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MOTIVATION Reliable segmentation of cells or tissues frommedical images is a critical need for generaliz-
able deep learning. Random initialization or transfer of model weights from natural-world images, gradient-
based heatmaps, and manifold learning have been used to provide insights for image classification tasks.
An automated workflow based on statistical reasoning that achieves reproducible medical image segmen-
tation is lacking. The toolkit reported in this study identifies training and validation data splits, automates the
selection of medical images segmented with high accuracy, and describes an algorithm for visualization
and computation of real-world performance of deep-learning models.
SUMMARY
Generalizability of deep-learning (DL) model performance is not well understood and uses anecdotal
assumptions for increasing training data to improve segmentation of medical images. We report statistical
methods for visual interpretation of DL models trained using ImageNet initialization with natural-world (TII)
and supervised learning with medical images (LMI) for binary segmentation of skin cancer, prostate tumors,
and kidneys. An algorithm for computation of Dice scores from union and intersections of individual output
masks was developed for synergistic segmentation by TII and LMI models. Stress testing with non-Gaussian
distributions of infrequent clinical labels and images showed that sparsity of natural-world and domain
medical images can counterintuitively reduce type I and type II errors of DL models. A toolkit of 30 TII and
LMI models, code, and visual outputs of 59,967 images is shared to identify the target and non-target medical
image pixels and clinical labels to explain the performance of DL models.
INTRODUCTION

Applications of artificial intelligence for automated classification

and segmentation of images require large amounts of well-anno-

tated data. Over the past ten years, thousands of research

studies (Suzuki, 2017) have reported the optimization of small

amounts of available data to conduct research with deep neural

networks (DNNs) formedical image classification and segmenta-

tion tasks to generate prototypes for real-world applications

(Yauney et al., 2017; Rana et al., 2020; Javia et al., 2018).

Researchers routinely leveraged the learned weights of pre-

trained natural-world deep-learning (DL)models such as AlexNet

to fine-tune the use of transfer learning (TL) for medical image

segmentation to improve performance (Krizhevsky et al., 2012;

Bayat et al., 2021). Visual Geometry Group-16 (VGG16) (Simon-

yan and Zisserman, 2014), U-Net (Ronneberger et al., 2015), and

other DL architectures are routinely used to fine-tune DL models

(Raghu et al., 2019). Anecdotal assumptions of superior perfor-

mance of TL compared with models trained exclusively using

medical images (termed as trained from scratch [TFS]) are prev-
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alent despite being poorly understood (Huynh et al., 2016; Näppi

et al., 2016). For example, when images were similar and even if

the classes were not the same, an augmented or larger dataset

or TL is assumed to train DL models with superior accuracy than

TFS (Esteva et al., 2017). A recent study reported that TL from

natural-world images did not increase the DL model perfor-

mance for medical image classification tasks (Raghu et al.,

2019). Medical images have complex biological textures and

several high-gradient regions leading to underspecification of

DL models for small perturbations by previously unseen images

(Ghorbani et al., 2020; D’Amour et al., 2020). Variances of illumi-

nation, image sensor optics, clinical labels, and out-of-training

data examples have also been reported to dramatically reduce

DL model performance (Finlayson et al., 2019; Paschali et al.,

2018). State-of-the-art DNNs designed for large-scale natural

image processing are often overparameterized for medical im-

aging tasks and remain vulnerable to adversarial attacks (Finlay-

son et al., 2019). Additionally, 90%–95% of TFS and TL models

demonstrate underspecification, low sensitivity, and low speci-

ficity for medical-grade segmentation precluding their clinical
s Methods 1, 100107, November 22, 2021 ª 2021 The Author(s). 1
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utility (Chen et al., 2019; Kelly et al., 2019; D’Amour et al., 2020).

The use of random 80:20 splits for generating training and valida-

tion image splits leads to low-data regimes and over- or under-

specification of underlying clinical labels and medical images,

resulting in poor reproducibility and replicability of DL models

(Collins and Moons, 2019; Shie et al., 2015). Generating inter-

pretable DL models from small amounts of medical image and

clinical label data remains challenging for the computational

medicine and biological image-processing communities (Chen

et al., 2019; Kelly et al., 2019; Shah et al., 2018, 2019). In addition,

DL models often memorize rather than learn information and

perform poorly when tested with out-of-distribution (OoD) but

related classification and segmentation tasks (Zech et al.,

2018; Finlayson et al., 2019; D’Amour et al., 2020). Neural

network explanation methods (Ghosal et al., 2018, 2019; Simon-

yan et al., 2013; Pokuri et al., 2019) and image-based visualiza-

tions using gradient-weighted class-activation mapping (Grad-

CAM) (Selvaraju et al., 2017) have been reported for visualizing

and interpreting DL model performance and mechanisms.

Thus, methods for generating statistically significant segmenta-

tion and visual Grad-CAM explanations for interpretation and

generalization of TL and TFS models benchmarked for segmen-

tation of different medical images are valuable for computational

rigor and clinically meaningful inferences.

In this study, we report a process andmethods for generalizing

DL image segmentation using natural-world (TII) models (trained

with supervised TL with ImageNet initialization and fine-tuned on

medical images) or learning with medical images (LMI) models

(trained with supervised learning trained natively on only medical

images) for the binary segmentation of tumors and organs. Sta-

tistical estimation and visual explanation of the training data and

DL model outputs for segmentation of three unique medical im-

age subtypes widely used for computational medicine research

were set as targets. Our goal was to support researchers work-

ing with small numbers of images and labels in multiple fields to

train high-performance DL models and provide resources for

their interpretability. We report (1) detailed validation of a pro-

cess for maximizing available clinical labels and medical images

for synergistic use of TII and LMI models; (2) a description of para-

metric and non-parametric statistical methods to test signifi-

cance of data distributions; (3) model performance estimation

by using the area under the receiver operating curve (AUROC),

Dice (F1) score, sensitivity, and specificity of segmentation of

target features; (4) estimation and identification of the least

numbers and types of individual images and available clinical la-

bels for improvement of model performance; (5) Grad-CAM (Sel-

varaju et al., 2017) and uniform manifold approximation and pro-

jection (UMAP)-based (McInnes et al., 2018) visualization and

interpretation of LMI and TII DL models; and (6) an algorithm

that automates the comparison of Dice scores by multiple DL

models to compute the highest possible accuracy of segmenta-

tion of medical image pixels contributing to type I and type II er-

rors. We release 30 (and a larger set of 270 derived from five rep-

licates) fully trained and validated DL models and 11,892 output

images from TII or LMI models trained under high- and low-data

regimes. This work also communicates specific use cases

when LMI and TII models can be used synergistically or in

ensemble configurations to improve performance or reduce
2 Cell Reports Methods 1, 100107, November 22, 2021
false-positive and -negative clinical diagnosis. To our knowl-

edge, this is the largest repository of detailed characterizations

of medical image segmentation and performance evaluation of

DLmodels, which can be a valuable resource for the community.

RESULTS

After estimation of the optimal 80:20 data split and clinical label

distributions for each of the three datasets, the grand median,

mean, and standard deviations of distributions of AUROC,

Dice scores, sensitivity, and specificity were evaluated for per-

formance estimations of TII and LMI models (Figure 1; Table 1)

used in this study. Pairwise differences between medians (Dm)

of individual performance metrics achieved by either TII or LMI

models were calculated for all individual test images in this study

(Table 1). We report numbers of images in each dataset that

achieved a metric value greater than or equal to 0.9 (a common

threshold to indicate superior performance), with 1 indicating a

perfect score (Table 1). Approximately 13,000 red/green/blue

(RGB) images with binary, benign (n = 12,668), and malignant

(n = 1,118) clinical labels (Table S2) of skin cancer diagnoses

were used in this study. Transfer-learned TII models achieved

higher mean and median Dice, AUROC, sensitivity, and speci-

ficity scores for segmentation of both benign and malignant

skin cancer lesions from RGB images (Table 1). The TII models

also achieved higher mean AUROC (86%) and Dice scores

(78%) across all skin cancers (Table 1). Greater numbers of

skin images were segmented with 0.9 or higher mean AUROC

(n = 1,651 images), Dice scores (n = 1,177), and sensitivity (n =

1,301) by TII models (Table 1). The TII models consistently

achieved scores higher than z0.9 (AUROC) for 1,651 images

(59% of total images) compared with 984 images by LMI models

for segmentation of any skin cancer (Table 1). Additionally, 40%

(1,177) of all skin cancer images were segmented with Dice

scores greater than 0.9 by TII models compared with 671 images

(22%) by LMI (Table 1). TII models outperformed LMI models with

higher and statistically significant (Mood’s median test, p ˂ 0.05)
differences for the segmentation of all benign andmalignant skin

cancer lesions across 2,758 test images (Figure 2Ai and Aii; Ta-

ble 1). Binary segmentation using LMI models performed equally

well in detecting non-target pixels as transfer-learned models

(Table 1). For the data depletion experiments, starting with the

selected 80:20 (train:test) split, the training data was depleted

to 60:40, 40:60, 20:80 and 10:90 ratios (Figure 1; Table 2

following randomization to enrich different splits.

Visual explanations were used to perform image-based anal-

ysis to compare and interpret the differences in LMI and TII model

performances reported in Table 1. The TII models demonstrated

lower false-negative and higher true-positive regions than the

corresponding outputs from LMI models for segmentation of

benign (Figure 2A) andmalignant skin cancer lesions (Figure 2B).

The majority of LMI outputs in column d in Figures 2Ai and 2Biii,

on the other hand, demonstrated higher false-negative (yellow)

and lower true-positive detection (green) compared with TII
models (column f of Figures 2Ai and 2Biii). Grad-CAM analysis

showed that LMI models were less capable of distinguishing

and had lowered activation between non-target skin pixel areas

surrounding boundaries of benign (Figure 2Aii, columns b and c)



Figure 1. Overview of study design and deep-learning models

Three datasets consisting of macroscopic optical skin (n = 13,786), microscopic RGB prostate core biopsy (n = 244), and CT DICOM images (n = 45,937) were

randomized and split five times into different percentages of 80 (training) and 20 (validation). Each of the five 80:20 splits (sets) for these three individual image

typeswere then used for training a VGG-UNet deep-learningmodel with internal 5-fold repeats by transfer learningwith pretrainedweights from 14million natural-

world images with ImageNet initialization (TII) or training with only medical images (LMI) in a particular dataset. The resulting five sets of TII (n = 25) and LMI (n = 25)

models were then compared using statistical testing of the pixel-by-pixel mean,median, and standard deviations of AUROC, Dice scores, sensitivity (true positive

rate), and specificity (true negative rate) of the associated segmentation masks. This process was repeated for estimating deep-learning model performance

following depletion of training data to smaller proportions. See also Figure S1; Tables S1 and S2.
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and malignant skin lesions (Figure 2Biv, columns b and c). Thus,

the LMI model detected and segmented fewer target pixels but

did not seem to lower its specificity values (non-target detection

capability). Additionally, Grad-CAM outputs showed that the

higher segmentation accuracy of TII models was based on their

higher and more precise activation and ability to distinguish

benign (Figure 2Aii, column e) or malignant (Figure 2Biv, column

e) skin lesions from non-target pixels. For larger and diffuse ma-

lignant lesions, TII models were not deceived by the red colora-
tion of the non-target skin pixels surrounding the cancer moles

(Figure 2Biii, images 1a and 1f) compared with LMI models that

had higher false-negative rates (Figure 2Biii, images 1a and 1d)

for such tasks. The TII models’ better performance can be ex-

plained by the higher activation and precise learning of key fea-

tures of moles and lesions causal for superior binary segmenta-

tion. Correspondingly, Grad-CAM activation profiles revealed

that TII models were more likely to focus or preferentially activate

regions with brighter colors or explicit shapes in benign and
Cell Reports Methods 1, 100107, November 22, 2021 3



Table 1. Grand median, mean of medians, and standard deviations (SD) calculated from the distributions of area under the receiver

operating curve (AUROC), Dice score, sensitivity, and specificity from five replicates achieved by transfer learning (TII) and learning

from medical images (LMI) deep-learning models for binary segmentation of RGB images with skin cancer, microscopic H&E-stained

prostate core biopsy, and CT of kidneys

Skin Prostate core biopsy Kidney CT

(ntest = 2,758) (ntest = 49) (ntest = 9,085)

LMI TII Percentage (%) LMI TII Percentage (%) LMI TII Percentage (%)

AUROC

Median 0.8544* 0.9282*y – 0.9359 0.9337 – 0.9980* 0.9978* –

Mean 0.8120 0.8826 – 0.9083 0.8991 – 0.9876 0.9871 –

SD 0.1514 0.1277 – 0.0831 0.0852 – 0.0588 0.0587 –

Value > 0.9 984 1,651y – 34 29 – 3,167 3,163 –

Dm > 0 – – 86 – – 31 – – 9

Dm = 0 – – 4 – – 4 – – 70

Dm ˂ 0 – – 10 – – 65 – – 21

Dice score

Median 0.8273* 0.8857*y – 0.9476 0.9325 – 0.9597 0.9598 –

Mean 0.7483 0.8250y – 0.8858 0.8733 – 0.9509 0.9502 –

SD 0.2169 0.1786 – 0.1536 0.1512 – 0.0657 0.0622 –

Value > 0.9 671 1,177y – 32 29 – 3,086 3,074 –

Dm > 0 – – 79 – – 31 – – 18

Dm = 0 – – 3 – – 4 – – 67

Dm ˂ 0 – – 18 – – 65 – – 15

Sensitivity

Median 0.7156* 0.8891*y – 0.9520* 0.9059* – 0.9985* 0.9979* –

Mean 0.6331 0.7944y – 0.8988 0.8507 – 0.9772 0.9761 –

SD 0.3080 0.2541 – 0.1438 0.1599 – 0.1178 0.1177 –

Value > 0.9 642 1,301y – 36 27 – 3,116 3,043 –

Dm > 0 – – 86 – – 4 – – 9

Dm = 0 – – 5 – – 4 – – 70

Dm ˂ 0 – – 2 – – 92 – – 21

Specificity

Median 0.9999* 0.9986* – 0.9572 0.9761 – 1 1 –

Mean 0.9922 0.9722 – 0.9108 0.9490 – 0.9993 0.9993 –

SD 0.0341 0.0945 – 0.1056 0.0777 – 0.0011 0.0011 –

Value > 0.9 2,707 2,576 – 36 42 – 9,085 9,085 –

Dm > 0 – – 2 – – 96 – – 15

Dm = 0 – – 21 – – 2 – – 78

Dm ˂ 0 – – 77 – – 2 – – 7

The numbers of test images that achieved metric values of 0.9 and higher for each model are shown. The subtraction of Dm > 0, < 0, and = 0 for each

image were used to calculate the numbers of test images that achieved higher median values by either TII and LMI models. The total number of test

images in each dataset is indicated by ntest. Statistically significant (Mood’s median test, p ˂ 0.05) differences between nonparametric distributions are

indicated by *. Differences in metric values greater than 5% are indicated by y for the better performing model. A value of 1 indicated a perfect score.

Percentage denotes percentage numbers of ntest. See also Figures S2 and S3.
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malignant lesions (Figure 2Biv, columns a, c, and e). Interest-

ingly, despite less than 100% coverage for the segmentation of

malignant skin lesions (Figure 2B), the TII models still achieved

higher AUROC andDice scores (Tables 1 and S3). The lower per-

formance of the TII models for segmentation of malignant tumors

may be attributed to the few coarse ground-truth clinical annota-

tions that may have included pixels without tumors. Alternatively,
4 Cell Reports Methods 1, 100107, November 22, 2021
the trained TII models could not comprehensively distinguish

malignant moles from the surrounding skin pixels that resembled

other cancer lesions in the training data. The presence of arti-

facts (e.g., stickers) (image 1a of Figure 2A) were identified as

non-target pixels by both TII and LMI models across the dataset.

Additionally, both models demonstrated comparable specificity

and lower false-positive segmentation of the majority of the



Table 2. Low-data regimen experiments for the segmentation of medical images

Skin Prostate core biopsy Kidney CT

LMI TII LMI TII LMI TII

AUROC

10% 0.8187* 0.8769*y 0.8730* 0.9158* 0.9967* 0.9963*

20% 0.8160* 0.9126*y 0.9185 0.9237 0.9972* 0.9973*

40% 0.8613* 0.8932* 0.9215 0.9183 0.9976 0.9976

60% 0.8542* 0.9044*y 0.9153 0.8995 0.9980* 0.9976*

80% 0.8544* 0.9282*y 0.9359 0.9337 0.9980 0.9978*

Dice score

10% 0.7818* 0.8437*y 0.9246 0.9250 0.9533* 0.9541*

20% 0.7855* 0.8743*y 0.9268 0.9392 0.9551* 0.9543*

40% 0.8346* 0.8624* 0.9390 0.9302 0.9571 0.9567

60% 0.8274* 0.8721* 0.9262 0.9030 0.9570* 0.9577*

80% 0.8273* 0.8857* 0.9476 0.9325 0.9597 0.9598

Sensitivity

10% 0.6571* 0.7769*y 0.9523* 0.9394* 0.9959* 0.9950*

20% 0.6449* 0.8593*y 0.9567 0.9559 0.9968* 0.9971*

40% 0.7341* 0.8195*y 0.9726* 0.9535* 0.9976 0.9975

60% 0.7174* 0.8321*y 0.9407* 0.8919* 0.9983* 0.9974*

80% 0.7156* 0.8891*y 0.9520* 0.9059* 0.9985* 0.9979*

Specificity

10% 1* 0.9995* 0.9223 0.8960 1 1

20% 1* 0.9990* 0.9203 0.8768 1 1

40% 0.9999* 0.9995* 0.8987 0.8971 1 1

60% 0.9999* 0.9993* 0.9547 0.9657 1 1

80% 0.9999* 0.9986* 0.9572 0.9761 1 1

AUROC, Dice score, sensitivity, and specificity from five replicates of transfer learning (TII) and learning from medical images (LMI) deep-learning

models for binary segmentation of RGB images with skin cancer, microscopic H&E-stained prostate core biopsy, and CT of kidneys are reported. Im-

ages were depleted into different proportions (indicated by %). Statistically significant (Mood’s median test, p < 0.05) differences between nonpara-

metric distributions are indicated by *. Differences greater than 5% are indicated by y for the better performing model. A value of 1 indicates a perfect

score.
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non-target tissue pixels as tumors. The shared features and RGB

pixel intensities common between classes of ImageNet natural-

world and skin cancer images and the sufficient availability of ex-

amples of the majority of target clinical labels in the skin image

dataset may have played an important role in achieving higher

performance by the TII model. Thus, a transfer-learned TII model

could leverage previously learned features from natural-world

images to segment skin cancer from RGB images and exhibit

lower false negatives and higher discriminatory ability for tumors

and robustness against non-target artifacts in the images.

The LMI and TII models were trained with z250 whole-slide

hematoxylin and eosin (H&E) images of prostate core biopsy im-

ages using 80%of the available data (224 images with any tumor

labels and 20 without tumors). The LMI models achieved higher

median AUROC and Dice scores compared with TII models for

the test dataset (Table 1; Figure S3Bvii and Bviii). Greater

numbers of prostate core biopsy images segmented by LMI

models had higher mean AUROC, specificity, and Dice scores

for tumor segmentation (Table 1). Approximately 65% of images

were segmented with higher AUROC and Dice scores by LMI
models (Table 1). The LMI models also achieved 0.9 or higher

AUROC and Dice scores for 34 test images (61%) compared

with 29 for TII (Table 1). The higher performance of metric distri-

butions for LMI models, save for sensitivity (Table 1), did not

reach statistical significance of p ˂ 0.05 (Mood’s median test)

(Table 1; Figure S3Bvii and Bviii). Figure 3A shows that both TII
and LMI outputs had false-negative (yellow colors) regions and

comparable true-positive regions for images with prostate tu-

mors (green). Grad-CAM analysis showed that Gleason grade

tumor regions were activated by LMI models with higher intensity

(Figure S4Cvi, column c) for making predictions compared with

the activation profiles of TII models (Figure S4Cvi, column e).

The LMI models were thus more accurate and more precise at

making predictions and demarcating boundaries between tumor

tissue and non-tissue (non-target) pixels. The TII models could

not segment all tumor tissue pixels and exhibited higher false-

negative errors (Figure S4Cv and Cvi, images 3 and 4).

Supervised learning using native prostate images improved seg-

mentation (˂5% [see Table 1]) and achieved statistically signifi-

cant differences (Mood’s median test, p ˂ 0.05) in sensitivity.
Cell Reports Methods 1, 100107, November 22, 2021 5



Figure 2. Visualization and explanation of transfer learning (TII) and learning from medical images (LMII) models for segmentation of skin

cancers

(A) shows benign skin cancer and (B) shows malignant skin cancer images. A(i) and B(iii), left to right columns: a, input RGB image; b, binary mask of the clinical

ground-truth label; c, mask of the output image after binary segmentation by the LMI model; d, overlay of the clinical ground truth and LMI model binary output

masks; e, mask of the output image after binary segmentation by the TII model; f, overlay of the clinical ground truth and the TII model binary output masks. A(ii)

and B(iv), target class-based Grad-CAM outputs. Class 0 represents the non-target or non-tumor pixel regions of the skin; class 1 represents pixels with benign

tumors, moles, and lesions. Color bars represent the degree of model attention and importance, with deeper red indicating the most importance and deeper blue

indicating the least important. Green, true positive (TP); black, true negative (TN); red, false positive (FP); yellow, false negative (FN); GT, clinical ground truth. See

also Figures S4 and S5; Tables S1–S3.
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The test dataset had two prostate core biopsy images without

any ground-truth tumor signatures, and both LMI and TII models

correctly predicted one image (image 3 in Figures 3A and 3B)

with true-negative pixels. The Grad-CAM analysis for this image

(Figure 3B, image 3) when queried with target class 0 corre-

spondingly highlighted the non-target pixels but did not highlight

any pixels when queried with target class 1 (which corresponds

to tumor pixels). In contrast, both models incorrectly segmented

benign tissue pixels for image 4 in Figures 3A and 3B as tumor

and showed corresponding false-positive Grad-CAM activation

for the non-target pixels. Thus, visual explanations from the im-

age analysis of microscopic RGB images of prostate core biopsy

interpreted that LMI models achieved slightly better segmenta-

tion accuracy than TII models (Table 1). We reason that this

was based in part on the necessity and availability of the higher

complexity of microscopic histology images for initializing accu-
6 Cell Reports Methods 1, 100107, November 22, 2021
rate binary segmentation of prostate tumors by LMI models.

Moreover, the LMI models trained using randomly initialized

weights were well suited for differentiating between the non-

target pixels and target tumor pixels for the prostate core biopsy

image dataset. Conversely, for images that did not have tumors

or with only benign tissue pixels, the transfer-learned TII models

performed better with lower false-positive outputs. We reason

that DL models trained on natural-world images such as the Im-

ageNet databasemay be slightly less efficient for complex tumor

segmentation from microscopic pathology but may be used in

conjunction with LMI models for achieving superior segmentation

of non-target classes. A corollary is that TL from a larger, more

heterogeneous data and model weights of natural-world images

to a smaller dataset may have optimal parameterization for

learning the non-target pixels. Additionally, training using only

pathology biopsy images (LMI models) might be beneficial for



Figure 3. Visualization and explanation of transfer learning (TII) and learning from medical images (LMI) models for the segmentation of

prostate core biopsy images

(A) Left to right columns: a, input RGB image; b, binary mask of the clinical ground-truth label; c, mask of the output image after binary segmentation by the LMI

model; d, overlay of the clinical ground truth and the LMI model binary output masks; e, mask of the output image after binary segmentation by the TII model; f,

overlay of the clinical ground truth and the TII model binary output masks.

(legend continued on next page)
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the comprehensive and accurate learning of detailed features for

the demarcation of boundaries of tumors from non-tumor tissues

and other non-target pixels.

45,000 (approximately) abdominal computed tomography

(CT) digital imaging and communications in medicine (DICOM)

images with 16,336 kidney tissue and 29,088 non-target clinical

labels were used in this study (Table S2). Differences in the dis-

tributions of AUROC and sensitivity were statistically significant

(Mood’s median test, p ˂ 0.05) between models, with LMI per-

forming slightly better but with less than 5% gain in performance

(Table 1; Figure S3Cix and Cx). A statistically significant differ-

ence (Mood’s median test, p ˂ 0.05) between LMI model sensi-

tivity of 0.9985 and 0.9979 for TII was calculated. The LMI models

performed better, with 1,937 test images achieving higher

AUROC scores (z21% of total test images or z60% of images

with kidneys). The images segmented by TII models, on the other

hand, showed higher Dice scores (z18% of all test images or

z50% of images with kidneys) (Tables 1 and S4). This dataset

contained significant numbers of images without kidneys

(5,840 out of 9,085) (i.e., corresponding ground-truth mask la-

bels were black pixels). Both models achieved the perfect me-

dian score of z1 for specificity and comparable Dice scores

for segmentation of kidneys from non-target pixels and other or-

gans (Table 1). Inherent embedded features and properties of

gray-scale CT images are unlike natural-world images in the Im-

ageNet database. Values for the AUROC and Dice scores indi-

cated that both models performed comparably with marginal

performance (˂5%) gains by LMI. Representative CT images

with (Figures 4 and S4D) and without kidneys or with other or-

gans (Figure 4) are shown for performance evaluation. For

most test images, both models could segment out kidney tissue

pixels with reasonable accuracy (Figure 4A, images 1, 2, and 3).

In a few test images, LMI models segmented larger areas of kid-

ney pixels (green regions in Figure S4Dvii, columns d and f) while

TII models demonstrated higher false-negative (yellow regions)

rates. Grad-CAM analysis also showed that both LMI and TII
models could distinguish non-target pixels and exhibited the

least activation for pixels without kidneys (class 0) (Figure 4B,

columns c and e). In particular, the TII models had lower sensi-

tivity in demarcating the boundaries between kidneys and non-

target pixels from other organs (Table 1). For image 4 in

Figure 4A, both models showed false negatives or absence of

kidney segmentation, and corresponding Grad-CAM outputs

(Figure 4B, images c4 and e4 for LMI and TII) did not activate

target class 1 in the final model outputs. Other images in the

test dataset had similar outcomes, with models failing to

segment kidney tissue pixels. In summary, training LMI models

from scratch for targeted segmentation was more optimal for

achieving higher sensitivity when the target class of kidney tissue

pixels was available in lower numbers than pixels of a non-target

region, when there were other organs, or when the presence of

other organs and tissue pixels outnumbered the presence of kid-

ney tissues. In all other scenarios, LMI and TII models performed
(B) Target class-based Grad-CAM output. Class 0 represents the non-target or no

grade 3, 4, or 5 tumors. Color bar represents the degree of model attention and

indicating the least important. Green, true positive (TP); black, true negative (TN)

See also Figures S4 and S5; Table S2.
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equally well, and Grad-CAM explanations suggest they may be

used synergistically and interchangeably.

UMAP has been used to visualize and explain learning mani-

folds of DL models (McInnes et al., 2018). For skin cancer im-

ages, the target class 0 was assigned to presence of cancer

lesion or tumors, and target class 1 indicated a non-target re-

gion or the absence of a lesion. Both LMI and TII models learned

the clinical features within the input skin cancer images without

being provided or trained with explicit clinical labels (Figure S5A)

and could distinguish between benign and malignant lesions

(Figure S5Ai for LMI and Aiii for TII). We also note greater sepa-

ration of the two UMAP clusters for Figure S5Aiii compared with

Ai, indicating that the TII model distinguished the clinical differ-

ences in the skin cancer data more effectively than LMI and sup-

ported the previous observation that TII is a better performing

model for skin cancer segmentation (Figure S5Aiii compared

with Ai). For the non-target class (Figure S5Aii for LMI and Aiv

for TII) models, we did not observe major differences in the

UMAP clustering of the two clinical classes. However, the ma-

lignant tumors formed a tighter grouping than the non-target

skin tissue pixels for both models. We hypothesize that these

differences in image-derived features may help the DNN model

layers to classify pixels of benign and malignant skin tumors

and other non-target classes. The dataset utilized for digital pa-

thology (Gleason, 2019) had a total of 244 H&E-stained core im-

ages with binary tumor or no-tumor segmentation masks asso-

ciated with them and was smaller in comparison with the other

datasets. For images of prostates, the target class 0 indicated

the presence of tumor tissue pixels and 1 indicated the pres-

ence of non-target pixels. Analysis of UMAP mappings for pros-

tate core biopsy images showed distinct groups for target class

0 and 1 for both models (Figure S5B). Clinical class labels such

as presence or absence of tumors, however, did not show

distinct UMAP clusters. This could be attributed to the fact

that there were only two images without tumors in the test data-

set. The possibility of different Gleason grade 2, 3, and 4 scores

of tumors being responsible for the discrete arrangement of

clusters seems promising and can be used as the input for

training DL models. However, for this study, we simply focused

on the binary tumor and no-tumor classification/segmentation

task. In the CT data, target class 1 indicated the presence of

kidney tissues, and target class 0 indicated the presence of

non-target and or non-kidney tissue pixels. From Figure S5C

for target class 0, the LMI model showed a different manifold

than TII models, indicating a unique learning process for kidney

tissue structures. Both models showed separation between im-

ages without kidneys (yellow cluster in Figure S5Cx and Cxii)

and those with kidneys (violet cluster in Figure S5Cx and Cxii)

and were able to distinguish between the non-target and/or

non-kidney tissue pixels. Thus, learning of non-target pixel

manifold was crucial for high sensitivity and specificity of seg-

mentation of small organs or tissue pixels such as kidneys

from a large CT image dataset.
n-tumor pixel regions of the prostate core biopsy; class 1 represents Gleason

importance, with deeper red indicating the most importance and deeper blue

; red, false positive (FP); yellow, false negative (FN); GT, clinical ground truth.
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DISCUSSION

Previous studies have reported that CNN DL models trained us-

ing TL from large ImageNet or medical datasets compared with

smaller numbers of target images of limited scales can achieve

better performance and reduce the computational training cost

and overfitting on small training data. Performance gains for

classification following TL between medical images of the

same modalities but from different clinical tasks—for example,

between magnetic resonance images (MRI and MRI)—have

been reported (Ghafoorian et al., 2017; Van Opbroek et al.,

2014). Cross-modality learning between MRI and CT (Dou

et al., 2018) or between natural-world images and medical im-

ages also improved classification (Raghu et al., 2019; Van Gin-

neken et al., 2015; Bar et al., 2015; Ciompi et al., 2015; Shie

et al., 2015). Another study claimed that fine-tuning the pre-

trained AlexNet CNN model to classify RGB-fused images

achieved better performance on MRI images (Banerjee et al.,

2018). For satellite image segmentation, TL from ImageNet pro-

vided 30% savings in computational costs while achieving accu-

racy levels comparable with TFS (Giorgiani do Nascimento and

Viana, 2020). Similarly, transfer between similar imagemodalities

(from legacy MRI to MRI) achieved a 0.63 Dice score by fine-tun-

ing on only two images from the target domain (Ghafoorian et al.,

2017). A domain adaptation protocol was also utilized to adapt a

CNN trained with MRI images to unpaired CT data for cardiac

structure segmentation (Dou et al., 2018).

However, emerging literature is skeptical of the true effects

and benefits of TL from natural-world images, such as ImageNet

for specialized tasks in the medical imaging domain. For

example, a study reported that random initialization was surpris-

ingly robust even in the low-data regime (10% available training

data), and ImageNet pretraining speeds up convergence early in

training but does not necessarily provide regularization or

improve the final target task accuracy in their study (He et al.,

2019). Another study inspected the effects of transfer from natu-

ral-world images for two large-scale medical imaging classifica-

tion tasks from chest X-rays and retinal fundus photographs (Ra-

ghu et al., 2019). They found that transfer does not significantly

aid performance, and the model performance on the ImageNet

database did not translate to the medical domain. They also re-

ported that transfer from ImageNet did not significantly aid per-

formance compared with smaller, simpler convolutional TFS

models that use only medical images to classify retinal fundus

and chest X-ray images. Results from another work showed

that learned features from ImageNet do not transfer well for

fine-grained medical image classification tasks (Kornblith et al.,

2019). These studies suggest that some of the shortcomings of
Figure 4. Visualization and explanation of transfer learning (TII) and lear

CT images with kidneys

(A) Left to right columns: a, input RGB image; b, binary mask of the clinical groun

model; d, overlay of the clinical ground truth and the LMI model binary output ma

overlay of the clinical ground truth and the TII model binary output masks.

(B) Target class-based Grad-CAM output. Class 0 represents the non-target or no

tissue pixels. Color bar represents the degree of model attention and importance,

least importance. Green, true positive (TP); black, true negative (TN); red, false p

See also Figure S1 and Table S2.
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DL models trained natively using medical images may be attrib-

uted to overparameterization rather than sophisticated feature

reuse advantage thought to be provided by TL.

The role of TL and training natively using medical images for

segmentation tasks is not well characterized and understood.

The detailed characterization of the value of available DL

methods for medical image segmentation across different image

modalities has also not been reported. In this study, we report

several interesting findings for the use of statistical methods

and visual explanation of DNN models for interpretation of

high-accuracy segmentation of clinical information frommedical

images. Several commonly held practices and anecdotal con-

cepts were put to the test, such as randomization and propor-

tioning of training and test data, DL model selection, and perfor-

mance under low-data regimes. We report that although TL from

natural-world images showed benefits, it was not a universal so-

lution for improving binary segmentation of medical images. In

fact, rigorous statistical significance testing and Grad-CAM evi-

dence showed that supervised learning with medical images

provided unique gains in sensitivity and specificity and can be

used synergistically with TL. We recommend splitting the

available images into at least five different proportions and

repeating the training and validation of each split five times to

identify the optimal distribution of clinical labels to prevent

skew and memorization. If clinical label distributions are non-

Gaussian (i.e., one class heavily outnumbers the other), random-

ization is not optimal. For example, the skin cancer dataset

had fewer (n = 1,118) malignant compared with benign tumor

(n = 12,668) images, and the clinical label distributions were

uneven between training and testing splits. DL models trained

using these splits demonstrated higher false-negative errors

(Figure 2B). We recommend checking for the normalcy of perfor-

mance metric (AUROC, Dice score, sensitivity, and specificity)

distributions and Yeo-Johnson transformations of such distribu-

tions to select the appropriate parametric Gaussian or non-para-

metric statistical testing to establish significance. For the non-

parametric distributions reported in this study, medians served

as better measures of central tendencies than means. Another

finding from this study was instances in which both training

schemes of LMI and TII could be used synergistically or as

ensemble models to improve higher-level morphological and

fine-grained segmentation (discussed in detail below). This is

an important distinction from prior studies that reported anec-

dotal selection of larger datasets and pretrained LMI or TII models

and discarding the inferior model.

For several target image classes, the LMI and TII models may

be synergistically used to achieve a mutually beneficial increase

in segmentation accuracy. For skin images, TII models
ning frommedical images (LMI) models for the binary segmentation of

d-truth label; c, mask of the output image after binary segmentation by the LMI

sks; e, binary mask of the output image after segmentation by the TII model; f,

n-kidney class or region pixels of the CT image; class 1 represents the kidney

with deeper red indicating the most importance and deeper blue indicating the

ositive (FP); yellow, false negative (FN); GT, clinical ground truth.



Figure 5. Visualization of synergistic outputs of the unions and intersections of TL (TII) and learning frommedical images (LMI) models. Left to

right columns: a, input RGB image; b, binary mask of the clinical ground-truth label; c, overlay of the clinical ground truth and the LMI model

binary output masks; d, overlay of the clinical ground truth and the TII model binary output masks; e, binary mask of the output image after

computing the union of binary segmentations by LMI and TII models; f, overlay of the clinical ground truth and the binary union output masks;
g, binarymask of the output image after computing the intersections between binary segmentation by the LMI and TII models; h, overlay of the

(legend continued on next page)
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segmented non-target pixels as disease signatures (false posi-

tive) in more images than LMI models (higher specificity in Table

1). Thus, the synergistic use of TII models to learn cancer lesions

from skin images and LMI models to distinguish non-target pixels

can result in desirable segmentation (Figure 5). This was

reversed for prostate core biopsy and kidney CT images, for

which TII models predicted target tumor or organ signatures as

non-target (false negative). Thus, for prostate core biopsy and

kidney CT images, the TII models were better at learning non-

target pixels while LMI models were superior at segmenting tu-

mors or organs (Figure 5). We also report images where LMI

and TII models segmented the target pixels at a different location

on the same image. The union of output masks from bothmodels

increased the segmentation of higher proportions of ground-

truth pixels for such images (images 7, 9, and 10 in Figure 5).

One limitation for thismethod arosewhen onemodel (TII) demon-

strated high false positives while the other (LMI) resulted in high

false negatives (images 4 and 8 in Figure 5). The union of model

output masks for these images identified false-positive regions,

and the intersection enriched the false-negative pixels for

desired optimizations.

Automated segmentation of one image by both models and

the use of individual segmentation output masks in various com-

binations were most optimal for achieving the desired perfor-

mance across all datasets (Figure 5, columns e and g). In Fig-

ure 5, columns c and d show the individual model performance

for LMI and TII, respectively. Applying a union operation that com-

bined results from both LMI and TII output segmentation masks

(Figure 5, columns e and f for images 1, 3, 5, 7, 9, 10, and 12)

improved the performance when one model exhibited high false

negatives and the other did not. Union operations, however,

decreased the performancewhen onemodel exhibited high false

positives (Figure 5, columns e and f for image 6). Operations that

generated intersections between segmented region outputs

from both models (Figure 5, columns g and h for images 2, 6,

and 11) improved the performance when one model revealed

high false positives. However, intersection operations were not

useful when one model (LMI for image 3 in Figure 5) exhibited

high false negatives. Our overall results indicated that it was

most optimal to use intersection of segmentation outputs when

both models show high false positives and using the union of

segmentation outputs when both models show high false nega-

tives. An automated algorithm (Algorithm 1 in STAR Methods)

was developed that compared the individual segmentation

Dice scores achieved either by the LMI and/or TII models onmed-

ical images or their intersection and unions and generated a final

image (Figure 5, purple bounding boxes) with the best possible

segmentation output. False-positive rates were compared

when Dice scores were not defined or available (Figure 5, image

6). As seen in Figure 5, the algorithm iteratively selected individ-

ual LMI or TII outputs in images where their unions and intersec-

tions did not improve segmentation performance (Figure 5, im-

ages 2c, 4d, and 11d). In the majority of instances, the
clinical ground truth and the binary intersection outputmasks. Images w

generated by an automated rule-based algorithm that uses synergistic

select images and models with highest Dice score and lowest false-

negative (TN); red, false positive (FP); yellow, false negative (FN); GT, c
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algorithm selected union masks from both models (images in

Figure 5, column f) to reduce false positives and negatives,

underscoring the value of using LMI and TII models synergistically

for achieving higher accuracy.

Findings from the UMAP visualizations corroborated our pre-

vious findings from statistical analysis and Grad-CAM visualiza-

tions. For the skin cancer data, TII performed better than LMI

models for segmenting skin lesions. The TII model also grouped

benign and malignant class labels more efficiently than the LMI

model. For the prostate core biopsy data, we report similar per-

formance for both models in terms of clinical class grouping un-

der UMAP approximation, which can be attributed to the fact

that one class (presence of tumor tissues) heavily outnumbered

the other (absence of tumor tissue). Thus, when false positives

are to be kept at a minimum, DL strategies can alternate syner-

gistically for higher sensitivity and specificity for the detection

and segmentation of disease regions. This was especially impor-

tant under low-data regimes and when individual models were

inadequate for achieving high sensitivity and specificity. Statisti-

cally significant (Mood’s median test, p ˂ 0.05) differences for

estimating the performance, reproducibility, and replicability of

LMI and TII models can also be used for situations where sparsity

promotes better learning. Thus, even with the purported bene-

fits, TL can result in suboptimal outcomes if model outputs and

clinical labels are not carefully examined to provide information

causal for medical-grade performance. This can be attributed

to the tendency of the TL model to gravitate toward the original

dataset manifold when sufficiently large and when diverse new

data are not used for fine-tuning. For example, the LMI model

weights were easier to update for two medical image types in

this study and outperformed TL models for specificity of binary

segmentation. On the other hand, TL models (TII) demonstrated

significant performance gains in sensitivity for larger and com-

plex segmentation of multicolored skin cancer RGB images,

which possibly shared features and complexity with natural-

world images. Training and generating ensemble TII and LMI

models with automated computation of segmentation masks

with high sensitivity and specificity for the segmentation of target

features can therefore serve as a highly effective strategy for

medical images.

The DL and statistical methods communicated in this study

and findings derived from them can be used for selecting the

best training and validation data splits, using the least numbers

of images required for high-performance segmentation, and

automated selection of best-performing models and correctly

segmented images. The Dice score computation algorithm

also automated screening for robust segmentation performance

from multiple models. The approach described in our study may

also alleviate under specification and stress testing challenges

precluding real-world deployment of DL models when tested

with OoD data (D’Amour et al., 2020). For example, we recom-

mend training TII and LMI models using domain-specific data of

choice and amalgamation of their desired performance to
ith dashed purple bounding boxes indicate the segmentation output

output generation from columns c, d, f (union), and h (intersection) to

positive and -negative pixels. Green, true positive (TP); black, true

linical ground truth.
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achieve high-grade segmentation. During deployment, a previ-

ously unseen image can be sequentially segmented by both

models, and independent segmentation masks are generated

(see examples in Figure 5). These output masks can then be

fed to the automated algorithm (Algorithm 1 in STAR Methods)

to compute and rank-order (using the numbers of correctly

segmented pixels) the best Dice scores in the union and inter-

section masks. The methods, code, and models from this study

can be used as starting points for custom applications and to

benchmark the performance of datasets and explainable DL

models of choice. The open-access GitHub repository hosting

(1) 30 fully trained and validated DL models (15 models each

for LMI and TII translating to 10models for each of the three image

modalities), (2) Grad-CAM results and the associated software

code and performance estimation from more than 10,000 test

images, and (3) a separate statistical analysis package for calcu-

lating the AUROC, Dice score, and sensitivity/specificity perfor-

mance of DL models will be a valuable resource for biomedical

and computer science researchers.

Limitations of the study
Although benchmarked datasets and widely used DNN archi-

tectures and models were used, the findings from this study

were optimized for the medical images, clinical labels, and

DNN specifically used for this research. Skin cancer and pros-

tate tumor regions annotated by pathologists can be coarse,

contain non-relevant tissue and skin, and, in some cases, be

inaccurate, which can increase disagreements with DL segmen-

tation performance. Additional fine-grained clinical image anno-

tation tools and labeled images may be needed for extremely

precise analysis of the results generated by DL models. Howev-

er, in view of the reproducible results and robust human-

enabled labeling process for the datasets used in this study

(Gleason, 2019; ISIC, 2019; Heller et al., 2019), we reason that

scenarios such as noisy or mislabeled clinical features may

manifest in the minority (subset) of the entire data and will not

change the conclusions. As previously reported by us (Rana

et al., 2020; Javia et al., 2018) and others, DL models often

match and learn the most distinguishing class-based features

from medical images following both supervised and unsuper-

vised training. In congruence, this study showed that semi-su-

pervised Grad-CAM activation and UMAP mappings were

indeed in agreement with the results obtained from Dice score,

AUROC, sensitivity, and specificity analysis for clinical labels.

Performance metrics for less frequently used DL model archi-

tectures suitable for classification and generative tasks were

not evaluated in this study. Multi-class segmentations (e.g.,

different prostate tumor grades and skin cancer types) are

future growth areas from this research. Based on the shared

representations between medical images and unified learning

mechanisms of deep CNN architectures, the findings of this

study should, however, generalize to other macro- and micro-

scopic images and clinical segmentation tasks.
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Processed data set with binary

segmentation masks used in this study for

prostate core biopsy segmentation

https://gleason2019.grand-challenge.
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https://doi.org/10.5281/zenodo.5570844

Processed data set with binary

segmentation masks used in this study for

kidney computed tomography binary

segmentation

https://kits19.grand-challenge.org/ https://doi.org/10.5281/zenodo.5570844

Trained LMI and TII model outputs from all

three data sets

This paper https://doi.org/10.5281/zenodo.5570844

Trained model Grad-CAM outputs from all

three data sets

This paper https://doi.org/10.5281/zenodo.5570844

Software and algorithms

Code repository for the study This paper https://doi.org/10.5281/zenodo.5570844

Trained image segmentation LMI and TII
model repository

This paper https://doi.org/10.5281/zenodo.5570844

MATLAB R2019B MathWorks, 2019 https://www.mathworks.com/products/

new_products/release2019b.html

Python 3.6.10 Van Rossum, 1995 https://www.python.org/

Numpy 1.19.1 Harris et al., 2020 https://github.com/numpy/numpy

Pandas 1.1.3 McKinney, 2010 https://github.com/pandas-dev/pandas

Matplotlib 3.3.4 Hunter, 2007 https://github.com/matplotlib/matplotlib

Opencv 4.5.1 Bradski, 2000 https://github.com/opencv/opencv

SciPy 1.5.2 Virtanen et al., 2020 https://github.com/scipy/scipy

Keras 2.1.6 (GPU version) https://keras.io/ https://github.com/keras-team/keras

Tensorflow 1.12.0 (GPU version) https://www.tensorflow.org/ https://github.com/tensorflow
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CUDA 10.1 NVIDIA corporation https://developer.nvidia.com/cuda-10.

1-download-archive-base
RESOURCE AVAILABILITY

Lead contact
Further information and requests for codes, models, and other resources should be directed to and will be fulfilled by the lead

contact, Dr. Pratik Shah Ph.D, pratiks@mit.edu.

Material availability
This study generated fully trained deep learningmodels and outputs for binary segmentation of skin cancer, prostate core biopsy and

kidney CT images. The trained models are publicly available at Zenodo https://doi.org/10.5281/zenodo.5570844. This repository

hosts 2,758 test images for skin, 49 test images for prostate core biopsy and 9,085 images for the kidney CT and their segmentation

and Grad-CAM outputs from the LMI and TII models described in this study.

Data and code availability

d The three data sets used in this study can be obtained from: ISIC-Archive database: https://challenge.isic-archive.com/data/

for the skin images, Gleason-2019 database: https://gleason2019.grand-challenge.org/Register/ for the prostate core biopsy
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images and Kits-19 database: https://kits19.grand-challenge.org/data/ for the kidney CT images. These URLs are also listed in

the key resources table. Specific data obtained from these hyperlinks used for this study are deposited and publicly available at

Zenodo repository: https://doi.org/10.5281/zenodo.5570844 under the open source Apache License 2.0 (https://opensource.

org/licenses/Apache-2.0).

d The software code used for preprocessing raw data, training and evaluation of deep learning models reported in this study are

deposited and publicly available at Zenodo repository: https://doi.org/10.5281/zenodo.5570844 under the open source

Apache License 2.0 (https://opensource.org/licenses/Apache-2.0). The code, processed data, figures and documentation

are available at Zenodo repository: https://doi.org/10.5281/zenodo.5570844as of the date of publication under the open

source Apache License 2.0 (https://opensource.org/licenses/Apache-2.0). The output images from the models are available

as of the date of publication at Zenodo repository: https://doi.org/10.5281/zenodo.5570844 under the creative commons pub-

lic domain dedication version 1.0 or later. These URLs are also listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data and preprocessing
Three data sets consisting of macroscopic optical skin (13,786), microscopic RGB prostate core biopsy (244), and CT Digital Imaging

and Communications in Medicine (DICOM) images (45,937) were used for this study. Images were represented by an n-by-3 data

array that defines the red, green, and blue (RGB) color components for each pixel. The pixel colors were determined based on

combinations of the RGB intensities stored in individual color planes. Skin images from the ISIC (The International Skin Imaging

Collaboration) archive consist of 13,786 3-channel RGB images of resolution ranging from (7000 3 4500) to (1024 3 720) (W 3 H)

with available ground truth (GT) binary mask associated with each image as its label (ISIC, 2019). Each binary mask had white pixels

denoting regions of the image where skin moles and or cancer signatures were present (class 1). Black pixels in the binary masks

represented non-target and or non-disease regions (class 0). Figure 2 shows examples of the input images and the corresponding

ground-truthmask for the ISIC data. Prostate core biopsy RGB images fromGleason2019 (Grand Challenge for Pathology at MICCAI

2019) consisted of 244 tissuemicroarray (TMA) 3-channel RGB images of resolution 51203 5120 (W3H) (Gleason, 2019). Each TMA

image was annotated in detail by several expert pathologists for assigning a Gleason tumor grade of 1 to 5 and a GT segmentation

mask. Gleason grades 1 and 2were clinically rare and not associated with tumors, andwere designated as benign (class 0) with black

pixels and regions of Gleason Grades 3, 4 and 5 were considered non-benign or tumors and represented by white pixels (class 1)

(Rana et al., 2020). Figure 3 shows examples of input images and the corresponding ground truth masks of Gleason2019 data.

The KiTS19 database had images with CT volumes of patients who underwent partial or radical nephrectomy for one or more kidney

tumors at the University of Minnesota medical center between 2010 and 2018 (Heller et al., 2019). Each pixel represented a tissue or

non target region and had an assigned gray scale value between 0 and 255, which represented the x-Ray beam attenuation to the

tissue (Athanasiou et al., 2017). For this study, CT volumes were processed into 45,424 5123 512 (W3 H) 2D axial slices either with

or without kidneys (along with kidney tumors). Kidneys (along with the tumor) were associated with ground truth multi color masks

provided in KiTS19 data. Image slices and pixels in which kidneys were not present were associated with black pixels, and were

considered to be the non target regions (class 0) for this study and the white pixels that corresponded to regions with kidney tissues

(with or without tumors) were the target regions (class 1). Figures 4 and S4D show examples of input images and corresponding

ground truth masks for the kidney CT image data.

The performance evaluation of the TII and LMI models trained using 80:20 data splits for different clinical classes on the medical

image subtypes used in this study is shown in Figure 1. These classes were region-based, and a class was determined by the pres-

ence or absence of certain clinical features or signatures on an image and the severity of those features in the context of the data set.

For example, for skin images lesions were clinically labeled as benign (12,668 images) or malignant (1,084 images) moles (lesions or

tumors), and 19 images were intermediate. For H & E stained prostate core biopsy images the non target or benign regions of the

prostate core were considered healthy or without tumors. Gleason grade 3, 4 or 5 regions were combined to represent a separate

clinical label of tumors. This process resulted in 22 images with prostate tumors and 20 images without tumors. For the kidney CT

DICOM images, the presence or absence of kidneys were considered as two explicit clinical classes. Before feeding into neural net-

works, the input images were resized to 608 3 416 (W 3 H) for skin and 608 3 416 (W 3 H) for prostate core biopsy data sets to

reduce training time. Kidney CT images were used in their original resolution of 512 3 512 (W 3 H).

Ethics approval
All three data sets used in this study are publicly available, deidentfied and were exempt fromMassachusetts Institute of Technology

Committee on the Use of Humans as Experimental Subjects review. Skin images can be downloaded from the ISIC archive. Prostate

core biopsy RGB images from Gleason2019 grand challenge for pathology website. Computed tomography images from the 2019

kidney tumor segmentation grand challenge website.
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Deep learning
We evaluated several architectures suitable for segmentation tasks and selected the well-established and widely used VGG-UNet

architecture (Iglovikov and Shvets, 2018; Ronneberger et al., 2015). The VGG-UNet is an encoder-decoder type framework in which

the encoder is the VGG-16 (Simonyan and Zisserman, 2014) architecture without the fully-connected (FC) layers, and the decoder

has subsequent upsampling of previously encoded layers output leading to the final class-dependent predicted segmentation

mask. Using the VGG-UNet architecture as the backbone we trained DL models using ImageNet initialization (TII) for training with

pretrained weights from natural world images from the ImageNet database (ImageNet, 2012). Model random initialization (LMI)

used the same architecture but was trained without utilizing pretrained weights (i.e., it was initialized with random weights). All TII
and LMI models were trained with optimization of the chosen loss function and convergence of learning and small loss values,

and were capped at 40 epochs for the skin and prostate core biopsy data and 20 epochs for the kidney CT images. The categorical

crossentropy loss function for pixel-wise binary classification and the Adadelta optimizer (with the default initial learning rate of 1.0)

were used (Zeiler, 2012). An optimal batch size of two was used for all three data sets during training. A NVIDIA GeForce GTX 1080Ti

with 12 GB of video memory was used to perform the training and performance evaluation. Five random 80:20 (train:test) splits for

each of the three individual image types were trained and tested with internal five-fold repeats using either TL (total of 25 TII-models)

or LMI (25 LMI-models). This random five-fold splitting of the data sets was used for the reallocation of images and associated clinical

labels to evaluate overfitting and underspecification (Table S2). The resulting five sets of TII-LMI models were then compared using

statistical testing of the pixel-by-pixel mean, median and standard deviations of AUROC, Dice scores, sensitivity (true positive rate),

and specificity (true negative rate) of the associated segmentation masks. A model performance threshold was defined using differ-

ences in metric values greater than 5% and or those that reach statistical significance (Mood’s median test, p ˂ 0.05). This process

was repeated with 25 LMI and TII models (Figure 1; Table S1 for skin image data). Thus for each of the three individual medical image

subtypes, 50 DLmodels were trained and analyzed for segmentation of tumors and organs (Figures 1 and S3). For the data depletion

experiments, starting with the selected 80:20 (train:test) split the training data was depleted to 60:40, 40:60, 20:80 and 10:90 ratios

(Figure 1; Table 2) by randomization. For example, the training data (80%) from the initial 80:20 training data set was split to generate

two subsets - one representing 60%of the complete data set and the remaining that represents 20%. This 20%was then pooled with

the initial 20% test split (from the 80:20 set) to generate the 40% test set and the new depleted 60:40 split. The subsequent 40:60

(train:test) split was similarly generated from the 60:40 proportion. The depletion was stopped after the train:test split reached the

ratio of 10:90.

Data depletion and randomization methods
Randomization of available data into 80:20 proportions is standard practice in DL research. Researchers may also use repeats of

individual model runs to fine tune and estimate the reproducibility of their results. Randomization can result in imbalance due to a

skewed or non-Gaussian distribution of labels and clinical data available in smaller numbers. We employed a mixture of K-fold

(K = 5) cross-validation and random sub sampling to generate five sets of data splits (Figure S1A), to train and test the LMI and TII
models. The randomization scheme resulted in 20% images in common between at least two of the individual test sets and no com-

mon test data between all five sets. Approximately, 40% of the data was common across the generated training sets (Figure S1A).

The median values for clinical label distribution remained consistent across the five randomized sets, and approximately equal pro-

portions (90%) of themost frequent and target clinical labels ended up in training and testing data (Figure S1A). Less prevalent clinical

labels (e.g. malignant skin cancers) were also proportionately distributed following randomization. Five-fold randomization of CT im-

ages resulted in proportional distribution of images without andwith kidneys in training and test data (Figure S1A). The randomization

and data depletion thusmaintained a good balance between exploration of all available data and clinical labels, while optimizing high-

accuracy segmentation for desired andmost prevalent target classes. After medical images were split into five 80:20 proportions, the

DLmodel, image category, and distribution of clinical labels were causal for segmentation performance (Figure 1). For the skin cancer

images (n = 13,786), five-fold random shuffling and 80:20 splits resulted in approximately 11,000 training and 2,700 test images.

Benign or malignant moles and lesions were randomized equally across five training (z 91%) and test (z 7%) splits for individual

data (Table S2). Performance of the LMI models from one split matched with that of the LMI models from other data splits, but a >

5% difference was calculated for data split 2. And all the TII model performance remained similar across all five splits (Table S2).

In the prostate core biopsy data (n = 244), five-fold randomization into 80:20 splits resulted in approximately 195 training and 44

test images. Deep learning models for segmentation of regions with tumors were trained using approximately 177 training and

were evaluated using 49 test images. This resulted inz 8% (17 images) of training and 4-8% (4 images) of test data without tumors,

and 90% of training and 91-93% of test data images with tumors. The computed tomography DICOM data set contained 45,424 2D

images and LMI DL models were trained using approximately 13,000 images with kidneys (36%) and 23,000 (64%) without kidneys.

Evaluations were performed with approximately 3,200 (36%) images with and 5,800 (64%) images without kidneys in the test data

(Table S2). For this data set, large numbers of data with other organs or only non-target pixels did not seem to impact model perfor-

mances significantly (Figure S3C; Table S4). These results indicated that blind and random 80:20 splitting did not seem to impact

model performance for simple segmentation tasks with medical image data sets with limited heterogeneity (as shown in Figure S3C;

Table S4.

The data depletion experiments (Figure S1B) used restrictive bootstrapping, where a single 80:20 split was further processed by

randomlymoving 20%data to test and using the remaining for training. A similar trend of proportional distribution of clinical labels and
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imageswere calculated in the data depletion experiments (Figure S1B). Performance trends calculated by 80:20 split DL experiments

were then compared to models trained under lower data availability. Table 2 shows the median values calculated from the depletion

experiments for non-Gaussian distributions of performance metrics for each image modality. Both LMI and TII models exhibited a

gradual decrease in performance as training data were depleted across all three image types. Differences between LMI and TII model

performance were statistically significant (Mood’s median test, p ˂ 0.05) for all skin cancer training data regimens, underscoring the

impact of heterogeneity and Gaussian distribution of clinical labels on deep learning. Under low data availability (10-20% training

data), the transfer-learned TII models outperformed LMI with higher Dice and AUROC scores for skin cancer segmentation, and

both DL models achieved similar Dice and AUROC scores when 40 and 60% of the training data were available. The TII models

achieved higher sensitivity (higher true positive pixel segmentations for skin cancer) for all data splits, while both models performed

equally well for specificity in reducing false positives by not segmenting non-target pixels as tumors. The decrease in training data

availability for prostate core biopsy images, both TII and LMI models demonstrated an overall gradual decrease in performance of

AUROC and sensitivity scores with statistically significant differences (Mood’s median test, p ˂ 0.05) calculated at 10% and 60%

(Table 2). For the CT images, all DL models exhibited an increase for AUROC, Dice and sensitivity scores with increase in training

data size. For this data set as stated earlier, except at the 10% training data mark for the Dice score, LMI marginally outperformed

TII models (Table 2). The data depletion experiments can also be used to find out the least numbers of images required to train a

DL model with satisfactory performance.

State-of-the-art (SOTA) and grand challenge results from the data sets used in this study

d Top-5 ISIC image segmentation results (Tumor lesion boundary segmentation) (link to ISIC Live results) (ISIC, 2019): The objec-

tive of this challenge was to submit automated predictions of only lesion segmentation boundaries of both malignant and

benign skin cancers from dermoscopic images. The top scoring learningmethods used an ensemble of deep learning methods

and achieved Dice scores of 0.915, 0.914, 0.911, 0.906 and 0.904 respectively. While we optimized for binary segmentation of

the full volume of pixels in the benign and malignant skin cancers rather than boundaries, and achieved median Dice coeffi-

cients that were comparable at 0.8273 and 0.8857 for LMI and TII models.

d Top-5 Gleason 2019 challenge results (link to Gleason-2019 results) (Gleason, 2019): The objective of this challenge was multi-

class segmentation of prostate core biopsy Gleason grades from task 1: Pixel-level Gleason grade prediction and then task 2:

Core-level Gleason score prediction. While we focused on a modified version of task 1 by segmenting core images based on

prediction and classification of any of the Gleason-grade 3, 4 or 5 tumor labels (all or any of these were considered as tumors).

The top 5 ranked submissions reported 0.9594, 0.8295, 0.9096, 0.8832 and 0.8896 for benign pixel classification accuracy, and

Gleason grade accuracies of 0.3083, 0.4375, 0.4450, 0.4547 and 0.4023 were reported. The average accuracies were 0.6339,

0.6335, 0.6773, 0.6690 and 0.6460 for the top 5 ranked submissions. Our median benign tissue or non-tissue segmentation

accuracy (true negative rate) were higher at 0.9572 (for LMI) and 0.9761 (for TII), andmedian Gleason grade tissue segmentation

accuracy (true positive rate) were also higher at 0.9520 (LMI) and 0.9059 (TII).

d Top-5 results in the KiTS 2019 kidney-segmentation challenge results (link to KiTS-2019 results) (ImageNet, 2012): The goal of

this challenge was to match ground-truth semantic segmentation for arterial phase abdominal CT scans of 300 unique kidney

cancer patients who underwent partial or radical nephrectomy, and the task was to semantically segment kidneys and kidney

tumors from these abdominal CT scan slices. We focused only on kidney segmentations from these images where binary seg-

mentations may also kidney tumors as we both tumor and non-tumor kidney ground-truth masks were combined. The top five

kidney-only segmentation Dice score results in the competition were: 0.9794, 0.9793, 0.98, 0.9791 and 0.9772. The median

Dice scores for kidney segmentation calculated using five fold repeats in this study were 0.9597 (for LMI) and 0.9598 (for TII)

and z 0.96 for both models and matched the SOTA numbers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics
Four metrics – AUROC, Dice (F1) score, sensitivity (true positive rate), and specificity (true negative rate) that are frequently used to

evaluate performance of DL models for image segmentation were used in this study (Taha and Hanbury, 2015; Rana et al., 2020). A

segmentation was considered to be a true positive (TP) when tumor tissue pixels were correctly segmented. When the non tumor

tissues or non target pixels were detected as tumors, the segmentation was considered to be a false positive (FP) or a type I error.

When non-tumor tissues or non target pixels were not segmented it was considered to be a true negative (TN). The inaccurate seg-

mentation of non tumor tissues or non target pixels was considered to be a false negative (FN) or a Type II error. Sensitivity or true

positive rate (TPR) or recall was calculated as TP=TP+FN. In the context of the current study, this denoted the percentage of ground

truth pixels with the target class segmented correctly as lesion/mole/tumor (skin images), tumor (prostate core biopsy), or organ

(kidney CT) by the DL models. The specificity or true negative rate (TNR) = TN=TN+FP was calculated using the percentage of

the DL models detection that matched the non target class pixels from the ground truth clinical masks for the three data sets.

The AUROC for estimating the overall model performance across all test images was calculated from the area of the curve created

by plotting TPR against FPR at various threshold (FPR values of 0, 0.5 and 1) settings. The Dice (F1) score was defined as the
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harmonic mean of precision and sensitivity, where the precision = TP=TP+FP. In the context of the current study, precision denoted

the percentage of the DL models predicted segmentation pixels that matched the ground truth clinical labels. A Dice score =

2 � Precision � Recall=Precision+Recall was used to measure the segmentation accuracy of the DL models. Sensitivity and speci-

ficity together signified the TP and TN pixels detected by the model, which were confirmed by the color overlay maps to infer location

specific correctness of the models. And segmentation overlay maps with detailed true and false positive, true and false negative

regions were used to analyze the performance of the trained models in determining the correct location of the segmentation outputs.

Dice score is a standard and widely accepted metric used for segmentation (Ghosal et al., 2021; Rana et al., 2020) and was used for

the 2-D spatial information from images. We propose ametric based on AUROC, Dice score, sensitivity and specificity for calculating

the differences in performances between the two models:

Given the same evaluation metric, m of choice, we define Dm as follows:

Dm = DTII�LMI
jm =STII

m � SLMI
m (Equation 1)

where S represents one previously unseen test image or a distribution of images from a particular test data. m represents either

AUROC, Dice score, sensitivity or specificity. Thus:

d Dm > 0 0 TII performs better than LMI for ‘‘m’’ ˛ [AUROC, Dice score, sensitivity and specificity].

d Dm = 0 0 TII performs as well as LMI for ‘‘m’’ ˛ [AUROC, Dice score, sensitivity and specificity].

d Dm < 0 0 LMI performs better than TII for ‘‘m’’ ˛ [AUROC, Dice score, sensitivity and specificity].

Statistical methods
Binary segmentation masks predicted by individual DLmodels were used to calculate the AUROC values and Dice scores for each im-

age within a particular test data set. The mean, median and standard deviations of Dice scores and AUROC values associated with

individual images segmented by either LMI and TII models were used for performance evaluations. The overall mean, median and stan-

dard deviation of sensitivity and specificity from a particular test data set were used to assess type I (false positive) and type II (false

negative) errors for model comparisons used in this study. The Shapiro-Wilk test (Razali and Wah, 2011) showed that all four metric

distributions deviated from the normality assumptions (Figure S2). Yeo-Johnson transformations (Weisberg, 2001) of the distributions

also did not achieve normality assumptions (Figure S2). Non-parametric Mood’s median test was used to test the significance between

differences ofmedians of LMI and TII performance values (Mood et al., 1963; Zar, 2013). The null hypothesis for theMood’s test was that

medians of the populations of test images segmented by LMI and TII models were equal (i.e., both models perform equally well for seg-

mentation of a certain image and tumor type). The grandmedian (median ofmedians) of all the datawas then computed. A contingency

table was created by classifying the individual AUROC, Dice, sensitivity and specificity values for each test image from a particular data

set as being above or below the grand median of the distributions being tested. This contingency table was used to compute the test

statistic and p value. A p value of ˂ 0.05 rejected the null hypothesis, and indicated that observations from LMI and TII did not come from

the same distribution and showed statistically significant differences. This process was used to calculate and compare the means, me-

dians and standarddeviations of AUROC,Dice score, sensitivity and specificity values for the segmentation of skin, prostate cancer and

kidneys by TII and LMImodels across all data regimes and images. Results from these comparisonswere then further processed using a

five% threshold criterion to identify 80:20 data split and models. Corresponding output images, segmentation masks and associated

LMI and TII models from this 80:20 data split were selected for further analysis. A non Gaussian distribution of AUROC and Dice scores

from the TII or LMI models (Figure S3) was calculated for each of the three image data sets. A higher Dice score indicated superior seg-

mentation performance for a particular image type and target pixels by the trained model (Dice, 1945; Taha and Hanbury, 2015). Dif-

ferences between Dice scores were then used to rank order and compare the best and worst segmentation accuracy achieved by

LMI or TII models for individual test images (Table 1).

Representative images from this process were analyzed by comparisons with their clinical ground-truth while Grad-CAM outputs

were generated to explain themodel performance. Suitability and comparisons of TII and LMI models for segmentation of images with

benign and malignant skin cancer are shown in Figure 2A and 2B respectively and additionally in Figure S2A and S2B, the prostate

core biopsy data set in (Figures 3 and S4C), and the kidney CT image data set in Figures 4 and S4D. Subsequently test images from

the selected 80:20 split were assigned ground truth clinical diagnoses to evaluate the distribution and performance of the keymetrics

achieved by LMI and TII models for specific clinical outcomes (Figure S3; Tables S3 and S4). Figure S4A illustrates examples for the

skin cancer data that could not be assigned a clinical diagnosis and were denoted as intermediate.

Algorithm 1
The unique aspect of the Algorithm 1 is that it is not limited to the data from this study, and can be utilizedwith other data sets to enrich

high-quality segmentation tasks. The standalone models and Algorithm 1 reported in this study when tested with out-of-distribution

(OoD) data will not have access to true ground-truth segmentation to carry out the evaluation step. In these circumstances, historical

performance and Dice scores, AUROC and sensitivity and specificity values on similar or related image modalities used for training

(Tables 1 and 2) may be used. The trained models and their performance from this study closely matched the ground-truth data met-

rics, and if provided with a small amount of unlabelled OoD data, these models can also be retrained or fine-tuned and used with the

Algorithm 1. In situations with models with high false positive outputs, the algorithm recommends discarding or retraining to obtain
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Algorithm 1. Segment Medical Images

Step 1: Model Training: Input: Xtrain: Raw input images from chosen medical

image modality, Ytrain: Input images labels (binary segmentation masks). Five-fold

repeats of model training based on:

LMI - Learning from medical images with random initialization,

TII - Learning using ImageNet initialization and fine-tuning using medical images

Step 2: Generate Outputs: Given LMI and TII trained models from five-fold repeat

training runs and test data: Xtest. Generate outputs:

OMI: LMI model segmentation output from average of 5 runs;

OII: TII model segmentation output from average of 5 runs;

OUni: OMI W OII (union);

OInt: OMI X OII (intersection)

Step 3: Iterative Selection: Choose a threshold beyond which a model output

segmentation is considered acceptable. This can be AUROC and/or Dice score >= 0.9

(a commonly acceptable threshold).

Initialize: ListAUROC = [] (an empty list), ListDice = [] (an empty list)

if ground-truth labels are available:

for output: output ˛ [, OII, OUni, OInt], Xtest and Ytest:

AUROCeval = AUROC (output)

Diceeval = Dice score (output)

ListAUROC.append(AUROCeval)

ListDice.append(Diceeval)

if minimum(ListDice) >= 0.9:

Choose output corresponding to maximum(ListAUROC).

else if maximum(ListDice) < 0.9:

Choose output corresponding to maximum(ListDice).

else if Diceeval ˛ ListDice is NaN (not defined) [when there are no

positive signatures in ground-truth]:

Evaluate FPR (False Positive Rate) for output ˛ [OMI, OII, OUni, OInt].

Choose output corresponding to lowest FPR value.

else if ground-truth labels are NOT available: Refer model outputs to human-experts

for visual cross-examination:

if high false positives are observed, go back to Step 1,

else accept output with lowest false positives and/or lowest false negatives

depending on task.
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models with lower false positives or within an acceptable threshold. The algorithm also accounts for the possibility that false positive

(or false negative) errors can only be automatically estimated when ground-truth labels are present. On the occasion that ground-

truth labels are not readily available such as during primary image acquisition and or initial analysis, the algorithm defers to human

experts to review the outputs visually.

Visual explanations of binary segmentation
Grad-CAM, a recently introduced interpretability method, follows the class-activationmapping (CAM) approach for localization (Zhou

et al., 2016), and enables the modification of neural network architectures performing classification or classification based on seg-

mentation. During the Grad-CAM operation, the FC layers are replaced by convolutional layers. Grad-CAM uses a gradient corre-

sponding to a certain target class that can be fed into the final convolutional layer of a network to produce an approximate localization

(heat) map of the important regions in the image for each target class. The subsequent global-average pooling (Lin et al., 2013) yields

class-specific feature maps. For both LMI and TII models, the input image was first passed through the DLmodel architecture with the

trained weights. Grad-CAM then operated on this trained model and the input image to generate a heatmap. The default and widely

used set of parameters for Grad-CAM tuning described in Selvaraju et al. (2017) where the layer being explained is set to the last layer

of the trained neural network were used in this study. The Grad-CAM function was also queried with a set of target prediction classes

that we wanted to explain. As there were five trained LMI and TII models resulting from the five-fold repeats used in the study, each

image in the test data set had five corresponding Grad-CAM outputs for each target class. These five outputs were then averaged to

generate the final Grad-CAM heatmap. The LMI and TII model outputs in Figures 2, 3, 4, 5, and S4 show the intersection of the five

individual repeats. They were obtained as follows:
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MO = X
5

n= 1
moRunn (Equation 2)

For both LMI and TII models, MO was the final model output and moRunn was the output for the nth run, the averages of the Grad-

CAM outputs of the five runs were calculated. The final Grad-CAM outputs from LMI and TII models, where GCRunn is the Grad-CAM

output for Runn, were calculated as follows:

GCOut =
1

5

X5

n= 1

GCRunn (Equation 3)
Interpretability of model learning strategy
UMAP constructs a high dimensional graph representation of the data then optimizes a low-dimensional graph to be as structurally

similar as possible (McInnes et al., 2018). The number of approximate nearest UMAP neighbors used to construct the initial high-

dimensional graph were: five for skin cancer images, two for prostate core biopsy images, and 20 for kidney CT images. Optimization

experiments using different neighbor values showed that when analyzing larger data manifolds in high dimensions, the lower

numbers constrained the neighboring points and pushed UMAP to focus more on the local structures. While the higher numbers

pushed the UMAP towards representing the larger structures. For tighter grouping of individual lower dimensional points, the min-

imum distance between points in the low dimensional space was kept at 0.01. Figure S5 shows the UMAP representations of the

penultimate layer of the VGG-UNet architecture for LMI and TII models for skin cancer, prostate core biopsy and kidney CT test

data. Figures S5Ai and S5Aii, S5Bv and S5Bvi, and S5Cix and S5Cx show the two dimensional UMAP embeddings for the feature

map generated for target class 0 and 1 for LMI models, and S5Aiii and S5iv, S5Bvii and S5Bviii, and S5Cxi and S5Cxii for the TII
models.
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