095)
(See Section S2, Table S2 in the Supplementary Materials), possibly due to the small values
of Ab compared to the PDA layer. The TEM image of GNP@PDA (Figure S4f) shows a thin
layer of PDA with lower contrast (~2 nm) around the GNPs, indicating that the structure
of the GNP@PDA is core–shell with an average diameter of ~27.49 ± 7.6 nm.
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3.2. Optimization of Effective Factors on the Performance of the Developed Smartphone-Based
LFIA Kit

The blocking of sample and conjugation pads, the type of running buffer, the amount
of mAb immobilized on the GNP@PDA, the amount of GNP@PDA–mAb dropped on the
conjugation pad, the amount of pAb at the TZ, and the reading time are some of the most
important factors that impact on the performance of our developed LFIA kit. Hence, the
effects of the mentioned parameters were investigated and, subsequently, the optimal levels
were used for the next experiments. The optimization results and further descriptions are
given in Section S3 of the Supplementary Materials, and in Figures S5 and S6. The results
show that blocking of the sample pad with 0.005 mol/L borate buffer pH 7.5 containing
0.05% Tween-20, and the conjugate pad with 0.005 mol/L borate buffer pH 7.5 containing
0.05% Tween-20 and 3% sucrose, are necessary for the successful functioning of the strips.
Among the three buffers—including borate (0.005 mol/L, pH 7.5), phosphate (1X, pH 7.4),
and Tris (0.005 mol/L, pH 7.5), all with 0.1% Tween-20—the third one showed a good
flow rate and the least nonspecific adsorption of conjugates on the TZ. The amount of
mAb immobilized on GNP@PDA affects the immunosensor performance in two ways:
Firstly, sufficient mAb on the nanoparticles is necessary in order to be able to form immuno-
sandwich complexes on the TZ. Secondly, the high amounts of mAb cause steric hindrance,
or even capture more target molecules and prevent their immunocomplex formation within
the TZ [22]. The values of 3.2 and 6.41 µg per mL of GNPs/PDA showed favorable behavior
in the analysis of buffer and serum samples, respectively. The volume of the conjugate also
played a critical role in the assay—by its increase, the signal at the TZ was increased, but the
background signal was also boosted. Hence, 2.5 µL of the probe was selected as the optimal
level. The amount of pAb at the TZ is essential for the efficient capturing of GNP@PDA–
mAb–CEA immunocomplexes; its performance was increased until the advent of steric
hindrance at 0.5 mg/mL, which reduced the immuno-sandwich formation. Therefore,
0.5 mg/mL was selected as the optimal value for the amount of pAb at the TZ. Since the
contrast of the TZ was decreased over time because of the drying of the membrane, the
images should be captured within 2 min after completion of the test. For better comparison,
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the performance of GNPs as tags was examined under the same conditions obtained for
GNP@PDA.

3.3. Analytical Performance of the Developed Smartphone-Based LFIA Kit

The citrate-capped GNPs show bright-red color; in contrast, the color of GNP@PDA is
slightly darker due to the black color of PDA self-polymerized by dopamine on GNPs in
an alkaline medium. Moreover, the PDA layer enables more efficient immobilization of
Ab on the tags’ surface. These advantageous features can boost the signal intensity and
detection sensitivity. To check this, a comparison was first made between the utility of
GNPs and GNP@PDA tags in the visual analysis of CEA via the strips in the buffer. Under
the optimized conditions, the same volumes of CEA at various concentrations were added
to the strips, and the visual signals from the TZ were assessed. As seen in Figure 1a,b, the
dots formed at the TZ for strips prepared using GNP@PDA as a tag have a slightly darker
red color compared to strips prepared using GNPs alone and, interestingly, the visual limits
of detection for GNPs and GNP@PDA as tags are 1 and 0.05 ng/mL, respectively. This
observation proves the better efficiency of GNP@PDA as tags in a sandwich-type lateral
flow test strip compared to GNPs, with 20 times reduction in the visual limit of detection.
Another advantage of GNP@PDA compared to GNPs is its better surface blocking and,
hence, lower background signal, which enhances the sensitivity and reduces the limit of
detection. Such improved blocking behavior may be a result of the interaction of BSA
with PDA chains anchored on the surface of GNPs. The hook effect was observed for
concentrations higher than 125 ng/mL for GNPs, compared to 50 ng/mL for GNP@PDA.
This is a common phenomenon in sandwich-type LFIAs because of the occupation of
fragment antigen-binding sites for both capture and reporting of Abs in the presence of
high concentrations of the target, which reduces the immunocomplex formation and, hence,
deceases the color of the TZ [23]. This is also an important issue in the use of commercial
CEA strips. As for commercial strips, herein, in the case of suspicious samples, the user
could dilute the sample and re-check it by strip. If the signal increased after dilution of
the sample, this showed the high concentration of CEA and the occurrence of the hook
effect. Therefore, the user should consider the result obtained for the diluted sample to be
a correct answer.

Visual detection of LFIA results suffers from some limitations: firstly, the user’s
eyesight impacts on the reading of the TZ, and can become challenging, especially at
low concentrations of analyte; secondly, different environmental illumination conditions
affect the interpretation of colors and results [24,25]. However, the imaging box developed
herein provides constant lightning conditions, and the smartphone quantification platform
provides quantitative results in a facile way, preventing the user’s eyesight error. Since
the matrix of real samples is more complex than the buffer, the same quantitative studies
performed with the buffer were conducted in standard serum samples containing the
desired values of CEA, with GNP@PDA as a tag, to obtain the desired calibration curve.
The images of strips and the calibration curve are given in Figure 1c. After elucidating
various calibration curves for the color intensities of the R, G, B, and Gray channels vs. the
concentration of the target, as seen in Figure 1c, a logarithmic relationship was obtained
between the concentration of CEA in serum and the (1/Gray value)*10,000 in the range of
0.05–50 ng/mL with R = 0.99. The relative standard deviation values were in the range
of 2.5% to 12.5%, confirming the good reproducibility of the results. For concentrations
higher than 50 ng/mL, the hook effect was observed. Trials for concentrations lower than
0.05 ng/mL failed to show considerable changes compared to the buffer, clearly showing
the effect of corona formation in serum samples, as stated elsewhere [26].
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Figure 1. Images of strips taken without the imaging platform: (a) GNPs and (b) GNP@PDA as tags for different values of
CEA in buffer solution (in ng/mL), (

√
shows the visual limit of detection, H represents the occurrence of the hook effect),

and (c) (1/Gray value)* × 10,000 vs. concentration of CEA (ng/mL) in standard serum samples. Insets: calibration curve for
analysis of CEA, and images of strips taken with the imaging platform.

Table 1 indicates the intra-assay and inter-assay recoveries for samples spiked with
CEA at different concentrations using GNP@PDA as a tag. The experiments were carried
out in triplicate for each spiked concentration. The intra-assay studies were performed
within 1 day, and the inter-assay studies were conducted for 3 days. The average recoveries
and coefficient of variation (CV) values for the intra-assay tests were within 95–120%
and 6.3–10%, respectively. The inter-assay recoveries ranged from 90 to 120%, with a CV
ranging from 8.33 to 11.66%. These results prove that this immunosensor benefits from
high accuracy and precision [27]. Since long-term stability studies were not the purpose
of our work, we did not check it, but taking into account the several weeks of stability of
commercially available pregnancy tests, we can expect similar performance [28].
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Table 1. The obtained recovery and coefficient of variation (CV) results for CEA-spiked serum samples using the developed
kit.

Spiked CEA (ng/mL)
Intra-Assay Inter-Assay

Mean ± SD Recovery (%) CV (%) Mean ± SD Recovery (%) CV (%)

0.5 0.6 ± 0.06 120 10 0.6 ± 0.07 120 11.66
2 2.3 ± 0.15 115 6.5 2.4 ± 0.25 120 10.41

20 19 ± 1.2 95 6.3 18 ± 1.5 90 8.33
35 34 ± 2.6 97 7.6 35 ± 3.4 100 9.70
45 46 ± 3.4 102 7.4 46 ± 5.2 102 11.30

3.4. Application of the Developed Smartphone-Based LFIA Kit for the Detection of CEA in Clinical
Serum Samples

After quantifying CEA in real serum samples, the extracted calibration curve was
inserted into the developed “TBZMed Sensor” app and used to analyze the clinical serum
samples. Among these samples, 12 samples had CEA values higher than 5 ng/mL (positive
samples), while 14 samples had CEA values lower than 5 ng/mL (negative samples). A
comparison of the results obtained by our developed smartphone-based LFIA kit and
ELISA is given in Figure 2a. As seen, an excellent correlation (R = 0.99) between these
two approaches was attained, confirming a good agreement between them. In addition,
the sensitivity and specificity of the developed smartphone-based LFIA kit were further
calculated. The obtained results (sensitivity of 91% and specificity of 93%) in Table 2
and Figure 2a illustrate that the developed smartphone-based LFIA kit can potentially be
utilized for accurate and rapid monitoring of cancer treatment at sites far from centralized
laboratory facilities. Using an unpaired t-test for the analysis of CEA (+) and CEA (−)
clinical samples revealed a considerable ability of the developed platform to discriminate
between these two groups (p-value < 0.0001) (Figure 2b). Receiver operating characteristic
(ROC) analysis is a valuable means of assessing the performance of diagnostic tests, acting
as a simple graphical tool for displaying the accuracy of a medical diagnostic test. ROC
analysis was also carried out on clinical serum samples. The TP, TN, FP, and FN values were
obtained according to a report from the hospital during a one-year follow-up of the patients’
conditions [29]. The area under the ROC curve is a summary measure that essentially
averages diagnostic accuracy across the spectrum of test values. As seen in Figure 2c, with
an area of 0.99, the developed platform benefits from high diagnostic accuracy [30].

A comparison was also made between our developed cost-effective smartphone-based
LFIA kit and currently reported lateral-flow-based portable detection systems for the
quantification of CEA, in terms of analytical performance and meeting the REASSURED
criteria (Table 3). Since the commercial magnetic and fluorescent strip readers do not have
ability to connect to the Internet, such assays suffer in terms of real-time connectivity (lack
of the R criterion), as described for [14,17] in Table 3. The approaches developed in [16,17]
may suffer in terms of the user-friendly (U), equipment-free (E), and deliverable to the end-
user (D) criteria due to the complexity of the quantification procedure. In addition, because
of the use of external image analysis software, [16] could not satisfy the necessity of easy
quantification and sharing via smartphone (lack of the R criterion). The complexity of the
quantification process is also another drawback of some previous works, such as [15,16,31]
(lack of the E and U criteria). As seen in Tables 2 and 3, with a comparable linear range
of 0.05–50 ng/mL, considerable sensitivity and specificity of 91% and 93%, respectively,
the capability of analyzing serum samples and potential application to blood samples,
easy access to the Internet for transferring results via the developed app, low cost of the
assembly (USD ~2.5, see Table S1), and its user friendly characteristics—i.e., quantification
of CEA in clinical samples by image capturing alone—this device satisfies the REASSURED
criteria [32–34]. Although our developed platform benefits from the REASSURED criteria,
it may suffer from camera-dependent output results, which is an intrinsic drawback of
smartphone-based quantification systems. To remedy this issue, a simple approach is to
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attach the smartphone or a camera to the black box system, providing all users with the
same image capturing system.
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Figure 2. (a) Comparison of the results obtained with the developed smartphone-based LFIA kit
(CEA found) and CEA reference (commercial ELISA kit) in the measurement of CEA in clinical
samples. (b) The estimated CEA levels corresponding to each sample, resulting from the analysis
facilitated by the smartphone-based platform. The clinical serum samples were classified in two
groups: CEA-positive (+, n = 12 samples), and CEA-negative (−, n = 14 samples). (c) ROC analysis,
with area under the curve (AUC) of 0.99.

Table 2. Characteristics of the developed smartphone-based LFIA kit in the analysis of clinical serum samples.

Samples Number of Positive Results Number of Negative Results Characteristic Parameter

12 (+) 11 1 Sensitivity 91%

14 (−) 1 13 Specificity 93%

Sensitivity = (TP/TP + FN)∗100; specificity = (TN/TN + FP)∗100; TP: true positive; FN: false negative; TN: true negative; FP: false positive.

Table 3. Comparison of some characteristics of our developed smartphone-based LFIA kit with recently reported LFIA-based
portable systems, in terms of the quantification of CEA.

Detection Strategy Used Tag LR *
(ng/mL)

LOD **
(ng/mL)

Detection
Time (min)

REASSURED *
Criteria Ref.

Commercial magnetic strip reader Magnetic particles 1–100 0.045 30 -EASS-R- - [17]

Smartphone-based colorimetric image analysis Magnetic NPs containing Ab
and biotinylated DNA 0.25–100 0.0375 15 -EASS-R- - [16]

Fluorescent handing system Quantum dots 1–100 5 20 REASS-R-D [15]
Fluorescent handing system Quantum dot nanobeads 1–50 0.049 15 REASS-R-D [32]

Commercial fluorescent reader Quantum-dot-doped
polystyrene nanoparticles 2.8–680 0.35 15 -EASSURED [14]

Smartphone-based colorimetric image analysis GNP@PDA 0.05–50 0.05 15 REASSURED this work

* LR: linear range; ** LOD: limit of detection; * REASSURED criteria: real-time connectivity (R), ease of specimen collection (E), affordable
(A), sensitive (S), specific (S), user-friendly (U), rapid and robust (R), equipment-free (E), deliverable to the end-user (D).
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4. Conclusions

In conclusion, by combining the desired characteristics of GNP@PDA as an efficient
tag in a sandwich-type LFIA, and by the development of a portable smartphone-based
platform, a simple, cost-effective (USD ~2.5, see Table S1), and easy-to-use immunosensing
device was developed for the smartphone-based detection and quantification of CEA in
human serum. With a linear range of 0.05–50 ng/mL and a low LOD of 0.05 ng/mL,
sensitivity of 91%, and specificity of 93%, the developed smartphone-based LFIA kit
provides the desired characteristics for point-of-care evaluation of cancer biomarkers. The
linear range of the strip satisfies the requirements for clinical analysis. The employed
MF1 membrane in the sample pad provides the capability to perform whole-blood-sample
analysis; hence, our developed sensing platform can potentially be employed for blood
sample tests without any pretreatment or enrichment, addressing the REASSURED criteria.
In addition to the desired characteristics of the platform, the automation of image capturing
via our developed app may further improve utility and user-friendliness. Building upon
the satisfactory results of our developed smartphone-based LFIA platform in the detection
of CEA in human serum samples—especially in comparison with the results of reference
methods—and its other advantageous features as an assay kit that meets the World Health
Organization’s REASSURED criteria, we believe it could potentially be widely exploited for
patient monitoring, particularly at sites far from centralized laboratory facilities, for point-
of-care applications, and in resource-limited settings. Although our developed platform
shows some benefits in terms of the REASSURED criteria, it should be noted that this
system may suffer from camera-dependent output results, which is an intrinsic drawback of
smartphone-based quantification systems. To remedy this issue, there are two solutions: (1)
some calibration samples can be required within the final kit to calibrate the quantification
module before analyzing a real sample, due to differences in the optics of the camera and
the qualities of the employed CCDs; (2) a camera can be attached to the black box system,
which provides all users with the same image capturing system. Our group is also working
in this area to offer solutions to this drawback.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11100392/s1: Section S1: Figure S1: Photos of smartphone-based colorimetric imaging
device: (a) strip cartridge containing a test strip, the location of the cartridge-placing section within
the imaging box, and the USB cable; (b) the location of the smartphone holder and imaging aperture;
(c) the whole assembly of the platform, showing the placed strip within the box and the electric circuit
connected to the smartphone, and imaging of the strip; Figure S2: (a) photo; (b) design and dimensions
of 3D-printed LED holder—i: hole for placing LED; ii: cartridge-placing section. Illustration and
dimensions of (c) strip cartridge, and (d,e) imaging box; Table S1: Estimated cost of fabrication of each
imaging platform; Figure S3: The main interface of TBZMed Sensor: (a) icon; (b) the main interface
for selecting an image from the gallery or taking an image via the camera; (c) selecting the test zone
and cropping the image; (d) selecting the calibration equation; (e) reading the concentration of CEA
in ng/mL; and (f) real-time sharing of the test result; Section S2: Characterization of GNP-mAb
and GNP@PDA-mAb conjugates; Figure S4: Characterization of nanostructures, UV–Vis spectra of
different nanoparticles and respective bioconjugates: (a) initial; (b) in the presence of 1% NaCl; (c)
numerical values of λmax; (d) FTIR–ATR spectra of GNPs and GNP@PDA; (e) ζ-potential values;
(f) TEM image of GNP@PDA; Table S2: Results of Tukey’s multiple comparisons test on ζ-potential
values; Section S3: Optimization of effective factors on the performance of the developed smartphone-
based LFIA kit; Figure S5: The flow behavior of strips containing (a) unblocked conjugate pad, (b)
blocked conjugate pad (in lateral flow format), (c) both the sample and conjugate pads blocked, and
(d) unblocked sample and conjugate pads (in dipstick format); Figure S6: (a) Effect of running buffer
on strip performance—T depicts Tris (0.005 mol/L, pH 7.5), B depicts borate (0.005 mol/L, pH 7.5),
and P depicts phosphate (1X, pH 7.4), all with %0.1 Tween-20; 1 and 2 indicate that the concentration
of CEA is 0 and 5 ng/mL, respectively. (b) Effect of the amount of mAb immobilized on GNP@PDA,
including 1.6, 3.2, and 6.4 µg for buffer sample testing (b1 to b3), and 3.2, 6.4, and 9.6 µg for serum
sample testing (s1 to s3) on strip performance. (c) Effect of the volume of GNP@PDA–mAb dropped
on the conjugation pad—where V1 to V3 depict 1.5, 2.5, and 5 µL, respectively (in each case the

https://www.mdpi.com/article/10.3390/bios11100392/s1
https://www.mdpi.com/article/10.3390/bios11100392/s1
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left image is for blank and the right image is for the sample containing CEA 5 ng/mL)—on strip
performance. (d) Effect of different amounts of polyclonal antibody immobilized on the test zone
on the performance of the strip. C1 to C4 represent concentrations of 0, 0.25, 0.5, and 1 mg/mL,
respectively.

Author Contributions: Conceptualization, T.M., B.B., and H.G.; methodology, T.M.; formal analysis,
T.M., H.G., and B.S.; investigation, T.M., H.G., and B.S.; resources, H.G., E.M.-N., and B.B.; writing—
original draft preparation, T.M.; writing—review and editing, T.M., E.M.-N., B.S., M.P.-M., and H.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Iran National Science Foundation (INSF) (grant number
of 97001910) and Tabriz University of Medical Sciences (grant numbers 60836 and 63253).

Institutional Review Board Statement: This study was conducted according to the guidelines of the
ethical principles and the national norms and standards for conducting Medical Research in Iran, and
approved by the Institutional Review Board (or Ethics Committee) of Tabriz University of Medical
Sciences (protocol code IR.TBZMED.VCR.REC.1397.161 and date of approval 20 August 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent was obtained from the patient(s) to publish this paper.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge support from the “Iran National Science Foundation (INSF)”,
“Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, and the “Chem-
istry and Chemical Engineering Research Center of Iran (CCERCI)”, and E.M.-N. acknowledges
financial support by CONACYT (Mexico, Grant No. 312271, and Grant No. 376135).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
2. Wender, R.C.; Brawley, O.W.; Fedewa, S.A.; Gansler, T.; Smith, R.A. A blueprint for cancer screening and early detection:

Advancing screening’s contribution to cancer control. CA Cancer J. Clin. 2019, 69, 50–79. [CrossRef]
3. Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001, 47, 624–630.

[CrossRef]
4. Zhao, L.; Xu, S.; Fjaertoft, G.; Pauksen, K.; Håkansson, L.; Venge, P. An enzyme-linked immunosorbent assay for human

carcinoembryonic antigen-related cell adhesion molecule 8, a biological marker of granulocyte activities in vivo. J. Immunol.
Methods 2004, 293, 207–214. [CrossRef]

5. Kuroki, M.; Yamaguchi, A.; Koga, Y.; Matsuoka, Y. Antigenic reactivities of purified preparations of carcinoembryonic antigen
(CEA) and related normal antigens using four different radioimmunoassay systems for CEA. J. Immunol. Methods 1983, 60,
221–233. [CrossRef]

6. Qu, S.; Liu, J.; Luo, J.; Huang, Y.; Shi, W.; Wang, B.; Cai, X. A rapid and highly sensitive portable chemiluminescent immunosensor
of carcinoembryonic antigen based on immunomagnetic separation in human serum. Anal. Chim. Acta 2013, 766, 94–99. [CrossRef]
[PubMed]

7. Falzarano, R.; Viggiani, V.; Michienzi, S.; Longo, F.; Tudini, S.; Frati, L.; Anastasi, E. Evaluation of a CLEIA automated assay
system for the detection of a panel of tumor markers. Tumor Biol. 2013, 34, 3093–3100. [CrossRef] [PubMed]

8. Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral Flow Assays towards Point-of-Care Cancer Detection: A Review of
Current Progress and Future Trends. TrAC Trends Anal. Chem. 2020, 125, 115842. [CrossRef]

9. Golmohammadi, H.; Hamzei, Z.; Hosseinifard, M.; Ahmadi, S.H. Smart Fully Integrated Lab: A Smartphone-Based Compact
Miniaturized Analytical/Diagnostic Device. Adv. Mater. Technol. 2020, 5, 2000742. [CrossRef]

10. Mabey, D.; Peeling, R.W.; Ustianowski, A.; Perkins, M.D. Diagnostics for the developing world. Nat. Rev. Microbiol. 2004, 2,
231–240. [CrossRef] [PubMed]

11. Land, K.J.; Boeras, D.I.; Chen, X.-S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies,
strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [CrossRef]

12. Mahmoudi, T.; de la Guardia, M.; Shirdel, B.; Mokhtarzadeh, A.; Baradarn, B. Recent Advancements in Structural Improvements
of Lateral Flow Assays towards Point-of-Care Testing. TrAC Trends Anal. Chem. 2019, 116, 13–30. [CrossRef]

13. Younis, M.R.; Wang, C.; Younis, M.A.; Xia, X.H. Smartphone-Based Biosensors. In Nanobiosensors: From Design to Applications;
Wiley: Hoboken, NJ, USA, 2020; pp. 357–387. [CrossRef]

http://doi.org/10.3322/caac.21492
http://doi.org/10.3322/caac.21550
http://doi.org/10.1093/clinchem/47.4.624
http://doi.org/10.1016/j.jim.2004.08.009
http://doi.org/10.1016/0022-1759(83)90350-2
http://doi.org/10.1016/j.aca.2012.12.043
http://www.ncbi.nlm.nih.gov/pubmed/23427806
http://doi.org/10.1007/s13277-013-0877-x
http://www.ncbi.nlm.nih.gov/pubmed/23775009
http://doi.org/10.1016/j.trac.2020.115842
http://doi.org/10.1002/admt.202000742
http://doi.org/10.1038/nrmicro841
http://www.ncbi.nlm.nih.gov/pubmed/15083158
http://doi.org/10.1038/s41564-018-0295-3
http://doi.org/10.1016/j.trac.2019.04.016
http://doi.org/10.3920/WMJ2021.2702


Biosensors 2021, 11, 392 13 of 13

14. Chen, Z.; Liang, R.; Guo, X.; Liang, J.; Deng, Q.; Li, M.; An, T.; Liu, T.; Wu, Y. Simultaneous quantitation of cytokeratin-19
fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles. Biosens. Bioelectron. 2017, 91,
60–65. [CrossRef] [PubMed]

15. Qin, W.; Wang, K.; Xiao, K.; Hou, Y.; Lu, W.; Xu, H.; Wo, Y.; Feng, S.; Cui, D. Carcinoembryonic antigen detection with “Handing”-
controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens. Bioelectron. 2017, 90, 508–515.
[CrossRef] [PubMed]

16. Liu, F.; Zhang, H.; Wu, Z.; Dong, H.; Zhou, L.; Yang, D.; Ge, Y.; Jia, C.; Liu, H.; Jin, Q. Highly sensitive and selective lateral flow
immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen. Talanta 2016, 161, 205–210.
[CrossRef] [PubMed]

17. Lu, W.; Wang, K.; Xiao, K.; Qin, W.; Hou, Y.; Xu, H.; Yan, X.; Chen, Y.; Cui, D.; He, J. Dual immunomagnetic nanobeads-based
lateral flow test strip for simultaneous quantitative detection of carcinoembryonic antigen and neuron specific enolase. Sci. Rep.
2017, 7, 42414. [CrossRef]

18. Zhou, Y.; Ding, L.; Wu, Y.; Huang, X.; Lai, W.; Xiong, Y. Emerging Strategies to Develop Sensitive AuNP-based ICTS Nanosensors.
TrAC Trends Anal. Chem. 2019, 112, 147–160. [CrossRef]

19. Khashayar, P.; Amoabediny, G.; Larijani, B.; Hosseini, M.; Vanfleteren, J. Fabrication and verification of conjugated aunp-antibody
nanoprobe for sensitivity improvement in electrochemical biosensors. Sci. Rep. 2017, 7, 1–8. [CrossRef]

20. Xu, S.; Zhang, G.; Fang, B.; Xiong, Q.; Duan, H.; Lai, W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold
Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Appl. Mater. Interfaces 2019, 11, 31283–31290. [CrossRef]

21. Mahmoudi, T.; Shirdel, B.; Mansoori, B.; Baradaran, B. Dual sensitivity enhancement in gold nanoparticle-based lateral flow
immunoassay for visual detection of carcinoembryonic antigen. Anal. Sci. Adv. 2020, 1, 161–172. [CrossRef]

22. Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less is more: A comparison of antibody–gold
nanoparticle conjugates of different ratios. Bioconjug. Chem. 2017, 28, 2737–2746. [CrossRef] [PubMed]

23. Schiettecatte, J.; Anckaert, E.; Smitz, J. Interferences in immunoassays. Adv. Immunoass Technol. 2012, 3, 45–62.
24. Mahmoudi, T.; Tazehkand, A.P.; Pourhassan-Moghaddam, M.; Alizadeh-Ghodsi, M.; Ding, L.; Baradaran, B.; Bazaz, S.R.; Jin, D.;

Warkiani, M.E. PCR-free paper-based nanobiosensing platform for visual detection of telomerase activity via gold enhancement.
Microchem. J. 2020, 154, 104594. [CrossRef]

25. Jung, Y.; Heo, Y.; Lee, J.J.; Deering, A.; Bae, E. Smartphone-based lateral flow imaging system for detection of food-borne bacteria
E. coli O157: H7. J. Microbiol. Methods 2020, 168, 105800. [CrossRef] [PubMed]

26. De Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Challenges of the nano–bio interface in lateral flow and dipstick
immunoassays. Trends Biotechnol. 2017, 35, 1169–1180. [CrossRef] [PubMed]

27. Qie, Z.; Yan, W.; Gao, Z.; Meng, W.; Xiao, R.; Wang, S. An anti-BSA antibody-based immunochromatographic assay for
chloramphenicol and aflatoxin M 1 by using carboxy-modified CdSe/ZnS core–shell nanoparticles as label. Microchim. Acta 2020,
187, 10. [CrossRef]

28. Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with
enzymes. Biosens. Bioelectron. 2013, 40, 412–416. [CrossRef]

29. Litvak, A.; Cercek, A.; Segal, N.; Reidy-Lagunes, D.; Stadler, Z.K.; Yaeger, R.D.; Kemeny, N.E.; Weiser, M.R.; Pessin, M.S.; Saltz,
L. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J. Natl. Compr.
Cancer Netw. 2014, 12, 907–913. [CrossRef]

30. Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive
models. Circulation 2007, 115, 654–657. [CrossRef]

31. Saisin, L.; Amarit, R.; Somboonkaew, A.; Gajanandana, O.; Himananto, O.; Sutapun, B. Significant sensitivity improvement for
camera-based lateral flow immunoassay readers. Sensors 2018, 18, 4026. [CrossRef] [PubMed]

32. Xiao, K.; Wang, K.; Qin, W.; Hou, Y.; Lu, W.; Xu, H.; Wo, Y.; Cui, D. Use of quantum dot beads-labeled monoclonal antibody
to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and
carcinoembryonic antigen. Talanta 2017, 164, 463–469. [CrossRef]

33. Lee, S.; Kim, G.; Moon, J. Development of a Smartphone-based reading system for lateral flow immunoassay. J. Nanosci.
Nanotechnol. 2014, 14, 8453–8457. [CrossRef]

34. Ruppert, C.; Phogat, N.; Laufer, S.; Kohl, M.; Deigner, H.-P. A smartphone readout system for gold nanoparticle-based lateral
flow assays: Application to monitoring of digoxigenin. Microchim. Acta 2019, 186, 119. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bios.2016.12.036
http://www.ncbi.nlm.nih.gov/pubmed/27988480
http://doi.org/10.1016/j.bios.2016.10.052
http://www.ncbi.nlm.nih.gov/pubmed/27825889
http://doi.org/10.1016/j.talanta.2016.08.048
http://www.ncbi.nlm.nih.gov/pubmed/27769397
http://doi.org/10.1038/srep42414
http://doi.org/10.1016/j.trac.2019.01.006
http://doi.org/10.1038/s41598-017-12677-w
http://doi.org/10.1021/acsami.9b08789
http://doi.org/10.1002/ansa.202000023
http://doi.org/10.1021/acs.bioconjchem.7b00489
http://www.ncbi.nlm.nih.gov/pubmed/28984436
http://doi.org/10.1016/j.microc.2020.104594
http://doi.org/10.1016/j.mimet.2019.105800
http://www.ncbi.nlm.nih.gov/pubmed/31809829
http://doi.org/10.1016/j.tibtech.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28965747
http://doi.org/10.1007/s00604-019-4009-1
http://doi.org/10.1016/j.bios.2012.06.049
http://doi.org/10.6004/jnccn.2014.0085
http://doi.org/10.1161/CIRCULATIONAHA.105.594929
http://doi.org/10.3390/s18114026
http://www.ncbi.nlm.nih.gov/pubmed/30463191
http://doi.org/10.1016/j.talanta.2016.12.003
http://doi.org/10.1166/jnn.2014.9920
http://doi.org/10.1007/s00604-018-3195-6
http://www.ncbi.nlm.nih.gov/pubmed/30661134

	Introduction 
	Materials and Methods 
	Reagents and Instruments 
	Synthesis of GNP@PDA 
	Preparation of GNP–mAb and GNP@PDA–mAb Conjugates 
	Preparation of the Lateral Flow Test Strips 
	The Fabrication and Setup of the Smartphone-Based Colorimetric Imaging Device 
	The App Development 
	Lateral Flow Immunoassay Procedure 
	Clinical Samples Analysis 

	Results and Discussion 
	Characterization of GNP–mAb and GNP@PDA–mAb Conjugates 
	Optimization of Effective Factors on the Performance of the Developed Smartphone-Based LFIA Kit 
	Analytical Performance of the Developed Smartphone-Based LFIA Kit 
	Application of the Developed Smartphone-Based LFIA Kit for the Detection of CEA in Clinical Serum Samples 

	Conclusions 
	References

